2023年人教版高中數(shù)學必修五教案范文(18篇)

字號:

    編寫教案需要根據(jù)教學大綱和教材確定教學目標和內(nèi)容。教案的編寫需要注意教學資源的充分利用和合理安排。教案的設計需要不斷積累經(jīng)驗,經(jīng)過實踐不斷完善和優(yōu)化。
    人教版高中數(shù)學必修五教案篇一
    根據(jù)德國心理學家艾賓浩斯繪制的遺忘曲線,學生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內(nèi)在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎知識,使內(nèi)容條理化、清晰化地呈現(xiàn)在同學的面前,從而完成由厚到薄的過程,對重難點和關鍵點,進行重點的、有針對性的講解。配以適當?shù)木毩?,提高學生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學生科學合理的知識結構的形成,使知識系統(tǒng)化和網(wǎng)絡化。
    舊知檢測。
    要想有效的提高課堂的復習效率,就須克服“眼高手低”的毛病。很多同學上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學生更好地了解自己知識的掌握情況。可以設置幾個基礎的填空和一個左右的解答題,通過解答的過程讓學生“自知自明”。激發(fā)起興趣,有效地提高復習的效率。
    精選精講。
    精心的選擇適量的典型例題,分析解決這些問題應該是一堂復習課的核心內(nèi)容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學思想方法,提高學生分析問題、解決問題的能力。
    人教版高中數(shù)學必修五教案篇二
    函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關系,而高中階段不僅把函數(shù)看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數(shù)本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。
    本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
    二、重難點分析。
    根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應該是本章的難點。
    三、學情分析。
    1、有利因素:一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎。
    2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。
    四、目標分析。
    1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
    2、通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
    3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質。
    五、教法學法。
    本節(jié)課的教學以學生為主體、教師是數(shù)學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。
    學法方面,學生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構出函數(shù)的概念。在理解函數(shù)概念的基礎上,建構出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
    2、設計理念。
    3、教學目標。
    情感態(tài)度與價值觀目標:引導學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美、
    4、重點難點。
    重點:任意角三角函數(shù)的定義、
    難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
    5、學情分析。
    6、教法分析。
    7、學法分析。
    本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數(shù)的定義”,最后引導學生運用類比學習法,來研究三角函數(shù)一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
    人教版高中數(shù)學必修五教案篇三
    曾經(jīng)有同學問我,你是怎么學數(shù)學的,也沒見你做多少的練習題,可數(shù)學的成績不錯。我覺得課堂的學習是關鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內(nèi),是教師與學生的交流,這時候,作為學生你的思維要跟得上老師的變化,這個知識點的關鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。
    1、課前預習是關鍵。
    相信我們學生都聽到過老師對我們的要求,要進行課前預習,不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預習的學生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學生預習了,就是不錯的了,另外,既使有的學生也預習了,只是走馬觀花的看一下書,那效果可想而知。
    預習也要講究方法,在預習中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預習還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預習的過程也是一個自學的過程,有助于提高自己分析問題、解決問題的能力,將自己在預習中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。
    2、科學聽課是保障。
    所謂科學聽課也就是說在教師授課的過程中學生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個器官,全身心的投入到課堂學習中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結?如何突破難點,結合自己在預習時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關節(jié)所在。
    3、做一定量的習題。
    在數(shù)學的學習過程中,對于做多少習題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習題;另一種是做適當?shù)牧曨}。做大量的習題的做法來源于題海戰(zhàn)術,曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學習過程中,時間非常緊,在有限的時間內(nèi)要學習好幾門知識,你數(shù)學題做的多了,難免會在其他科目上用時不夠,會對其他科目的學習造成影響。因此,大量的做題是不可取的。
    在學習的過程中,我崇尚做適當?shù)牧曨},而且在實際的學習過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關鍵的問題是在做完這道題后的分析總結,數(shù)學的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關鍵點再熟悉一遍,雖然當時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。
    人教版高中數(shù)學必修五教案篇四
    函數(shù)思想在解題中的應用主要表現(xiàn)在兩個方面:一是借助有關初等函數(shù)的性質,解有關求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關系式或構造中間函數(shù),把所研究的問題轉化為討論函數(shù)的有關性質,達到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學數(shù)學的基本思想,也是歷年高考的重點。
    1.函數(shù)的思想,是用運動和變化的觀點,分析和研究數(shù)學中的數(shù)量關系,建立函數(shù)關系或構造函數(shù),運用函數(shù)的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。
    3.函數(shù)方程思想的幾種重要形式。
    (1)函數(shù)和方程是密切相關的,對于函數(shù)y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
    (6)立體幾何中有關線段、角、面積、體積的計算,經(jīng)常需要運用布列方程或建立函數(shù)表達式的方法加以解決。
    人教版高中數(shù)學必修五教案篇五
    對重點內(nèi)容應重點復習.首先擬出主要內(nèi)容,然后有目的有針對性地做相關內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習.
    高考數(shù)學命題除了著重考查基礎知識外,還十分重視對數(shù)學方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強的數(shù)學方法.同學們在復習時應對每一種方法的實質,它所適應的題型,包括解題步驟都熟練掌握.其次應重視對數(shù)學思想的理解及運用,如函數(shù)思想、數(shù)形結合思想.
    應注意實際問題的解決和探索性試題的研究。
    現(xiàn)在各地風行素質教育,呼吁改革考試命題.增強運用數(shù)學知識解決實際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時學習中較少涉及,希望同學們把近幾年其他省、市高考試題中有關此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點是提高學生的綜合解題能力,訓練學生的解題策略,加強解題指導,提高應試能力.
    人教版高中數(shù)學必修五教案篇六
    在復習時,由于解題的量很大,就更要求我們將解題活動組織得生動活潑、情趣盎然。讓學生領略到數(shù)學的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學題,即便具有相當?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
    “山重水復”的困惑被“柳暗花明”的喜悅取代之后,學生又怎能不贊嘆自己智能的威力?我們要使學生由“要我學”轉化為“我要學”,課堂上要想方設法調(diào)動學生的學習積極性,創(chuàng)設情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運用情感原理,喚起學生學習數(shù)學的熱情;二是運用成功原理,變苦學為樂學;三是在學法上教給學生“點金術”,等等。
    在課堂教學結構上,更新教育觀念,始終堅持以學生為主體,以教師為主導的教學原則。
    教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學生通過自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說法就是:師傅的任務在于度,徒弟的任務在于悟。數(shù)學課堂教學必須廢除“注入式”“滿堂灌”的教法。復習課也不能由教師包講,更不能成為教師展示自己解題“高難動作”的“絕活表演”,而要讓學生成為學習的主人,讓他們在主動積極的探索活動中實現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學素養(yǎng)和悟性。
    作為教學活動的組織者,教師的任務是點撥、啟發(fā)、誘導、調(diào)控,而這些都應以學生為中心。復習課上有一個突出的矛盾,就是時間太緊,既要處理足量的題目,又要充分展示學生的思維過程,二者似乎是很難兼顧。我們可采用“焦點訪談”法較好地解決這個問題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過程中,常在某一點或某幾點上擱淺受阻,這些點被稱為“焦點”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進行淺表性的啟發(fā)誘導,好鋼要用在刀刃上,而只要在焦點處發(fā)動學生探尋突破口,通過訪談,集中學生的智慧,讓學生的思維在關鍵處閃光,能力在要害處增長,弱點在隱蔽處暴露,意志在細微處磨礪。通過訪談實現(xiàn)學生間、師生間智慧和能力的互補,促進相互的心靈和感情的溝通。
    人教版高中數(shù)學必修五教案篇七
    集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復習中首先要把握基礎知識,深刻理解本章的基礎知識點,重點掌握集合的概念和運算。本章常用的數(shù)學思想方法主要有:數(shù)形結合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關系等。復習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學思想方法來分析問題、解決問題的能力。
    (二)規(guī)律方法總結。
    1、集合中元素的互異性是集合概念的重點考查內(nèi)容。一般給出兩個集合,并告知兩個集合之間的關系,求集合中某個參數(shù)的范圍或值的時候,要特別驗證是否符合元素之間互異性。2、考查集合的運算和包含關系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細審題,弄清新定義的意義才是關鍵。
    基本初等函數(shù)。
    基本初等函數(shù)的內(nèi)容是函數(shù)的基礎,也是研究其他較復雜函數(shù)的轉化目標,掌握基本初等函數(shù)的圖象和性質是學習函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關的試題,大多以考查基本初等函數(shù)的性質為依托,結合運算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質,熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運用數(shù)形結合思想來解題的能力。
    (二)規(guī)律方法總結。
    1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結合考查綜合應用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關系的判定。
    2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉化必須是等價的,特別要考慮到對數(shù)函數(shù)定義域。
    人教版高中數(shù)學必修五教案篇八
    要學好數(shù)學,最關鍵的是要有一個好的基礎。只有打牢數(shù)學基礎,才能夠把高中數(shù)學好,同樣只有打好基礎,才能夠數(shù)學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
    想學好數(shù)學,對數(shù)學感興趣。
    其實學好數(shù)學最好的辦法就是發(fā)自內(nèi)心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。
    多做題反復做,有題感。
    其實學好數(shù)學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
    人教版高中數(shù)學必修五教案篇九
    掌握三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
    教學重難點。
    利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    教學過程。
    一、練習講解:《習案》作業(yè)十三的第3、4題。
    (精確到0.001).
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習:教材p65面3題。
    三、小結:1、三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
    四、作業(yè)《習案》作業(yè)十四及十五。
    將本文的word文檔下載到電腦,方便收藏和打印。
    人教版高中數(shù)學必修五教案篇十
    (二)倍角公式。
    2cos2α=1+cos2α2sin2α=1-cos2α。
    注意:倍角公式揭示了具有倍數(shù)關系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
    注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
    (2)對公式會“正用”,“逆用”,“變形使用”;。
    (3)掌握“角的演變”規(guī)律,
    (4)將公式和其它知識銜接起來使用。
    重點難點。
    重點:幾組三角恒等式的應用。
    難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。
    人教版高中數(shù)學必修五教案篇十一
    1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
    2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
    【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系
    【情感態(tài)度與價值觀】 感受數(shù)形結合的思想方法;
    【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
    【教學難點】利用數(shù)軸比較有理數(shù)的大小。
    (一)創(chuàng)設情境,引入課題
    (1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
    學生回答.
    (2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
    這種表示數(shù)的圖形就是今天我們要學的內(nèi)容―數(shù)軸(板書課題)
    (二)得出定義,揭示內(nèi)涵
    與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
    (1)畫直線,取原點
    (2)標正方向
    (3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
    概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
    (三)強化概念,深入理解
    1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
    學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
    2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫
    (四)動手練習,歸納總結
    1、在數(shù)軸上的點表示有理數(shù)。
    一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
    明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
    2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
    3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
    (1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
    (2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
    例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
    鞏固所學知識
    (五)、歸納小結,強化思想
    師生總結本課內(nèi)容。
    1、數(shù)軸的概念,數(shù)軸的三要素
    2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系
    3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
    師:你感到自己今天的表現(xiàn)怎樣?
    習題2.2 1、2、3
    選作第4題
    人教版高中數(shù)學必修五教案篇十二
    一、教學目標:
    知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義。
    過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義。
    情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
    二、重難點:
    教學重點:曲線參數(shù)方程的定義及方法。
    教學難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.
    三、教學方法:
    啟發(fā)、誘導發(fā)現(xiàn)教學.
    四、教學過程。
    (一)、復習引入:
    1.寫出圓方程的標準式和對應的參數(shù)方程。
    圓參數(shù)方程(為參數(shù))。
    (2)圓參數(shù)方程為:(為參數(shù))。
    2.寫出橢圓參數(shù)方程.
    (二)、講解新課:
    如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),
    那么又如何描述直線l上任意點的位置呢?
    2、教師引導學生推導直線的參數(shù)方程:
    (1)過定點傾斜角為的直線的。
    參數(shù)方程。
    (為參數(shù))。
    【辨析直線的參數(shù)方程】:設m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.
    (2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內(nèi)分點;當且時,m為外分點;當時,點m與q重合。
    (三)、直線的參數(shù)方程應用,強化理解。
    1、例題:
    學生練習,教師準對問題講評。反思歸納:
    1)求直線參數(shù)方程的方法;。
    2)利用直線參數(shù)方程求交點。
    2、鞏固導練:
    補充:
    1)直線與圓相切,那么直線的傾斜角為(a)。
    a.或b.或c.或d.或。
    2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.
    解:直線化為普通方程是,
    該直線的斜率為,
    直線(為參數(shù))化為普通方程是,
    該直線的斜率為,
    則由兩直線垂直的充要條件,得,。
    (四)、小結:
    (1)直線參數(shù)方程求法;。
    (2)直線參數(shù)方程的特點;。
    (3)根據(jù)已知條件和圖形的幾何性質,注意參數(shù)的意義。
    (五)、作業(yè):
    補充:設直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為。
    【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎題。
    解析:由題直線的普通方程為,故它與與的距離為。
    五、教學反思:
    人教版高中數(shù)學必修五教案篇十三
    本節(jié)課力的合成,是在學生了解力的基本性質和常見幾種力的基礎上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內(nèi)容的深化。
    本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學習其他矢量的運算奠定了基礎。
    更重要的是,力的合成是解決力學問題的基礎,對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應用都會產(chǎn)生重要影響。
    因此,這節(jié)課承前啟后,在整個高中物理學習中占據(jù)著非常重要的地位。
    二、教學目標定位。
    為了讓學生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內(nèi)容分兩課時來完成,今天我說課的內(nèi)容為本節(jié)內(nèi)容的第一課時。根據(jù)上述教材分析,考慮到學生的實際情況,在本節(jié)課的教學過程中,我制定了如下教學目標:。
    一、知識與技能。
    理解合力、分力、力的合成的概念理解力的合成本質上是從等效的角度進行力的替代。
    探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。
    二、過程與方法。
    通過學習合力和分力的概念,了解物理學常用的方法——等效替代法。
    通過實驗探究方案的設計與實施,體驗科學探究的過程。
    三、情感態(tài)度與價值觀。
    培養(yǎng)學生的合作精神,激發(fā)學生學習興趣,形成良好的學習方法和習慣。
    培養(yǎng)認真細致、實事求是的實驗態(tài)度。
    根據(jù)以上分析確定本節(jié)課的重點與難點如下:
    一、重點。
    合力和分力的概念以及它們的關系。
    實驗探究力的合成所遵循的法則。
    二、難點。
    平行四邊形定則的理解和運用。
    三、重、難點突破方法——教法簡介。
    本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學生真正理解平行四邊形定則,就要讓學生親自體驗規(guī)律獲得的過程。
    因此,本堂課在學法上采用學生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學生親自去體驗、探究、歸納總結。體現(xiàn)學生主體性。
    實驗歸納法的步驟如下。這樣設計讓學生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。
    本堂課在教法上采用啟發(fā)式教學——通過設置問題,引導啟發(fā)學生,激發(fā)學生思維。體現(xiàn)教師主導作用。
    四、教學過程設計。
    采用六環(huán)節(jié)教學法,教學過程共有六個步驟。
    教學過程第一環(huán)節(jié)、創(chuàng)設情景導入新課:
    第二環(huán)節(jié)、新課教學:
    展示合力與分力以及力的合成的概念,強調(diào)等效替代法。舉例說明等效替代法是一種重要的物理方法。
    第三環(huán)節(jié)、合作探究:
    首先,教師展示實驗儀器,讓學生思考如何設計實驗,,如何進行實驗呢?學生面對器材可能會覺得無從下手。再次設置問題引導學生思維,讓學生面對儀器分組討論以下四個問題。
    問題1要用動畫輔助說明。在問題2中,教師要強調(diào)結點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結合多媒體動畫的展示,使學生對探究的步驟清晰明了。
    然后,學生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學生展示實驗結果,應該立即可得出結論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.
    那合力與分力到底滿足什么關系呢?
    此時要引導學生思考:既然從數(shù)字上找不到關系,哪可不可以從幾何上找找關系呢?學生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權,學生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。
    學生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學家經(jīng)過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結論二:力的合成法則——平行四邊形定則。
    進入。
    第四環(huán)節(jié):歸納總結。
    將本文的word文檔下載到電腦,方便收藏和打印。
    人教版高中數(shù)學必修五教案篇十四
    一、教學目標:1.了解普查的意義.2.結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
    二、重難點:結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
    三、教學方法:閱讀材料、思考與交流。
    四、教學過程。
    (一)、普查。
    1、【問題提出】p7。
    通過我國第五次人口普查的有關數(shù)據(jù),讓學生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據(jù)可以提供大量的信息,為國家的宏觀決策提供有關的支持.教科書通過對人口普查的有關新聞報道,讓學生體會人口普查的規(guī)模是何等的宏大與艱辛.
    教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實行情況的一個檢驗,比如,國家計劃生育政策,經(jīng)濟發(fā)展戰(zhàn)略,國家“普及九年義務教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學生對于普查的理解.學生可能有一個誤解,普查就是100%的準確,其實不然,即使是最周全的調(diào)查方案,在實際執(zhí)行時都會產(chǎn)生一個誤差.教科書通過這個問題,目的是讓學生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設計是盡可能讓這個誤差降低到最小.同時,也要讓學生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學生體會人口普查數(shù)據(jù)得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.
    2、【閱讀材料】p4。
    “閱讀材料”是課堂閱讀,目的是讓學生了解普查工作的特點和重要性,以及我國目前主要的一些普查工作.進而,總結出普查的主要不足之處,這是從一個方面說明了抽樣調(diào)查的必要性.
    普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細地了解某項重要的國情、國力.
    普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.
    普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.
    (二)、抽樣調(diào)查。
    【例1和其后的“思考交流”】p8~9。
    緊接著,教科書通過例1和“思考交流”的兩個問題,讓學生了解普查有時候難以實現(xiàn).這主要有兩個方面的原因,其一,被調(diào)查對象的量大;其二,普查對被調(diào)查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調(diào)查的必要性.然后,教科書通過抽象概括總結出抽樣調(diào)查的兩個主要優(yōu)點.
    【例2和其后的“思考交流”】p9~10。
    主要是討論在抽樣調(diào)查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當,那么調(diào)查的結果可能會出現(xiàn)與實際情況不符,甚至是錯誤的結果,導致對決策的誤導.在抽樣調(diào)查時,一定要保證隨機性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.
    由于檢驗對象的量很大,或檢驗對檢驗對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.
    抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
    解:統(tǒng)計的總體是指該地10000名學生的體重;個體是指這10000名學生中每一名學生的體重;樣本指這10000名學生中抽出的200名學生的體重;總體容量為10000;樣本容量為200.若對每一個個體逐一進行“調(diào)查”,有時費時、費力,有時根本無法實現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機會均等的前提下從總體中抽取部分個體,進行抽樣調(diào)查.
    例2為了制定某市高一、高二、高三三個年級學生校服的生產(chǎn)計劃,有關部門準備對180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:
    a.測量少年體校中180名男子籃球、排球隊員的身高;。
    b.查閱有關外地180名男生身高的統(tǒng)計資料;。
    c.在本市的市區(qū)和郊縣各任選一所完全中學,兩所初級中學,在這六所學校有關年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.
    解:選c方案.理由:方案c采取了隨機抽樣的方法,隨機樣本比較具有代表性、普遍性,可以被用來估計總體.
    例3中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內(nèi)獲得當年春節(jié)聯(lián)歡晚會的收視率.下面三名同學為電視臺設計的調(diào)查方案.
    甲同學:我把這張《春節(jié)聯(lián)歡晚會收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.
    乙同學:我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調(diào)查表,只要一兩天就可以統(tǒng)計出收視率.
    丙同學:我在電話號碼本上隨機地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.
    請問:上述三名同學設計的調(diào)查方案能夠獲得比較準確的收視率嗎?為什么?
    解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準確的收視率.
    (三)、課堂小結:1、普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
    (四)、作業(yè):p10練習題;p10【習題1―2】。
    五、教后反思:
    人教版高中數(shù)學必修五教案篇十五
    1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
    2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
    【過程與方法】經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系。
    【情感態(tài)度與價值觀】感受數(shù)形結合的.思想方法;
    【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
    【教學難點】利用數(shù)軸比較有理數(shù)的大小。
    (一)創(chuàng)設情境,引入課題。
    (1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
    學生回答.。
    (2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
    這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—數(shù)軸(板書課題)。
    (二)得出定義,揭示內(nèi)涵。
    與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
    (1)畫直線,取原點。
    (2)標正方向。
    (3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
    概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
    (三)強化概念,深入理解。
    1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
    學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
    2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫。
    (四)動手練習,歸納總結。
    1、在數(shù)軸上的點表示有理數(shù)。
    一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
    明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
    2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育。
    3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。
    (1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
    (2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
    例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
    鞏固所學知識。
    (五)、歸納小結,強化思想。
    師生總結本課內(nèi)容。
    1、數(shù)軸的概念,數(shù)軸的三要素。
    2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系。
    3、所有的有理數(shù)都可以用數(shù)軸上的點來表示。
    師:你感到自己今天的表現(xiàn)怎樣?
    習題2.21、2、3。
    選作第4題。
    人教版高中數(shù)學必修五教案篇十六
    各位老師大家好!
    我說課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
    (一)教材分析。
    本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節(jié)課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
    (二)學情分析。
    本節(jié)課的教學對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關系,實現(xiàn)了最簡單的形與數(shù)的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設計時需從學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、鞏固和應用過程。
    (三)教學目標。
    1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。
    2.掌握過兩點的直線斜率的計算公式;。
    3.通過經(jīng)歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;。
    生嚴謹求簡的數(shù)學精神。
    重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
    難點:直線的傾斜角與斜率的概念的形成,斜率公式的構建。
    (四)教法和學法。
    課堂教學應有利于學生的數(shù)學素質的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質,這是本節(jié)課的教學原則。根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設置問題串的形式,啟發(fā)引導學生類比、聯(lián)想,產(chǎn)生知識遷移;通過幾何畫板演示實驗、探索交流相結合的教學方法激發(fā)學生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學生很自然達到本節(jié)課的學習目標。
    (五)教學過程。
    環(huán)節(jié)1.指明研究方向(3min)。
    簡介17世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史。
    人教版高中數(shù)學必修五教案篇十七
    立體幾何的證明是數(shù)學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
    二、立足課本,夯實基礎。
    學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
    三、培養(yǎng)空間想象力。
    為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力并不是漫無邊際的胡思亂想,而是以提設為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
    四、“轉化”思想的應用。
    解立體幾何的問題,主要是充分運用“轉化”這種數(shù)學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關鍵的。例如:
    (1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
    (2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
    (3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
    五、建立數(shù)學模型。
    新課程標準中多次提到“數(shù)學模型”一詞,目的是進一步加強數(shù)學與現(xiàn)實世界的聯(lián)系。數(shù)學模型是把實際問題用數(shù)學語言抽象概括,再從數(shù)學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數(shù)學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復雜,相應的數(shù)學模型也越復雜。
    從形狀的角度反映現(xiàn)實世界的物體時,經(jīng)過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內(nèi)容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經(jīng)歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質定理。
    人教版高中數(shù)學必修五教案篇十八
    掌握三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
    教學重難點。
    利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    教學過程。
    一、練習講解:《習案》作業(yè)十三的第3、4題。
    (精確到0.001).
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習:教材p65面3題。
    三、小結:1、三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
    四、作業(yè)《習案》作業(yè)十四及十五。