通過總結,我們可以準確把握自己的特長和優(yōu)勢,實現(xiàn)個人的價值最大化。寫一篇較為完美的總結需要有目標和策略,同時注重實施和評估效果。歡迎大家一起分享自己的總結經驗和心得,共同提升寫作水平。
比的基本性質說課稿一等獎篇一
《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習通分、約分、比的基本性質的基礎,而通分、約分又是分數(shù)計算的基礎,因此,理解分數(shù)的基本性質顯得尤為重要。本節(jié)課與傳統(tǒng)的概念教學相比,有很大的改進,體現(xiàn)了新的教學理念,主要表現(xiàn)在以下幾個方面:
《數(shù)學課程標準》指出:“教師是數(shù)學學習的組織者、引導者與合作者?!?BR> 在本節(jié)課中,李老師很好的為我們詮釋了這句話。:老師為學生提供了有趣的故事情境以及大量的數(shù)學素材,讓學生去觀察、感悟,及時精辟的啟發(fā)點撥,加上極具親和力的自然交流。這些都體面了教師是數(shù)學學習的組織者、引導者與合作者。從中也看出李老師那種超強的課堂駕馭能力。
興趣的是最好的老師,李老師充分的利用這一點,以一個精彩的智力故事:和尚分餅引入新課,直接為教學服務,給人以開門見山的感覺,給學生制造懸念,并引導學生自主探究、小組合作交流,在變與不變中發(fā)現(xiàn)規(guī)律、總結規(guī)律。
在練習這一環(huán)節(jié),李老師精心設計了由淺入深的題目,既鞏固了新知有發(fā)展了學生的能力。不管多么完美的課堂,總會留有小小的遺憾,這也是我們不斷探究的動力。在本節(jié)課中老師出示第二組分數(shù)時,如果讓學生動手操作,既鍛煉了學生的能力,又可從中感知分數(shù)的基本性質。
李老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在李老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的'體會。
這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。李老師老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇二
1、把握新舊知識的鏈接點,如商不變的性質、分數(shù)的基本性質與比的基本性質之間的聯(lián)系,從分析它們的相似之處入手,讓學生在聯(lián)想、觀察、類比、對比、類推等活動中,探討比的基本性質。
2、題型設計針對性強,每個題都用心細膩,為課的開展埋下伏筆。如課前的“服從命令聽指揮”,1/6除以2/9=(),要求被除數(shù)、除數(shù)變?yōu)檎麛?shù),這些題既是復習商不變的性質,又將化簡分數(shù)比、小數(shù)比的關鍵突破了。
3、放手到位,讓學生自主學習化簡比,善于抓住學生暴露的真實問題,恰當?shù)慕M織學生交流、討論,使之成為教學的最佳資源。如:學生將化簡比的形式寫成了分數(shù)形式,教師及時發(fā)現(xiàn),予以糾正,給了學生一個正確的導向。
4、過渡自然,銜接順暢,尤其是抓住了知識之間的聯(lián)系點,進行對比教學。如:商不變的性質可使除法簡算,分數(shù)的基本性質可以將分數(shù)化成最簡分數(shù),那么比的基本性質可以用來干什么。一下子將前后知識順利的聯(lián)系起來。
5、教師一改以往的.從性質中找出關鍵的字、詞的做法,替代這一環(huán)節(jié)的是不同形式的練習。學生在練中感悟、提煉、掌握性質中的每一個字、詞,并且又通過反復的閱讀中發(fā)現(xiàn)關鍵信息、有用的數(shù)學信息,體現(xiàn)了數(shù)學閱讀的價值。
6、教師精明干練的教學狀態(tài),課堂氛圍緊張、充實,教學中不僅教給學生知識,更是教給了學生學習的方法。
板書設計再條理、清楚些更好。
1、把握新舊知識的鏈接點,如商不變的性質、分數(shù)的基本性質與比的基本性質之間的聯(lián)系,從分析它們的相似之處入手,讓學生在聯(lián)想、觀察、類比、對比、類推等活動中,探討比的基本性質。
2、就地取材,尊重學生,讓學生形成自主學習的自豪感,善于抓住學生暴露的真實問題,恰當?shù)慕M織學生交流、討論,使之成為教學的最佳資源。
3、學習方法引導準確、到位。如1:2=2:4=3:6教給學生如何觀察:從左到右、從右往左,發(fā)現(xiàn)比的前項、后項是如何變化的。
4、在反復的閱讀中發(fā)現(xiàn)關鍵信息、有用的數(shù)學信息,體現(xiàn)了數(shù)學閱讀的價值。如仔細讀分數(shù)的基本性質,利用比與分數(shù)之間的關系,發(fā)現(xiàn)它們的相似之處,推出比的基本性質。另外,又從比的基本性質中,通過閱讀,找出關鍵的字、詞。
4、細節(jié)處理細。學生對于化簡比的書寫格式不太熟悉,教師通過板書規(guī)范書寫,給予了學生正確的格式。
5、教師溫文爾雅、親切可人的狀態(tài),為學生營造了一個輕松和諧的教學氛圍,教學中不僅教給學生知識,更是教給了學生學習的方法。
1、板書1:2=2:4=3:6前、后項的變化時,應注意一一對應,尤其是箭頭的方向。
2、練習設計結合馮老師的題型效果會更好。
比的基本性質說課稿一等獎篇三
本周學校舉行關于數(shù)學學科的聯(lián)片教研活動,活動主題是“在數(shù)學閱讀中體驗和掌握數(shù)學思想方法”,我有幸聆聽馮老師執(zhí)教的六年級數(shù)學上冊《比的基本性質》,主要有以下收獲:
1、本次活動緊扣活動主題,嘗試踐行落實數(shù)學課程中的閱讀教學,注重在課堂教學中向學生滲透一定的數(shù)學思想方法。馮老師的課堂教學體現(xiàn)了對應思想、類比思想、轉化思想。
2、緊扣教材重難點,精心設計教學環(huán)節(jié),教學語言精煉,引導恰到好處。
3、練習設計獨具匠心,從名稱就可見一斑如“服從命令聽指揮”、“擦亮眼睛辨真?zhèn)巍?、“眾人劃槳開大船”
尤其是對于比的基本性質中的關鍵詞如“同時”、“相同的數(shù)”、“0除外”等都是通過習題判斷來引導學生知道出錯的原因,找出理由,從而加深對比的基本性質關鍵詞的理解,這種形式比對這幾個詞進行單純的強調效果要好得多。
比的基本性質說課稿一等獎篇四
張老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數(shù)學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇五
11月25日,我有幸聽了曾小豆名師工作室成員張xx老師的一堂復習課。張老師展示的是《圓的基本性質復習課》。
課上,張老師以“轉”和“折”兩個角度引出圓的旋轉不變性和軸對稱性。并以圓的`旋轉性為出發(fā)點將弦與圓周角的問題拋出,讓學生思考多種求解方法,從而簡單的復習圓心角、弧、弦心距、圓周角、弦等知識點的聯(lián)系以及垂徑定理的運用。在老師的引導下,進一步加深了對圓的基本性質的了解和認識。
本節(jié)課,張老師設計的綜合型較強的圓與動點問題,是本節(jié)課的亮點所在,在給定的條件下,老師先讓學生嘗試性的出題,然后學生自己解決,課堂效果較好,學生樂學其中。最后老師出手,將難題拋出,學生獨立思考并分析解決。整堂課,思路清晰,內容循序漸進,符合學生的認知水平。另外,張老師的將圓的知識結構化,問題設計又充分體現(xiàn)著綜合性,結合富有新意的板書,使人印象深刻。
比的基本性質說課稿一等獎篇六
本課題屬于“物質構成的奧秘”主題中的原子、分子部分,教學內容是上海教育出版社《化學(九年級第一學期)》的第二單元“構成物質的微粒”中有關微粒的基本性質的部分。本課中的微粒知識要為第二單元物質的量和質量守恒定律等教學內容奠定基礎,更是為了構建全面的、科學的微粒觀做好準備。
本節(jié)課的教學希望引導學生從變化的、不一樣的角度看世界,通過常見的化學實驗、實驗現(xiàn)象去推理背后的性質,通過事物現(xiàn)象看本質,進一步提升學生的思考、分析、思辨的能力。為今后學習水的性質,如水的締合性質,水溶液、乳濁液的知識打下伏筆,從微觀角度來理解物理、化學變化,用微觀理論來指導學習物質的轉化。
學生已經在科學課中認識到了微觀粒子的存在,在上海教育出版社《科學(七年級第二學期)》第十一章“從宇宙到粒子”的第二節(jié)物質的粒子模型中,學習過物質的粒子構成相關內容。因此本節(jié)課在這些前概念的基礎上,進一步認識微粒的一些基本性質。
同時學生具有一定化學用語及實驗儀器的使用基礎,但是在實驗的過程中,卻很少從自身思考過“想觀察什么、能觀察什么、怎么觀察”,而往往都是照方抓藥,教師怎么布置就怎么做,教師說要觀察什么就看什么,有時候即使觀察到不一樣的現(xiàn)象也很快被當成實驗失誤而忽略過去,學生的思維往往停留在低階思維活動。
布盧姆把教學目標分成六個等級,低階思維活動三個等級:識記:背誦、默寫;理解:用自己的話解釋;應用:直接套用。高階思維活動三個等級:分析:辨析、判斷、推論;評價:講自己的觀點;創(chuàng)新思維活動:創(chuàng)思、創(chuàng)意、創(chuàng)作。教學目標對大多數(shù)的課來說還基本停留在低階思維活動中。因此本節(jié)課中對于“微粒間的間隙”的這個教學環(huán)節(jié)中,并不是事先劃好體積的標線,教師混合后提問:“我們來看看有什么變化?”。而是讓學生自己去辨析,混合酒精與水后我們能觀察到什么現(xiàn)象,有什么方法來觀察,讓學生體會到觀察的角度、使用的儀器不同會得到不同的推斷結論。
由于初中的學生并沒有進行選拔考試,同校學生之間的差異往往較大,粗放的教學以所有學生為對象,只求完成任務,不顧學生差異,所以教學質量只維持在一般水平。精細的教學關注每位學生的學習,采用差異教學對策,應對每位學生不同的需求。就要進行分層教學,學校分層、班內分層、教學分層、遞進教學等,但在學校沒有進行分層化的時候,要在實驗教學過程中完成分層教學,光靠一位教師很難完成,差異教學對策除了分層遞進教學中對不同學生設置不同的教學目標,本校首先嘗試在實驗教學過程中引入第二位教師即“雙師制”開展實驗教學活動,在學生的實驗活動中在同一班級采用分組學習、復式教學之外,教師共同參與到學生小組交流、實驗操作等等活動中去。以便教師更好地點撥,開展辨析、判斷、評價、建構等活動,對學生的認知與思維進行修補或完善,從中培養(yǎng)智能。
以“知識與技能”為主的教學目標,是短周期目標,在教學結束時可以檢查其達成度;而“過程與方法”、“情感態(tài)度與價值觀”是長周期目標,需要由課堂里的“情緒體驗”、“高階思維活動”量的積累到質的變化的過程,所以要在課堂里伴隨教學內容體現(xiàn)與關注,因此在本堂課中采用以上的教學設計方法,但要有明顯效果是需要一段時間體驗、積累的結果。
1、通過高錳酸鉀與水混合的實驗,掌握微粒的性質“動”、“小”的特點,同時能根據(jù)對比實驗得出溫度的變化對“動”的影響。
2、通過對酒精與水的混合實驗的辨析,得出微粒的其他性質“間隙”,根據(jù)學生情況選擇性拓展“微粒間的作用力”。
3、從微觀層面認識物質的構成,為今后進一步從本質上認識物質的變化打下基礎。
4、通過小組間的交流,分析不同的觀察角度、觀察的方法在化學實驗過程的作用,增強化學實驗探究能力、體驗化學實驗過程。
從現(xiàn)象明顯的實驗開始觀察,學生回憶起科學課學過的微粒知識,認識微粒的存在。通過實驗現(xiàn)象得出微粒在不停運動,并推測微粒很小。感悟設計不同的實驗能幫助理解不同的性質。
從一堆手到其中一只手,再到不斷被放大的手部皮膚,學生驚訝于照片中微觀世界有別于宏觀世界的景象,激發(fā)了學生學習微粒性質的積極性。
科學家探索微觀世界的過程。
馬赫質疑原子存在的精神。
介紹原子有多小。
人們看見原子到可以移動原子。
人類探索微觀世界的歷史是曲折的,感受科學家嚴謹、執(zhí)著的科學精神,體驗現(xiàn)代科學創(chuàng)造的驚喜,學生對化學學科的認識逐漸清晰,尊重之情油然而生。
通過形象的類比、生動的語言表述體會微粒到底有多小。
——微粒間存在間隙。
學生2人一組利用實驗儀器,設計實驗來證明。
實驗中,發(fā)現(xiàn)還能產生哪些思考?
由實驗引發(fā)的其他思考。
課后討論及習題布置。
引入“雙師制”加強師生交流,及時點撥、反饋實驗中出現(xiàn)的問題。通過學生的自主實驗打開思路,切身體會合適的實驗儀器及實驗方法對科學觀察的重要性,學生在實驗、發(fā)現(xiàn)、思考中體會探索化學奧秘的艱辛與快樂。
比的基本性質說課稿一等獎篇七
宋賀彩科長和王麗老師的《分數(shù)的基本性質》兩節(jié)課各有特色,下面就這兩節(jié)課談談自己的體會。宋科長的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組填空題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!痹俑鶕?jù)分數(shù)與除法德關系,引導學生把除法算式改寫成分數(shù)的形式,從而概括出分數(shù)的基本性質。練習題的設計也是由淺入深,尤其是分數(shù)大小的比較中,“分子分母都不相同的怎樣比較大小”時,讓學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。王麗老師的《分數(shù)的基本性質》一節(jié)課,充分體現(xiàn)了新的課程標準與新理念,給我的感受也很深刻。首先這節(jié)課的引入設計得很好,從學生的興趣出發(fā),通過孫悟空給猴子們分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,勞猴子分得每根甘蔗的3/6,小猴子說分得不公平,由此組織學生展開討論,這樣一下子就吸引了學生的'注意力,激發(fā)了學生學習積極性和興趣。學生自己通過合作學習探討得出:
1/2=2/4=3/6之后又引導學生去發(fā)現(xiàn)這些分數(shù)之間的變化規(guī)律,從而得出分數(shù)的基本性質,并強調了“同時”、“相同的數(shù)”、“0除外”等關鍵處。練習題的設計也是形式多樣,尤其是“小游戲”,老師說分母,學生說分子或老師說分子,學生說分母;“連續(xù)寫出多個相等的分數(shù)”等都是從學生的興趣出發(fā),調動了學生的多向思維,效果也不錯。
聽了李老師的一節(jié)“分數(shù)的基本性質”的數(shù)學課,給我留下了深刻的印象。
是數(shù)學學習的方法,從而激勵學生進一步地主動學習,我認為這是本節(jié)課一大亮點。
但是,我感覺本課教學中,驗證得還不夠透徹,部分同學還有疑慮。如果能讓每位學生在自己準備的紙上畫一畫、折一折、或剪一剪,通過動手操作來驗證自己的猜想是否正確,從而培養(yǎng)學生的動手能力,以及觀察問題解決問題的能力。
沈老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
1.教材簡析《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2、教材處理。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
3、教學過程這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數(shù)學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”
貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇八
在探究比的基本性質時,教師先讓學生在已有的知識基礎上大膽猜想,然后讓學生以同桌為單位進行驗證,展示驗證過程,再讓學生歸納出比的基本性質;在探究化簡比的方法時,教師安排了兩次活動,第一次,安排學生獨立自主探究,解決例1第一部分,第二次,由于內容有一定難度,教師讓學生以小組(4人)為單位,先自己思考,再小組內交流方法并解決問題,最后全班展示交流,總結方法,解決了例1第二部分。在本節(jié)課的兩次新知學習中,教師沒有過多講解,方法的探究,結論的歸納都是出自學生之口,學生真正經歷了知識的產生過程。
在探究化簡比的方法時,教材例1中只安排了整數(shù)比整數(shù),分數(shù)比分數(shù),小數(shù)比整數(shù)三種類型,基于對教材知識體系和學生實際的了解,教師把"做一做中的小數(shù)比小數(shù),小數(shù)比分數(shù)兩種類型的題充實到例1中,這樣使學生較全面的掌握了化簡比的方法,降低了練習難度,效果較好。
本課教學設計緊湊,環(huán)環(huán)相扣,容量大,節(jié)奏快,充分利用了課上的每一分鐘無論在學生驗證猜想時,還是探究化簡比的方法時,教師都要求全員參與。練習設計層次性強,有梯度,題型靈活多樣,尤其是快樂ab卷中設計了兩種難度的練習,供不同層次的學生選擇,關注了全體.
教師在教學過程中,不僅注重了對學生個體的評價還注重了對小組合作學習的評價,同時也注重了培養(yǎng)學生的評價意識。在談收獲時,學生也能夠正確地對組內成員進行評價,合作意識得以凸顯;尤其在快樂ab卷中,教師設計了學生自評,組內成員互評,對教師課堂教學的評價版塊,這種多元化評價的設計既有利于學生的發(fā)展又有利于教師課堂教學的改善。
例如:在學生總結比的基本性質時,個別學生說出了"0除外",這時教師就應該抓住這一問題,為什么"0除外",進行強化,砸實這個知識點。
教師在今后教學中應在創(chuàng)設情境和設計過渡語方面下功夫,力求充分調動學生的學習熱情。
比的基本性質說課稿一等獎篇九
今天聽了丁老師執(zhí)教的《比的基本性質》一課。丁老師圍繞活動主題,注重培養(yǎng)學生的數(shù)學思想,注重學生為教學主體,教師為教學的引導者、合作者,教學方法靈活,教學效果良好。
1、課堂教學中都體現(xiàn)了類推的數(shù)學思想,轉化的`思想,開課伊始對分數(shù)基本性質、除法商不變性質的復習,在教學中,由最簡分數(shù)到最簡整數(shù)比,這些由舊知的復習到新知的引入與理解,充分體現(xiàn)了數(shù)學中的類推思想和轉化思想,不僅教會學生學習的方法,更提高了學生的學習能力,教學效果良好。
2、教學中做到了分散難點,抓住重點,突破難點,在課堂教學中,抓住了理解比的基本性質,利用學生課前閱讀,各類判斷題的判斷,讓學生對比的基本性質得到了充分的理解,并在教學中,有效建立分數(shù)的基本性質、商不變性質與比的基本性質的關系,分散了教學的難點,抓住重點,突破了難點,教學收到良好的效果。
3、課堂容量大,丁老師的教學根據(jù)六年級學生的特點,課堂教學容量大,將課堂教學看作是考試一樣,引導學生在緊張、高效的情況下學習、了解、鞏固、提高。
教學中注重了學生在判斷中理解比的基本性質,化簡比與求比值的區(qū)別,但缺乏學生親自動手化簡的過程,如果讓學生自己親自去化簡,會充分理解比的基本性質,會應用比的基本性質。
比的基本性質說課稿一等獎篇十
自主學習、合作探究。
學生自主活動材料。
一、前置自學(自學課本7-8頁內容,并完成下列問題)。
1.判斷下列約分是否正確:
(1)=(2)=(3)=0。
2.通分。
和、和。
明確:(1)分式的通分與分數(shù)的通分類似;。
分式通分的依據(jù)——。
(2)最簡公分母的確定:(1)系數(shù)取最小公倍數(shù);(2)字母取所有不同字母;(3)所有字母的最高次冪。特別強調,當分母是多項式時,應先將各分母分解因式,在確定最簡公分母。
二、合作探究。
1、下列分式的`最簡公分母是()?
(1)(2)。
(3)(4)。
2、通分:
(1);(2);(3)。
三、拓展提升。
通分:
(1)和(2)和。
(3)和(4)和。
四、當堂反饋。
1.不改變分式的值,把分式中分子、分母各項系數(shù)化成整數(shù)為________.
2.分式的最簡公分母是_________.
3.通分:
(1)、
(2)、
(3)、
4.某人騎自行車勻速爬上一個斜坡后立即勻速下坡回到出發(fā)點,若上坡速度為v1,下坡速度為v2,求他上、下坡的平均速度為()。
(1)(2)(3)(4)。
5.已知,求分式的值。
比的基本性質說課稿一等獎篇十一
著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎,還是約分、通分的依據(jù)。
學生已經清楚理解分數(shù)的好處,明確分數(shù)與除法的關系,商不變
性質等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:
1.理解和掌握分數(shù)的基本性質,并會運用分數(shù)的基本性質把不同
的分數(shù)化成分母(或分子)相同而大小不變的.分數(shù)。
2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維潛力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。
教學重點:理解掌握分數(shù)的基本性質,它是約分、通分的依據(jù)。
教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。
根據(jù)本節(jié)課的教學目標,思考到學生已有的知識、生活經驗和認
知特點,結合教材資料,本課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。透過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。
本節(jié)課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問
題情境,揭示本節(jié)課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數(shù)基本性質。
第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”能夠細化為三個環(huán)節(jié):
環(huán)節(jié)一:動手操作,進行比較
這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數(shù)表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較潛力。
環(huán)節(jié)二:呈現(xiàn)問題,引導觀察
這一環(huán)節(jié)主要呈現(xiàn)給學生這樣一個問題,“第一環(huán)節(jié)中的分數(shù)的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的觀察潛力。
環(huán)節(jié)三:交流匯報,得出規(guī)律
這一環(huán)節(jié)主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數(shù)的基本性質----分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括潛力。
就應強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數(shù)基本性質》一節(jié)的教學設計意圖,有不當之處,請各位批評指導。
比的基本性質說課稿一等獎篇十二
一課是本冊教材第六單元的一個內容。這部內容是學生在學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。而約分、通分又是分數(shù)四則計算重要基礎,因此,理解分數(shù)大小不變規(guī)律我覺得非常的重要。
本節(jié)課,我認為探索分數(shù)大小不變的規(guī)律是難點,運用這個規(guī)律來解決一些實際的問題是重點。那么在課堂中如何來體現(xiàn)這兩方面,首先我以故事導入,來激發(fā)學生的學習興趣。我設計了老和尚給三個小和尚分餅的故事,結果看似不公,實則相同,讓學生做裁判評一評,這樣,學生學習數(shù)學的興趣必然提高,等學生理解并掌握了分數(shù)的基本性質后,學生就明白了。這樣,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數(shù)的基本性質來解決實際問題的能力。教學中采取小組合作學習的形式,提高學生學習的主動性。整堂課我讓學生充分展開討論,課堂氣氛非常的活躍,學生學習數(shù)學的興趣十分濃厚。在鞏固提高環(huán)節(jié),我課前就設計好了題型變化的練習題。注意到了練習題難度的層次性,這樣學生的解題能力和思維能力都得到了培養(yǎng)。
總體來說,本節(jié)課突出了分數(shù)的基本性質的歸納和理解,學生能較好地理解性質中的關鍵詞“同時”、“相同的數(shù)”和“0除外”,對分子分母的變化特點能抓住關鍵,發(fā)現(xiàn)變化的規(guī)律。
比的基本性質說課稿一等獎篇十三
《分數(shù)的基本性質》這一課是課改版小學數(shù)學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種變與不變中發(fā)現(xiàn)規(guī)律。
2、知識間的聯(lián)系:
七冊:商不變性質十冊:分數(shù)的基本性質十二冊:比的基本性質。
同時《分數(shù)的基本性質》也是學生學習分數(shù)加減法的基礎。所以,本節(jié)課的教學內容具有比較重要的地位。
二、指導思想與設計理念。
新的課程標準提出:教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法。
根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法?;谝陨纤伎?,本課讓學生經歷:舊知喚醒(復習商不變性質與分數(shù)與除法的關系)新知猜想(分數(shù)中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數(shù)學建模(用字母來表示分數(shù)的基本性質)建立聯(lián)系(分數(shù)的基本性質與商不變性質的聯(lián)系)。讓學生對于分數(shù)的基本性質能在數(shù)學的層面上有一個較為完整、清晰與明確的掌握。
三、學情分析。
前測:(問卷形式)。
問題1:你知道分數(shù)的基本性質嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大?。?BR> 4/7○2/71/2○2/43/5○9/15。
分析:暫無。
結論:暫無。
四、教學目標及重難點。
教學目標:
1、讓學生經歷分數(shù)基本性質的探究過程,理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。
2、利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。
教學重點:
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(shù)(0除外),最終:分數(shù)的大小不變。
教學難點:
解決策略:通過初步建立數(shù)學模型,使學生對分數(shù)的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
五、教法學法:
教法:樹立以以學生發(fā)展為本、以學定教的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。
學法:有效的數(shù)學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數(shù)化成分母不同但大小相同的分數(shù),并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程。
一、遷移舊知.提出猜想。
1回憶舊知。
活動:猜信封。通過猜信封中的數(shù)或算式,引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:
被除數(shù)除數(shù)=。
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:。
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想:
既然分數(shù)與除法的關系這么緊密.除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
二、驗證猜想,建構新知。
環(huán)節(jié)1、看圖分類。
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。
環(huán)節(jié)2、討論方法。
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8。
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規(guī)律。
利用研究卡進行研究。
確定的研究對象。
分子和分母同時乘上或者。
除以一個相同的數(shù)。
得到的分數(shù)。
研究對象與得到的分數(shù)相等嗎?
相等()不相等()。
猜想是否成立?
成立()不成立()。
充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數(shù)基本性質的關鍵詞,滲透變與不變的數(shù)學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)。
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)。
師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)。
環(huán)節(jié)4、質疑完善。
3/4=3()/4()。
師:括號中可以填哪些數(shù)?
預設:可以填無數(shù)個數(shù)。
師:如果只用一個數(shù)來表示,填什么數(shù)好?
預設:字母。
師:這個字母有什么特殊要求嗎?(0除外)。
得到一個初級的數(shù)學模型。3/4=3x/4x(x0)。
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環(huán)節(jié)的練習,進行第一次數(shù)學建構。
三、練習升華。
通過以下練習進一步鞏固分數(shù)的基本性質,使學生初步利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。
3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。
4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?
5、和哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?
四、總結延伸。
師:這節(jié)課學了什么?
師:如果一個分數(shù)為a/b,你能用一個式子來表示分數(shù)的基本性質嗎?
a/b=ax/4x(x0)或a/b=ax/4x(x0)。
在這個環(huán)節(jié)中,數(shù)學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數(shù)學化地表示數(shù)學也是高年級學生所必備的。
五、作業(yè)p87-1、2。
板書設計。
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
68。
34。
1216。
比的基本性質說課稿一等獎篇十四
教材第50、第51頁的內容及練習十一的第4~8題。
教學目標。
1、根據(jù)除法中商不變的規(guī)律和分數(shù)的基本性質,利用知識的遷移,使學生領悟并理解比的基本性質。
2、通過學生的自主探討,掌握化簡比的方法并會化簡比。
3、初步滲透事物是普遍聯(lián)系的辯證唯物主義觀點。
重點難點。
重點:理解比的基本性質,推導化簡比的方法,正確化簡比。
難點:正確化簡比。
教具學具。
練習題投影片。
教學過程。
一導入。
1、比與分數(shù)、除法的關系。
如果學生有困難,可以先完成下表。填表后再說一說比與分數(shù)、除法有怎樣的關系。
老師:請大家回憶一下,分數(shù)有什么性質?商不變有什么規(guī)律?它們的內容分別是什么?
(指名學生發(fā)言)。
二教學實施。
1、猜想。
老師:比和分數(shù)、除法的關系相當密切,那么,在比中有沒有類似的性質呢?如果有,請同學們猜想一下,可能會是怎樣的。
匯報時,讓學生說說猜想的根據(jù),老師也可引導學生在“分數(shù)的基本性質”上進行替換。
引導學生用語言表述,比的前項相當于分數(shù)的分子,后項相當于分母,分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的'大小不變。因此,比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。或者比的前項相當于除法中的被除數(shù),后項相當于除數(shù),被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。因此,比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
2、驗證。
以小組為單位,討論、驗證一下剛才的猜想是否正確。
學生匯報。
3、小結。
經過同學們的驗證,我們知道這個猜想是正確的,并且經過補充使它更完整了,在比中確實存在這種性質。
4、化簡比。
出示例1(1)。
老師整理情境中的信息:“神舟”五號搭載了兩面聯(lián)合國旗,一面長15cm,寬10cm,另一面長180cm,寬120cm,問題是求這兩面聯(lián)合國旗長和寬的最簡單的整數(shù)比分別是多少。
學生反復讀幾遍。
提問:你怎樣理解“最簡單的整數(shù)比”這個概念?
學生討論,指名回答,達成共識,最簡單的整數(shù)比必須是一個比,它的前項和后項都是整數(shù),而且前項和后項應該是互質數(shù)。
15∶10=(15÷5)∶(10÷5)=3∶2。
180∶120=(180÷60)∶(120÷60)=3∶2。
出示例1(2)。
學生嘗試把下面各比化成最簡單的整數(shù)比。
老師強調:不管選擇哪種方法,最后的結果都應該是一個最簡單的整數(shù)比,而不是一個數(shù)。
5、反饋練習。
(1)完成教材第51頁的“做一做”,集體訂正。
(2)完成教材第53頁練習十一的第4題。
提問:題目要求你怎么理解?什么叫后項是100的比?后項是100,前項要怎么辦?
(3)完成教材第53頁練習十一的第5題。
(4)完成教材第53頁練習十一的第6~8題。
讓學生說明理由,注意思維的邏輯性和語言的條理性。
三課堂作業(yè)新設計。
1、把下面各比化成最簡單的整數(shù)比。
四思維訓練參考答案。
課堂作業(yè)新設計。
1、6∶73∶13∶85∶67∶54∶14∶510∶1。
2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。
思維訓練。
板書設計。
比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質。
化簡比:前項和后項只有公因數(shù)1的比,叫做最簡單的整數(shù)比。把比化簡成最簡。
單的整數(shù)比,叫做化簡比。
備課參考教材與學情分析。
比的基本性質是在學生學習了比的意義,比與分數(shù)、除法的關系,商不變的規(guī)律和分數(shù)基本性質的基礎上進行教學的。教材聯(lián)系學過的除法中商不變的規(guī)律和分數(shù)基本性質,通過“想一想”啟發(fā)學生找出比中有什么相應的性質,然后概括出比的基本性質,應用這個性質可以把比化成最簡單的整數(shù)比。學生在以前的學習中,已經掌握了商不變的規(guī)律和分數(shù)的基本性質,六年級的學生有一定的推理概括能力,他們完全可以根據(jù)比與分數(shù)、除法的關系,推導出比的基本性質,這節(jié)課通過讓學生猜想―驗證―應用,讓學生理解比的基本性質,應用性質化簡比。
課堂設計說明。
我們知道,比與分數(shù)、除法只是形式上的不同,實質上它們是可以互相轉化的。教學時,我們先回顧比與分數(shù)、除法的關系,復習商不變的規(guī)律和分數(shù)的基本性質。引導學生想一想:比會不會也有自己的性質,啟發(fā)他們用舉例的方法驗證自己的猜想。最后總結出比的基本性質。
根據(jù)比的基本性質將比化簡,可以使這兩個數(shù)量之間的關系更加簡單、明了,便于學生分析一些事物現(xiàn)象。
比的基本性質說課稿一等獎篇十五
難點本節(jié)例2。
方法講練結合教學。
用具。
教學過程集體備課稿個案補充。
一.利用書本圖5-1和5-2發(fā)現(xiàn)等式的兩個基本性質。
等式的`基本性質1等式的兩邊同時加上(或減去)同一個數(shù)或式,所得結果仍是等式若則。
1.書本117做一做。
2.書本118課內練習1。
3.課本117頁例1。
三.會依據(jù)等式的基本性質將方程變形,求出方程的解。
1.書本118頁例2。
2.書本119頁作業(yè)題3,4。
教學反思。
教學改進。
比的基本性質說課稿一等獎篇一
《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習通分、約分、比的基本性質的基礎,而通分、約分又是分數(shù)計算的基礎,因此,理解分數(shù)的基本性質顯得尤為重要。本節(jié)課與傳統(tǒng)的概念教學相比,有很大的改進,體現(xiàn)了新的教學理念,主要表現(xiàn)在以下幾個方面:
《數(shù)學課程標準》指出:“教師是數(shù)學學習的組織者、引導者與合作者?!?BR> 在本節(jié)課中,李老師很好的為我們詮釋了這句話。:老師為學生提供了有趣的故事情境以及大量的數(shù)學素材,讓學生去觀察、感悟,及時精辟的啟發(fā)點撥,加上極具親和力的自然交流。這些都體面了教師是數(shù)學學習的組織者、引導者與合作者。從中也看出李老師那種超強的課堂駕馭能力。
興趣的是最好的老師,李老師充分的利用這一點,以一個精彩的智力故事:和尚分餅引入新課,直接為教學服務,給人以開門見山的感覺,給學生制造懸念,并引導學生自主探究、小組合作交流,在變與不變中發(fā)現(xiàn)規(guī)律、總結規(guī)律。
在練習這一環(huán)節(jié),李老師精心設計了由淺入深的題目,既鞏固了新知有發(fā)展了學生的能力。不管多么完美的課堂,總會留有小小的遺憾,這也是我們不斷探究的動力。在本節(jié)課中老師出示第二組分數(shù)時,如果讓學生動手操作,既鍛煉了學生的能力,又可從中感知分數(shù)的基本性質。
李老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在李老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的'體會。
這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。李老師老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇二
1、把握新舊知識的鏈接點,如商不變的性質、分數(shù)的基本性質與比的基本性質之間的聯(lián)系,從分析它們的相似之處入手,讓學生在聯(lián)想、觀察、類比、對比、類推等活動中,探討比的基本性質。
2、題型設計針對性強,每個題都用心細膩,為課的開展埋下伏筆。如課前的“服從命令聽指揮”,1/6除以2/9=(),要求被除數(shù)、除數(shù)變?yōu)檎麛?shù),這些題既是復習商不變的性質,又將化簡分數(shù)比、小數(shù)比的關鍵突破了。
3、放手到位,讓學生自主學習化簡比,善于抓住學生暴露的真實問題,恰當?shù)慕M織學生交流、討論,使之成為教學的最佳資源。如:學生將化簡比的形式寫成了分數(shù)形式,教師及時發(fā)現(xiàn),予以糾正,給了學生一個正確的導向。
4、過渡自然,銜接順暢,尤其是抓住了知識之間的聯(lián)系點,進行對比教學。如:商不變的性質可使除法簡算,分數(shù)的基本性質可以將分數(shù)化成最簡分數(shù),那么比的基本性質可以用來干什么。一下子將前后知識順利的聯(lián)系起來。
5、教師一改以往的.從性質中找出關鍵的字、詞的做法,替代這一環(huán)節(jié)的是不同形式的練習。學生在練中感悟、提煉、掌握性質中的每一個字、詞,并且又通過反復的閱讀中發(fā)現(xiàn)關鍵信息、有用的數(shù)學信息,體現(xiàn)了數(shù)學閱讀的價值。
6、教師精明干練的教學狀態(tài),課堂氛圍緊張、充實,教學中不僅教給學生知識,更是教給了學生學習的方法。
板書設計再條理、清楚些更好。
1、把握新舊知識的鏈接點,如商不變的性質、分數(shù)的基本性質與比的基本性質之間的聯(lián)系,從分析它們的相似之處入手,讓學生在聯(lián)想、觀察、類比、對比、類推等活動中,探討比的基本性質。
2、就地取材,尊重學生,讓學生形成自主學習的自豪感,善于抓住學生暴露的真實問題,恰當?shù)慕M織學生交流、討論,使之成為教學的最佳資源。
3、學習方法引導準確、到位。如1:2=2:4=3:6教給學生如何觀察:從左到右、從右往左,發(fā)現(xiàn)比的前項、后項是如何變化的。
4、在反復的閱讀中發(fā)現(xiàn)關鍵信息、有用的數(shù)學信息,體現(xiàn)了數(shù)學閱讀的價值。如仔細讀分數(shù)的基本性質,利用比與分數(shù)之間的關系,發(fā)現(xiàn)它們的相似之處,推出比的基本性質。另外,又從比的基本性質中,通過閱讀,找出關鍵的字、詞。
4、細節(jié)處理細。學生對于化簡比的書寫格式不太熟悉,教師通過板書規(guī)范書寫,給予了學生正確的格式。
5、教師溫文爾雅、親切可人的狀態(tài),為學生營造了一個輕松和諧的教學氛圍,教學中不僅教給學生知識,更是教給了學生學習的方法。
1、板書1:2=2:4=3:6前、后項的變化時,應注意一一對應,尤其是箭頭的方向。
2、練習設計結合馮老師的題型效果會更好。
比的基本性質說課稿一等獎篇三
本周學校舉行關于數(shù)學學科的聯(lián)片教研活動,活動主題是“在數(shù)學閱讀中體驗和掌握數(shù)學思想方法”,我有幸聆聽馮老師執(zhí)教的六年級數(shù)學上冊《比的基本性質》,主要有以下收獲:
1、本次活動緊扣活動主題,嘗試踐行落實數(shù)學課程中的閱讀教學,注重在課堂教學中向學生滲透一定的數(shù)學思想方法。馮老師的課堂教學體現(xiàn)了對應思想、類比思想、轉化思想。
2、緊扣教材重難點,精心設計教學環(huán)節(jié),教學語言精煉,引導恰到好處。
3、練習設計獨具匠心,從名稱就可見一斑如“服從命令聽指揮”、“擦亮眼睛辨真?zhèn)巍?、“眾人劃槳開大船”
尤其是對于比的基本性質中的關鍵詞如“同時”、“相同的數(shù)”、“0除外”等都是通過習題判斷來引導學生知道出錯的原因,找出理由,從而加深對比的基本性質關鍵詞的理解,這種形式比對這幾個詞進行單純的強調效果要好得多。
比的基本性質說課稿一等獎篇四
張老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數(shù)學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇五
11月25日,我有幸聽了曾小豆名師工作室成員張xx老師的一堂復習課。張老師展示的是《圓的基本性質復習課》。
課上,張老師以“轉”和“折”兩個角度引出圓的旋轉不變性和軸對稱性。并以圓的`旋轉性為出發(fā)點將弦與圓周角的問題拋出,讓學生思考多種求解方法,從而簡單的復習圓心角、弧、弦心距、圓周角、弦等知識點的聯(lián)系以及垂徑定理的運用。在老師的引導下,進一步加深了對圓的基本性質的了解和認識。
本節(jié)課,張老師設計的綜合型較強的圓與動點問題,是本節(jié)課的亮點所在,在給定的條件下,老師先讓學生嘗試性的出題,然后學生自己解決,課堂效果較好,學生樂學其中。最后老師出手,將難題拋出,學生獨立思考并分析解決。整堂課,思路清晰,內容循序漸進,符合學生的認知水平。另外,張老師的將圓的知識結構化,問題設計又充分體現(xiàn)著綜合性,結合富有新意的板書,使人印象深刻。
比的基本性質說課稿一等獎篇六
本課題屬于“物質構成的奧秘”主題中的原子、分子部分,教學內容是上海教育出版社《化學(九年級第一學期)》的第二單元“構成物質的微粒”中有關微粒的基本性質的部分。本課中的微粒知識要為第二單元物質的量和質量守恒定律等教學內容奠定基礎,更是為了構建全面的、科學的微粒觀做好準備。
本節(jié)課的教學希望引導學生從變化的、不一樣的角度看世界,通過常見的化學實驗、實驗現(xiàn)象去推理背后的性質,通過事物現(xiàn)象看本質,進一步提升學生的思考、分析、思辨的能力。為今后學習水的性質,如水的締合性質,水溶液、乳濁液的知識打下伏筆,從微觀角度來理解物理、化學變化,用微觀理論來指導學習物質的轉化。
學生已經在科學課中認識到了微觀粒子的存在,在上海教育出版社《科學(七年級第二學期)》第十一章“從宇宙到粒子”的第二節(jié)物質的粒子模型中,學習過物質的粒子構成相關內容。因此本節(jié)課在這些前概念的基礎上,進一步認識微粒的一些基本性質。
同時學生具有一定化學用語及實驗儀器的使用基礎,但是在實驗的過程中,卻很少從自身思考過“想觀察什么、能觀察什么、怎么觀察”,而往往都是照方抓藥,教師怎么布置就怎么做,教師說要觀察什么就看什么,有時候即使觀察到不一樣的現(xiàn)象也很快被當成實驗失誤而忽略過去,學生的思維往往停留在低階思維活動。
布盧姆把教學目標分成六個等級,低階思維活動三個等級:識記:背誦、默寫;理解:用自己的話解釋;應用:直接套用。高階思維活動三個等級:分析:辨析、判斷、推論;評價:講自己的觀點;創(chuàng)新思維活動:創(chuàng)思、創(chuàng)意、創(chuàng)作。教學目標對大多數(shù)的課來說還基本停留在低階思維活動中。因此本節(jié)課中對于“微粒間的間隙”的這個教學環(huán)節(jié)中,并不是事先劃好體積的標線,教師混合后提問:“我們來看看有什么變化?”。而是讓學生自己去辨析,混合酒精與水后我們能觀察到什么現(xiàn)象,有什么方法來觀察,讓學生體會到觀察的角度、使用的儀器不同會得到不同的推斷結論。
由于初中的學生并沒有進行選拔考試,同校學生之間的差異往往較大,粗放的教學以所有學生為對象,只求完成任務,不顧學生差異,所以教學質量只維持在一般水平。精細的教學關注每位學生的學習,采用差異教學對策,應對每位學生不同的需求。就要進行分層教學,學校分層、班內分層、教學分層、遞進教學等,但在學校沒有進行分層化的時候,要在實驗教學過程中完成分層教學,光靠一位教師很難完成,差異教學對策除了分層遞進教學中對不同學生設置不同的教學目標,本校首先嘗試在實驗教學過程中引入第二位教師即“雙師制”開展實驗教學活動,在學生的實驗活動中在同一班級采用分組學習、復式教學之外,教師共同參與到學生小組交流、實驗操作等等活動中去。以便教師更好地點撥,開展辨析、判斷、評價、建構等活動,對學生的認知與思維進行修補或完善,從中培養(yǎng)智能。
以“知識與技能”為主的教學目標,是短周期目標,在教學結束時可以檢查其達成度;而“過程與方法”、“情感態(tài)度與價值觀”是長周期目標,需要由課堂里的“情緒體驗”、“高階思維活動”量的積累到質的變化的過程,所以要在課堂里伴隨教學內容體現(xiàn)與關注,因此在本堂課中采用以上的教學設計方法,但要有明顯效果是需要一段時間體驗、積累的結果。
1、通過高錳酸鉀與水混合的實驗,掌握微粒的性質“動”、“小”的特點,同時能根據(jù)對比實驗得出溫度的變化對“動”的影響。
2、通過對酒精與水的混合實驗的辨析,得出微粒的其他性質“間隙”,根據(jù)學生情況選擇性拓展“微粒間的作用力”。
3、從微觀層面認識物質的構成,為今后進一步從本質上認識物質的變化打下基礎。
4、通過小組間的交流,分析不同的觀察角度、觀察的方法在化學實驗過程的作用,增強化學實驗探究能力、體驗化學實驗過程。
從現(xiàn)象明顯的實驗開始觀察,學生回憶起科學課學過的微粒知識,認識微粒的存在。通過實驗現(xiàn)象得出微粒在不停運動,并推測微粒很小。感悟設計不同的實驗能幫助理解不同的性質。
從一堆手到其中一只手,再到不斷被放大的手部皮膚,學生驚訝于照片中微觀世界有別于宏觀世界的景象,激發(fā)了學生學習微粒性質的積極性。
科學家探索微觀世界的過程。
馬赫質疑原子存在的精神。
介紹原子有多小。
人們看見原子到可以移動原子。
人類探索微觀世界的歷史是曲折的,感受科學家嚴謹、執(zhí)著的科學精神,體驗現(xiàn)代科學創(chuàng)造的驚喜,學生對化學學科的認識逐漸清晰,尊重之情油然而生。
通過形象的類比、生動的語言表述體會微粒到底有多小。
——微粒間存在間隙。
學生2人一組利用實驗儀器,設計實驗來證明。
實驗中,發(fā)現(xiàn)還能產生哪些思考?
由實驗引發(fā)的其他思考。
課后討論及習題布置。
引入“雙師制”加強師生交流,及時點撥、反饋實驗中出現(xiàn)的問題。通過學生的自主實驗打開思路,切身體會合適的實驗儀器及實驗方法對科學觀察的重要性,學生在實驗、發(fā)現(xiàn)、思考中體會探索化學奧秘的艱辛與快樂。
比的基本性質說課稿一等獎篇七
宋賀彩科長和王麗老師的《分數(shù)的基本性質》兩節(jié)課各有特色,下面就這兩節(jié)課談談自己的體會。宋科長的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組填空題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!痹俑鶕?jù)分數(shù)與除法德關系,引導學生把除法算式改寫成分數(shù)的形式,從而概括出分數(shù)的基本性質。練習題的設計也是由淺入深,尤其是分數(shù)大小的比較中,“分子分母都不相同的怎樣比較大小”時,讓學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。王麗老師的《分數(shù)的基本性質》一節(jié)課,充分體現(xiàn)了新的課程標準與新理念,給我的感受也很深刻。首先這節(jié)課的引入設計得很好,從學生的興趣出發(fā),通過孫悟空給猴子們分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,勞猴子分得每根甘蔗的3/6,小猴子說分得不公平,由此組織學生展開討論,這樣一下子就吸引了學生的'注意力,激發(fā)了學生學習積極性和興趣。學生自己通過合作學習探討得出:
1/2=2/4=3/6之后又引導學生去發(fā)現(xiàn)這些分數(shù)之間的變化規(guī)律,從而得出分數(shù)的基本性質,并強調了“同時”、“相同的數(shù)”、“0除外”等關鍵處。練習題的設計也是形式多樣,尤其是“小游戲”,老師說分母,學生說分子或老師說分子,學生說分母;“連續(xù)寫出多個相等的分數(shù)”等都是從學生的興趣出發(fā),調動了學生的多向思維,效果也不錯。
聽了李老師的一節(jié)“分數(shù)的基本性質”的數(shù)學課,給我留下了深刻的印象。
是數(shù)學學習的方法,從而激勵學生進一步地主動學習,我認為這是本節(jié)課一大亮點。
但是,我感覺本課教學中,驗證得還不夠透徹,部分同學還有疑慮。如果能讓每位學生在自己準備的紙上畫一畫、折一折、或剪一剪,通過動手操作來驗證自己的猜想是否正確,從而培養(yǎng)學生的動手能力,以及觀察問題解決問題的能力。
沈老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
1.教材簡析《分數(shù)的基本性質》是小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2、教材處理。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
3、教學過程這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數(shù)和除數(shù)同時擴大或縮小相同倍數(shù),商不變?!?BR> 在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數(shù)學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”
貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
比的基本性質說課稿一等獎篇八
在探究比的基本性質時,教師先讓學生在已有的知識基礎上大膽猜想,然后讓學生以同桌為單位進行驗證,展示驗證過程,再讓學生歸納出比的基本性質;在探究化簡比的方法時,教師安排了兩次活動,第一次,安排學生獨立自主探究,解決例1第一部分,第二次,由于內容有一定難度,教師讓學生以小組(4人)為單位,先自己思考,再小組內交流方法并解決問題,最后全班展示交流,總結方法,解決了例1第二部分。在本節(jié)課的兩次新知學習中,教師沒有過多講解,方法的探究,結論的歸納都是出自學生之口,學生真正經歷了知識的產生過程。
在探究化簡比的方法時,教材例1中只安排了整數(shù)比整數(shù),分數(shù)比分數(shù),小數(shù)比整數(shù)三種類型,基于對教材知識體系和學生實際的了解,教師把"做一做中的小數(shù)比小數(shù),小數(shù)比分數(shù)兩種類型的題充實到例1中,這樣使學生較全面的掌握了化簡比的方法,降低了練習難度,效果較好。
本課教學設計緊湊,環(huán)環(huán)相扣,容量大,節(jié)奏快,充分利用了課上的每一分鐘無論在學生驗證猜想時,還是探究化簡比的方法時,教師都要求全員參與。練習設計層次性強,有梯度,題型靈活多樣,尤其是快樂ab卷中設計了兩種難度的練習,供不同層次的學生選擇,關注了全體.
教師在教學過程中,不僅注重了對學生個體的評價還注重了對小組合作學習的評價,同時也注重了培養(yǎng)學生的評價意識。在談收獲時,學生也能夠正確地對組內成員進行評價,合作意識得以凸顯;尤其在快樂ab卷中,教師設計了學生自評,組內成員互評,對教師課堂教學的評價版塊,這種多元化評價的設計既有利于學生的發(fā)展又有利于教師課堂教學的改善。
例如:在學生總結比的基本性質時,個別學生說出了"0除外",這時教師就應該抓住這一問題,為什么"0除外",進行強化,砸實這個知識點。
教師在今后教學中應在創(chuàng)設情境和設計過渡語方面下功夫,力求充分調動學生的學習熱情。
比的基本性質說課稿一等獎篇九
今天聽了丁老師執(zhí)教的《比的基本性質》一課。丁老師圍繞活動主題,注重培養(yǎng)學生的數(shù)學思想,注重學生為教學主體,教師為教學的引導者、合作者,教學方法靈活,教學效果良好。
1、課堂教學中都體現(xiàn)了類推的數(shù)學思想,轉化的`思想,開課伊始對分數(shù)基本性質、除法商不變性質的復習,在教學中,由最簡分數(shù)到最簡整數(shù)比,這些由舊知的復習到新知的引入與理解,充分體現(xiàn)了數(shù)學中的類推思想和轉化思想,不僅教會學生學習的方法,更提高了學生的學習能力,教學效果良好。
2、教學中做到了分散難點,抓住重點,突破難點,在課堂教學中,抓住了理解比的基本性質,利用學生課前閱讀,各類判斷題的判斷,讓學生對比的基本性質得到了充分的理解,并在教學中,有效建立分數(shù)的基本性質、商不變性質與比的基本性質的關系,分散了教學的難點,抓住重點,突破了難點,教學收到良好的效果。
3、課堂容量大,丁老師的教學根據(jù)六年級學生的特點,課堂教學容量大,將課堂教學看作是考試一樣,引導學生在緊張、高效的情況下學習、了解、鞏固、提高。
教學中注重了學生在判斷中理解比的基本性質,化簡比與求比值的區(qū)別,但缺乏學生親自動手化簡的過程,如果讓學生自己親自去化簡,會充分理解比的基本性質,會應用比的基本性質。
比的基本性質說課稿一等獎篇十
自主學習、合作探究。
學生自主活動材料。
一、前置自學(自學課本7-8頁內容,并完成下列問題)。
1.判斷下列約分是否正確:
(1)=(2)=(3)=0。
2.通分。
和、和。
明確:(1)分式的通分與分數(shù)的通分類似;。
分式通分的依據(jù)——。
(2)最簡公分母的確定:(1)系數(shù)取最小公倍數(shù);(2)字母取所有不同字母;(3)所有字母的最高次冪。特別強調,當分母是多項式時,應先將各分母分解因式,在確定最簡公分母。
二、合作探究。
1、下列分式的`最簡公分母是()?
(1)(2)。
(3)(4)。
2、通分:
(1);(2);(3)。
三、拓展提升。
通分:
(1)和(2)和。
(3)和(4)和。
四、當堂反饋。
1.不改變分式的值,把分式中分子、分母各項系數(shù)化成整數(shù)為________.
2.分式的最簡公分母是_________.
3.通分:
(1)、
(2)、
(3)、
4.某人騎自行車勻速爬上一個斜坡后立即勻速下坡回到出發(fā)點,若上坡速度為v1,下坡速度為v2,求他上、下坡的平均速度為()。
(1)(2)(3)(4)。
5.已知,求分式的值。
比的基本性質說課稿一等獎篇十一
著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎,還是約分、通分的依據(jù)。
學生已經清楚理解分數(shù)的好處,明確分數(shù)與除法的關系,商不變
性質等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子、分母變了,分數(shù)的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:
1.理解和掌握分數(shù)的基本性質,并會運用分數(shù)的基本性質把不同
的分數(shù)化成分母(或分子)相同而大小不變的.分數(shù)。
2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維潛力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數(shù)學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。
教學重點:理解掌握分數(shù)的基本性質,它是約分、通分的依據(jù)。
教學難點:讓學生自主探索、發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。
根據(jù)本節(jié)課的教學目標,思考到學生已有的知識、生活經驗和認
知特點,結合教材資料,本課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。透過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。
本節(jié)課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問
題情境,揭示本節(jié)課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數(shù)基本性質。
第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”能夠細化為三個環(huán)節(jié):
環(huán)節(jié)一:動手操作,進行比較
這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數(shù)表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較潛力。
環(huán)節(jié)二:呈現(xiàn)問題,引導觀察
這一環(huán)節(jié)主要呈現(xiàn)給學生這樣一個問題,“第一環(huán)節(jié)中的分數(shù)的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的觀察潛力。
環(huán)節(jié)三:交流匯報,得出規(guī)律
這一環(huán)節(jié)主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數(shù)的基本性質----分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括潛力。
就應強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數(shù)基本性質》一節(jié)的教學設計意圖,有不當之處,請各位批評指導。
比的基本性質說課稿一等獎篇十二
一課是本冊教材第六單元的一個內容。這部內容是學生在學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。而約分、通分又是分數(shù)四則計算重要基礎,因此,理解分數(shù)大小不變規(guī)律我覺得非常的重要。
本節(jié)課,我認為探索分數(shù)大小不變的規(guī)律是難點,運用這個規(guī)律來解決一些實際的問題是重點。那么在課堂中如何來體現(xiàn)這兩方面,首先我以故事導入,來激發(fā)學生的學習興趣。我設計了老和尚給三個小和尚分餅的故事,結果看似不公,實則相同,讓學生做裁判評一評,這樣,學生學習數(shù)學的興趣必然提高,等學生理解并掌握了分數(shù)的基本性質后,學生就明白了。這樣,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數(shù)的基本性質來解決實際問題的能力。教學中采取小組合作學習的形式,提高學生學習的主動性。整堂課我讓學生充分展開討論,課堂氣氛非常的活躍,學生學習數(shù)學的興趣十分濃厚。在鞏固提高環(huán)節(jié),我課前就設計好了題型變化的練習題。注意到了練習題難度的層次性,這樣學生的解題能力和思維能力都得到了培養(yǎng)。
總體來說,本節(jié)課突出了分數(shù)的基本性質的歸納和理解,學生能較好地理解性質中的關鍵詞“同時”、“相同的數(shù)”和“0除外”,對分子分母的變化特點能抓住關鍵,發(fā)現(xiàn)變化的規(guī)律。
比的基本性質說課稿一等獎篇十三
《分數(shù)的基本性質》這一課是課改版小學數(shù)學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數(shù)的意義,明確分數(shù)與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種變與不變中發(fā)現(xiàn)規(guī)律。
2、知識間的聯(lián)系:
七冊:商不變性質十冊:分數(shù)的基本性質十二冊:比的基本性質。
同時《分數(shù)的基本性質》也是學生學習分數(shù)加減法的基礎。所以,本節(jié)課的教學內容具有比較重要的地位。
二、指導思想與設計理念。
新的課程標準提出:教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法。
根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法?;谝陨纤伎?,本課讓學生經歷:舊知喚醒(復習商不變性質與分數(shù)與除法的關系)新知猜想(分數(shù)中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數(shù)學建模(用字母來表示分數(shù)的基本性質)建立聯(lián)系(分數(shù)的基本性質與商不變性質的聯(lián)系)。讓學生對于分數(shù)的基本性質能在數(shù)學的層面上有一個較為完整、清晰與明確的掌握。
三、學情分析。
前測:(問卷形式)。
問題1:你知道分數(shù)的基本性質嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大?。?BR> 4/7○2/71/2○2/43/5○9/15。
分析:暫無。
結論:暫無。
四、教學目標及重難點。
教學目標:
1、讓學生經歷分數(shù)基本性質的探究過程,理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。
2、利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。
教學重點:
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(shù)(0除外),最終:分數(shù)的大小不變。
教學難點:
解決策略:通過初步建立數(shù)學模型,使學生對分數(shù)的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
五、教法學法:
教法:樹立以以學生發(fā)展為本、以學定教的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數(shù)的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。
學法:有效的數(shù)學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數(shù)化成分母不同但大小相同的分數(shù),并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程。
一、遷移舊知.提出猜想。
1回憶舊知。
活動:猜信封。通過猜信封中的數(shù)或算式,引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:
被除數(shù)除數(shù)=。
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:。
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想:
既然分數(shù)與除法的關系這么緊密.除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
二、驗證猜想,建構新知。
環(huán)節(jié)1、看圖分類。
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。
環(huán)節(jié)2、討論方法。
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8。
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規(guī)律。
利用研究卡進行研究。
確定的研究對象。
分子和分母同時乘上或者。
除以一個相同的數(shù)。
得到的分數(shù)。
研究對象與得到的分數(shù)相等嗎?
相等()不相等()。
猜想是否成立?
成立()不成立()。
充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數(shù)基本性質的關鍵詞,滲透變與不變的數(shù)學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)。
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)。
師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)。
環(huán)節(jié)4、質疑完善。
3/4=3()/4()。
師:括號中可以填哪些數(shù)?
預設:可以填無數(shù)個數(shù)。
師:如果只用一個數(shù)來表示,填什么數(shù)好?
預設:字母。
師:這個字母有什么特殊要求嗎?(0除外)。
得到一個初級的數(shù)學模型。3/4=3x/4x(x0)。
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環(huán)節(jié)的練習,進行第一次數(shù)學建構。
三、練習升華。
通過以下練習進一步鞏固分數(shù)的基本性質,使學生初步利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。
3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。
4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?
5、和哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?
四、總結延伸。
師:這節(jié)課學了什么?
師:如果一個分數(shù)為a/b,你能用一個式子來表示分數(shù)的基本性質嗎?
a/b=ax/4x(x0)或a/b=ax/4x(x0)。
在這個環(huán)節(jié)中,數(shù)學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數(shù)學化地表示數(shù)學也是高年級學生所必備的。
五、作業(yè)p87-1、2。
板書設計。
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
68。
34。
1216。
比的基本性質說課稿一等獎篇十四
教材第50、第51頁的內容及練習十一的第4~8題。
教學目標。
1、根據(jù)除法中商不變的規(guī)律和分數(shù)的基本性質,利用知識的遷移,使學生領悟并理解比的基本性質。
2、通過學生的自主探討,掌握化簡比的方法并會化簡比。
3、初步滲透事物是普遍聯(lián)系的辯證唯物主義觀點。
重點難點。
重點:理解比的基本性質,推導化簡比的方法,正確化簡比。
難點:正確化簡比。
教具學具。
練習題投影片。
教學過程。
一導入。
1、比與分數(shù)、除法的關系。
如果學生有困難,可以先完成下表。填表后再說一說比與分數(shù)、除法有怎樣的關系。
老師:請大家回憶一下,分數(shù)有什么性質?商不變有什么規(guī)律?它們的內容分別是什么?
(指名學生發(fā)言)。
二教學實施。
1、猜想。
老師:比和分數(shù)、除法的關系相當密切,那么,在比中有沒有類似的性質呢?如果有,請同學們猜想一下,可能會是怎樣的。
匯報時,讓學生說說猜想的根據(jù),老師也可引導學生在“分數(shù)的基本性質”上進行替換。
引導學生用語言表述,比的前項相當于分數(shù)的分子,后項相當于分母,分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的'大小不變。因此,比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。或者比的前項相當于除法中的被除數(shù),后項相當于除數(shù),被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。因此,比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
2、驗證。
以小組為單位,討論、驗證一下剛才的猜想是否正確。
學生匯報。
3、小結。
經過同學們的驗證,我們知道這個猜想是正確的,并且經過補充使它更完整了,在比中確實存在這種性質。
4、化簡比。
出示例1(1)。
老師整理情境中的信息:“神舟”五號搭載了兩面聯(lián)合國旗,一面長15cm,寬10cm,另一面長180cm,寬120cm,問題是求這兩面聯(lián)合國旗長和寬的最簡單的整數(shù)比分別是多少。
學生反復讀幾遍。
提問:你怎樣理解“最簡單的整數(shù)比”這個概念?
學生討論,指名回答,達成共識,最簡單的整數(shù)比必須是一個比,它的前項和后項都是整數(shù),而且前項和后項應該是互質數(shù)。
15∶10=(15÷5)∶(10÷5)=3∶2。
180∶120=(180÷60)∶(120÷60)=3∶2。
出示例1(2)。
學生嘗試把下面各比化成最簡單的整數(shù)比。
老師強調:不管選擇哪種方法,最后的結果都應該是一個最簡單的整數(shù)比,而不是一個數(shù)。
5、反饋練習。
(1)完成教材第51頁的“做一做”,集體訂正。
(2)完成教材第53頁練習十一的第4題。
提問:題目要求你怎么理解?什么叫后項是100的比?后項是100,前項要怎么辦?
(3)完成教材第53頁練習十一的第5題。
(4)完成教材第53頁練習十一的第6~8題。
讓學生說明理由,注意思維的邏輯性和語言的條理性。
三課堂作業(yè)新設計。
1、把下面各比化成最簡單的整數(shù)比。
四思維訓練參考答案。
課堂作業(yè)新設計。
1、6∶73∶13∶85∶67∶54∶14∶510∶1。
2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。
思維訓練。
板書設計。
比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質。
化簡比:前項和后項只有公因數(shù)1的比,叫做最簡單的整數(shù)比。把比化簡成最簡。
單的整數(shù)比,叫做化簡比。
備課參考教材與學情分析。
比的基本性質是在學生學習了比的意義,比與分數(shù)、除法的關系,商不變的規(guī)律和分數(shù)基本性質的基礎上進行教學的。教材聯(lián)系學過的除法中商不變的規(guī)律和分數(shù)基本性質,通過“想一想”啟發(fā)學生找出比中有什么相應的性質,然后概括出比的基本性質,應用這個性質可以把比化成最簡單的整數(shù)比。學生在以前的學習中,已經掌握了商不變的規(guī)律和分數(shù)的基本性質,六年級的學生有一定的推理概括能力,他們完全可以根據(jù)比與分數(shù)、除法的關系,推導出比的基本性質,這節(jié)課通過讓學生猜想―驗證―應用,讓學生理解比的基本性質,應用性質化簡比。
課堂設計說明。
我們知道,比與分數(shù)、除法只是形式上的不同,實質上它們是可以互相轉化的。教學時,我們先回顧比與分數(shù)、除法的關系,復習商不變的規(guī)律和分數(shù)的基本性質。引導學生想一想:比會不會也有自己的性質,啟發(fā)他們用舉例的方法驗證自己的猜想。最后總結出比的基本性質。
根據(jù)比的基本性質將比化簡,可以使這兩個數(shù)量之間的關系更加簡單、明了,便于學生分析一些事物現(xiàn)象。
比的基本性質說課稿一等獎篇十五
難點本節(jié)例2。
方法講練結合教學。
用具。
教學過程集體備課稿個案補充。
一.利用書本圖5-1和5-2發(fā)現(xiàn)等式的兩個基本性質。
等式的`基本性質1等式的兩邊同時加上(或減去)同一個數(shù)或式,所得結果仍是等式若則。
1.書本117做一做。
2.書本118課內練習1。
3.課本117頁例1。
三.會依據(jù)等式的基本性質將方程變形,求出方程的解。
1.書本118頁例2。
2.書本119頁作業(yè)題3,4。
教學反思。
教學改進。