高一數(shù)學(xué)教案必修一大全(16篇)

字號:

    教案是教師為了實現(xiàn)預(yù)定的教學(xué)目標(biāo),科學(xué)地安排和組織教學(xué)活動所制定的教學(xué)計劃,是教學(xué)工作的重要組成部分,也是教師教學(xué)的依據(jù)和指南。教案有助于教師合理調(diào)配教學(xué)資源,提高教學(xué)效率,促進學(xué)生的學(xué)習(xí)興趣和主動性?,F(xiàn)在我們開始著手寫一份教案吧。教案應(yīng)注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新思維,引導(dǎo)學(xué)生積極參與課堂活動。教案是指用于指導(dǎo)教師教學(xué)活動的書面計劃,它是教學(xué)設(shè)計的重要組成部分,可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)步驟,提高教學(xué)效果。教案的編寫需要考慮教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過程和教學(xué)評價等方面。我們通過編寫教案,可以更好地指導(dǎo)教學(xué),提高教學(xué)質(zhì)量。那么怎樣編寫一份高質(zhì)量的教案呢?首先,教案應(yīng)概括明確的教學(xué)目標(biāo),明確要教什么、怎樣教和完成的標(biāo)準(zhǔn)是什么。其次,教案應(yīng)根據(jù)學(xué)生的實際情況,選擇合適的教學(xué)內(nèi)容和教學(xué)資源。此外,教案還應(yīng)結(jié)合教學(xué)方法,合理安排教學(xué)步驟,確保教學(xué)過程有序、系統(tǒng)。最后,教案應(yīng)包含評價策略,用于評估和反饋學(xué)生的學(xué)習(xí)效果,以便及時調(diào)整教學(xué)方法和內(nèi)容。下面是小編為大家收集的教案范文,供大家參考。教案中包括了教學(xué)目標(biāo)、教學(xué)準(zhǔn)備、教學(xué)過程、教學(xué)評價等內(nèi)容,通過研究這些教案,我們可以更好地了解教學(xué)設(shè)計的要點和方法,提高自己的教學(xué)水平。大家一起來看看吧!
    高一數(shù)學(xué)教案必修一篇一
    一、課前準(zhǔn)備。
    問題3:因為三角形的內(nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。
    ……所以n邊形的內(nèi)角和是。
    新知1:從以上事例可一發(fā)現(xiàn):
    叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
    新知2:類比推理就是根據(jù)兩類不同事物之間具有。
    推測其中一類事物具有與另一類事物的性質(zhì)的推理、
    簡言之,類比推理是由的推理、
    新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。
    的推理、歸納是的過程。
    例子:哥德巴赫猜想:
    觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。
    16=13+3,18=11+7,20=13+7,……,
    50=13+37,……,100=3+97,
    猜想:
    歸納推理的一般步驟。
    1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。
    2從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。
    ※典型例題。
    例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。
    變式1觀察下列等式:1+3=4=,
    1+3+5=9=,
    1+3+5+7=16=,
    1+3+5+7+9=25=,
    ……。
    你能猜想到一個怎樣的結(jié)論?
    變式2觀察下列等式:1=1。
    1+8=9,
    1+8+27=36,
    1+8+27+64=100,
    ……。
    你能猜想到一個怎樣的結(jié)論?
    例2設(shè)計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
    變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。
    例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、
    圓的概念和性質(zhì)球的類似概念和性質(zhì)。
    圓的周長。
    圓的面積。
    圓心與弦(非直徑)中點的連線垂直于弦。
    與圓心距離相等的弦長相等,
    ※動手試試。
    2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
    3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
    三、總結(jié)提升。
    ※學(xué)習(xí)小結(jié)。
    1、歸納推理的定義、
    高一數(shù)學(xué)教案必修一篇二
    三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。
    細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。
    四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
    光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。
    實驗:用高倍顯微鏡觀察葉綠體和線粒體。
    健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍綠色。
    材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
    菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。
    五、分泌蛋白的合成和運輸。
    有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
    核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。
    (合成肽鏈)(加工成蛋白質(zhì))(進一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。
    分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?
    答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
    分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?
    核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。
    六、生物膜系統(tǒng)。
    1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。
    2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動高效、有序進行。
    3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。
    經(jīng)過囊泡與高爾基體膜間接相連。
    高一數(shù)學(xué)教案必修一篇三
    教學(xué)目標(biāo)。
    掌握三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
    教學(xué)重難點。
    利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    教學(xué)過程。
    一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
    (精確到0.001)。
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習(xí):教材p65面3題。
    三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    四、作業(yè)《習(xí)案》作業(yè)十四及十五。
    高一數(shù)學(xué)教案必修一篇四
    了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.
    (2)一元二次不等式。
    會從實際情境中抽象出一元二次不等式模型.
    通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.
    (3)二元一次不等式組與簡單線性規(guī)劃問題。
    會從實際情境中抽象出二元一次不等式組.
    了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
    高一數(shù)學(xué)教案必修一篇五
    1、教材(教學(xué)內(nèi)容)。
    2、設(shè)計理念。
    3、教學(xué)目標(biāo)。
    情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
    4、重點難點。
    重點:任意角三角函數(shù)的定義、
    難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
    5、學(xué)情分析。
    6、教法分析。
    7、學(xué)法分析。
    本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達成教學(xué)目標(biāo)。
    高一數(shù)學(xué)教案必修一篇六
    掌握用向量方法建立兩角差的余弦公式。通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
    1.教學(xué)重點:通過探索得到兩角差的余弦公式;
    2.教學(xué)難點:探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運用已學(xué)知識和方法的能力問題,等等。
    1.學(xué)法:啟發(fā)式教學(xué)。
    2.教學(xué)用具:多媒體。
    (一)導(dǎo)入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
    (二)探討過程:
    在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
    展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu)。
    提示:
    1、結(jié)合圖形,明確應(yīng)該選擇哪幾個向量,它們是怎樣表示的?
    2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結(jié)果?
    展示多媒體課件。
    比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
    思考:再利用兩角差的余弦公式得出。
    (三)例題講解。
    例1、利用和、差角余弦公式求、的值。
    解:分析:把、構(gòu)造成兩個特殊角的和、差。
    點評:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用。
    例2、已知,是第三象限角,求的值。
    解:因為,由此得。
    又因為是第三象限角,所以。
    所以。
    點評:注意角、的象限,也就是符號問題。
    (四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用。
    高一數(shù)學(xué)教案必修一篇七
    教學(xué)目標(biāo)。
    熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
    教學(xué)重難點。
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    教學(xué)過程。
    復(fù)習(xí)。
    兩角差的余弦公式。
    用-b代替b看看有什么結(jié)果?
    高一數(shù)學(xué)教案必修一篇八
    掌握三角函數(shù)模型應(yīng)用基本步驟:
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
    ·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
    一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
    (精確到0·001)·。
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習(xí):教材p65面3題。
    三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
    四、作業(yè)《習(xí)案》作業(yè)十四及十五。
    高一數(shù)學(xué)教案必修一篇九
    教學(xué)目標(biāo)。
    1、理解平面向量的坐標(biāo)的概念;。
    2、掌握平面向量的坐標(biāo)運算;。
    3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.
    教學(xué)重難點。
    教學(xué)重點:平面向量的坐標(biāo)運算。
    教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.
    教學(xué)過程。
    平面向量基本定理:。
    什么叫平面的一組基底?
    平面的基底有多少組?
    引入:。
    1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。
    表示?
    2.平面向量是否也有類似的表示呢?
    高一數(shù)學(xué)教案必修一篇十
    教學(xué)目標(biāo)。
    3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
    教學(xué)重難點。
    教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
    教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
    教學(xué)過程。
    由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
    思考:
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    “三步曲”:
    (2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
    (3)把運算結(jié)果“翻譯”成幾何關(guān)系.
    高一數(shù)學(xué)教案必修一篇十一
    (2)了解區(qū)間的概念;。
    (2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
    【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
    問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
    1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
    1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
    設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
    問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
    問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
    設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
    高一數(shù)學(xué)教案必修一篇十二
    1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
    (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。
    (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
    (3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。
    2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
    3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
    (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
    (2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
    (3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。
    (4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。
    (5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。
    (6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的。
    高一數(shù)學(xué)教案必修一篇十三
    1.要讀好課本。
    有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。
    2.要記好筆記。
    首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
    3.要做好作業(yè)。
    在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。
    4.要寫好總結(jié)。
    一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。
    通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。
    1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
    2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
    小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。
    3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。
    4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
    5.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。
    高一數(shù)學(xué)教案必修一篇十四
    1.閱讀課本練習(xí)止。
    2.回答問題:
    (1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
    (2)層次間的聯(lián)系是什么?
    (3)對數(shù)函數(shù)的定義是什么?
    (4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
    3.完成練習(xí)。
    4.小結(jié)。
    二、方法指導(dǎo)。
    1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
    2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。
    一、提問題。
    1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
    2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
    3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
    二、變題目。
    1.試求下列函數(shù)的反函數(shù):
    (1);(2);(3);(4)。
    2.求下列函數(shù)的定義域:。
    (1);(2);(3)。
    3.已知則=;的定義域為。
    1.對數(shù)函數(shù)的有關(guān)概念。
    (1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
    (2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
    (3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
    2.反函數(shù)的概念。
    在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。
    3.與對數(shù)函數(shù)有關(guān)的定義域的求法:
    4.舉例說明如何求反函數(shù)。
    一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,
    二、課外思考:
    1.求定義域:
    2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。
    高一數(shù)學(xué)教案必修一篇十五
    3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
    教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.
    實物投影儀,多媒體軟件,電腦.
    研探式.
    一.復(fù)習(xí)提問
    等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.
    二.主體設(shè)計
    通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
    1.方程思想的運用
    (1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
    (2)已知等差數(shù)列中,首項,則公差
    (3)已知等差數(shù)列中,公差,則首項
    這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
    2.基本量方法的使用
    (1)已知等差數(shù)列中,求的值.
    (2)已知等差數(shù)列中,求.
    若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
    教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
    如:已知等差數(shù)列中,…
    由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
    類似的還有
    (4)已知等差數(shù)列中,求的值.
    以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
    3.研究等差數(shù)列的單調(diào)性
    4.研究項的符號
    這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
    (1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
    (2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
    三.小結(jié)
    1.用方程思想熟悉等差數(shù)列通項公式;
    2.用函數(shù)思想解決等差數(shù)列問題.
    四.板書設(shè)計
    等差數(shù)列通項公式1.方程思想的運用
    2.基本量方法的使用
    3.研究等差數(shù)列的單調(diào)性
    4.研究項的符號
    高一數(shù)學(xué)教案必修一篇十六
    1. 閱讀課本 練習(xí)止.
    2. 回答問題
    (1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
    (2)層次間的聯(lián)系是什么?
    (3)對數(shù)函數(shù)的定義是什么?
    (4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
    3. 完成 練習(xí)
    4. 小結(jié).
    二、方法指導(dǎo)
    1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
    一、提問題
    1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
    2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
    3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
    二、變題目
    1. 試求下列函數(shù)的反函數(shù):
    (1) ; (2) ;
    (3) ; (4) .
    2. 求下列函數(shù)的定義域:
    (1) ; (2) ; (3) .
    3. 已知 則 = ; 的定義域為 .
    1.對數(shù)函數(shù)的'有關(guān)概念
    (1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
    (2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
    (3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
    2. 反函數(shù)的概念
    在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
    3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
    4. 舉例說明如何求反函數(shù).
    一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
    二、課外思考:
    1. 求定義域: .
    2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.