初中一元二次方程教案(優(yōu)質(zhì)18篇)

字號(hào):

    一份優(yōu)秀的教案可以為教師的教學(xué)生涯增添光彩。教案中的評(píng)價(jià)手段應(yīng)與教學(xué)目標(biāo)相匹配,能夠全面客觀地評(píng)價(jià)學(xué)生的學(xué)習(xí)情況。最后,祝愿每個(gè)教師編寫出更加出色的教案,為學(xué)生的學(xué)習(xí)提供更好的支持和引導(dǎo)。
    初中一元二次方程教案篇一
    一、出示學(xué)習(xí)目標(biāo):
    2.通過自學(xué)探究掌握裁邊分割問題。
    二、自學(xué)指導(dǎo):(閱讀課本p47頁,思考下列問題)。
    1.閱讀探究3并進(jìn)行填空;
    2.完成p48的思考并掌握裁邊分割問題的特點(diǎn);
    設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
    由中下層學(xué)生口答書中填空,老師再給予補(bǔ)充。
    思考:如果換一種設(shè)法,是否可以更簡(jiǎn)單?
    設(shè)正中央的長(zhǎng)方形長(zhǎng)為9acm,寬為7acm,依題意得。
    9a·7a=(可讓上層學(xué)生在自學(xué)時(shí),先上來板演)。
    效果檢測(cè)時(shí),由同座的同學(xué)給予點(diǎn)評(píng)與糾正。
    9.如圖,要設(shè)計(jì)一幅寬20m,長(zhǎng)30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計(jì)彩條的寬帶?(討論用多種方法列方程比較)。
    注意點(diǎn):要善于利用圖形的平移把問題簡(jiǎn)單化!
    三、當(dāng)堂訓(xùn)練:
    (只要求設(shè)元、列方程)。
    初中一元二次方程教案篇二
    教材分析:1.本節(jié)以生活中的實(shí)際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點(diǎn),歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個(gè)基礎(chǔ)。
    2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
    3.讓學(xué)生體會(huì)數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
    學(xué)情分析:1.授課班級(jí)學(xué)生基礎(chǔ)較差,學(xué)生成績(jī)參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時(shí)間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
    2.該班級(jí)學(xué)生在平時(shí)訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢(shì),從而充分調(diào)動(dòng)學(xué)生主動(dòng)性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
    3.作為該班的班主任,同時(shí)又擔(dān)任該班的數(shù)學(xué)教學(xué),對(duì)學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時(shí)候可以兼顧不同能力的學(xué)生,充分調(diào)動(dòng)學(xué)生的積極性,在練習(xí)題的設(shè)計(jì)上要針對(duì)學(xué)生的差異采取分層設(shè)計(jì)的方法,著重加強(qiáng)對(duì)學(xué)生的雙基訓(xùn)練。
    教學(xué)目標(biāo):
    一知識(shí)與技能:。
    1.理解一元二次方程的概念,能判斷一個(gè)方程是一元二次方程。
    2.掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
    二過程與方法:
    1.引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念。
    2.培養(yǎng)獨(dú)立思考,合作交流學(xué),分析問題,解決問題的能力。
    三情感態(tài)度與價(jià)值觀:
    1.培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí).
    2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí).
    3.讓學(xué)生體會(huì)數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識(shí)到數(shù)學(xué)在生活中的作用。
    教學(xué)重點(diǎn):一元二次方程的概念及一般形式,利用概念解決實(shí)際問題。
    教學(xué)難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
    2.正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”.
    3.一元二次方程的特點(diǎn),如何判斷一個(gè)方程是一元二次方程。
    教學(xué)過程:
    一、創(chuàng)設(shè)情境,引入新課。
    1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計(jì)劃無公害蔬菜的產(chǎn)量比翻一番,要實(shí)現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長(zhǎng)率是多少?(通過放幻燈片引入)。
    (1)用代數(shù)式表示20的產(chǎn)量;。
    (2)年蔬菜的產(chǎn)量比年增加了2x,對(duì)嗎?為什么?你能用代數(shù)式表示出來嗎?
    學(xué)生思考交流得出方程a(1+x)2=2a。
    整理得,x2+2x-1=0…………①。
    2.通過幻燈片引入情境,提出問題:
    這個(gè)問題的相等關(guān)系是什么?
    320×200-(320x+2×200x-2x2)=57000。
    整理得x2-36x+35=0。
    誰還能換一種思路考慮這個(gè)問題?
    把6個(gè)小花壇拼起來是一個(gè)多長(zhǎng)多寬的矩形,由此你會(huì)得出什么樣的方程?
    (320-2x)(200-x)=57000。
    整理得x2-36x+35=0…………②。
    比較一下,哪種方法更巧妙?
    初中一元二次方程教案篇三
    了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目.
    1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
    2.一元二次方程的一般形式及其有關(guān)概念.
    3.解決一些概念性的題目.
    4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.
    重難點(diǎn)關(guān)鍵。
    1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
    2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
    教學(xué)過程。
    一、復(fù)習(xí)引入。
    學(xué)生活動(dòng):列方程.
    如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.
    整理、化簡(jiǎn),得:__________.
    問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn).
    如果假設(shè)ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
    整理得:_________.
    如果假設(shè)剪后的正方形邊長(zhǎng)為x,那么原來長(zhǎng)方形長(zhǎng)是________,寬是_____,根據(jù)題意,得:_______.
    整理,得:________.
    老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
    二、探索新知。
    學(xué)生活動(dòng):請(qǐng)口答下面問題.
    (1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
    (2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
    (3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
    老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
    因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.
    一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
    一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
    例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
    分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.
    解:去括號(hào),得:
    移項(xiàng),得:4x2-26x+22=0。
    其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
    例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
    分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
    解:去括號(hào),得:
    x2+2x+1+x2-4=1。
    移項(xiàng),合并得:2x2+2x-4=0。
    其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.
    三、鞏固練習(xí)。
    教材p32練習(xí)1、2。
    四、應(yīng)用拓展。
    例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
    分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
    證明:m2-8m+17=(m-4)2+1。
    ∵(m-4)20。
    (m-4)2+10,即(m-4)2+10。
    不論m取何值,該方程都是一元二次方程.
    五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))。
    本節(jié)課要掌握:
    (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
    六、布置作業(yè)。
    初中一元二次方程教案篇四
    課標(biāo)要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導(dǎo)是建立在直接開平方法的基礎(chǔ)上,又是推導(dǎo)求根公式和一元二次方程根與系數(shù)的關(guān)系的基礎(chǔ),更是為今后學(xué)生能學(xué)好二次函數(shù)打基礎(chǔ),二次函數(shù)的頂點(diǎn)坐標(biāo)的確定和二次函數(shù)與一元二次方程的關(guān)系息息相關(guān)。再者列一元二次方程解應(yīng)用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)占有重要的地位。
    2、過程與方法。
    (1)理解并掌握配方法。
    (2)通過探索配方法的過程,體會(huì)轉(zhuǎn)化,降次的數(shù)學(xué)思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。
    3、情感態(tài)度與價(jià)值觀。
    通過分析實(shí)際問題中的數(shù)量關(guān)系,建立一元二次方程模型解決問題,進(jìn)一步認(rèn)識(shí)方程模型的重要性,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)與能力。
    難點(diǎn):配方的過程。
    初中一元二次方程教案篇五
    1、知識(shí)與能力目標(biāo):要求學(xué)生會(huì)根據(jù)實(shí)際問題列出一元二次方程,體會(huì)方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。
    2、過程與方法目標(biāo):引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念。
    3.、情感、態(tài)度與價(jià)值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí)并與校園綠化相結(jié)合。
    教學(xué)重點(diǎn)、難點(diǎn)。
    教學(xué)重點(diǎn):通過實(shí)際問題模型建立一元二次方程的概念,認(rèn)識(shí)一元二次方程一般形式.
    2。難點(diǎn):通過實(shí)際問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
    教學(xué)過程:
    (一)創(chuàng)設(shè)情景,導(dǎo)入新課。
    分析:設(shè)長(zhǎng)方形綠地的寬為x米,則列方程,
    整理可得。
    分析:設(shè)長(zhǎng)方形綠地的寬為x米,則列方程,
    整理可得。
    【設(shè)計(jì)意圖】因?yàn)閿?shù)學(xué)來源與生活,所以以學(xué)生的實(shí)際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。同時(shí)幫助學(xué)生從實(shí)際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會(huì)想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課,并激發(fā)學(xué)生環(huán)保意識(shí)。
    初中一元二次方程教案篇六
    第二步:將左端的二次三項(xiàng)式分解為兩個(gè)一次因式的積;。
    第三步:方程左邊兩個(gè)因式分別為0,得到兩個(gè)一次方程,它們的解就是原方程的解.
    解法二:配方法。
    x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
    即(x-2)^2=1。
    于是x=3或x=1。
    一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對(duì)配方來說,它可能更實(shí)用,普遍。
    比如x^2+x-1=0。
    我們可能分解不出它的因式來,不過我們可以采用配方法。
    x^2+x-1=(x+1/2)^2-5/4=0。
    于是得到x=(根號(hào)5-1)/2或x=(-根號(hào)5-1)/2。
    小練習(xí)。
    1.分解因式:
    (4)(x+1)2-16=________。
    2.方程(2x+1)(x-5)=0的解是_________。
    3.方程2x(x-2)=3(x-2)的解是___________。
    5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
    初中一元二次方程教案篇七
    1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
    3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
    二、教學(xué)重難點(diǎn)。
    重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
    三、教學(xué)過程。
    (一)導(dǎo)入新課。
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)。
    師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
    (下去巡視)。
    (三)小結(jié)作業(yè)。
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
    四、板書設(shè)計(jì)。
    五、教學(xué)反思。
    將本文的word文檔下載到電腦,方便收藏和打印。
    初中一元二次方程教案篇八
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點(diǎn)和難點(diǎn):
    教學(xué)建議:
    1.教材分析:
    1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
    2)重點(diǎn)、難點(diǎn)分析。
    是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
    將本文的word文檔下載到電腦,方便收藏和打印。
    初中一元二次方程教案篇九
    2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點(diǎn)和難點(diǎn):
    難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
    2)重點(diǎn)、難點(diǎn)分析。
    是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
    初中一元二次方程教案篇十
    一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實(shí)際背景,可以作為許多實(shí)際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點(diǎn)內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
    學(xué)情分析。
    1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時(shí)初三學(xué)生觀察、類比、概括、歸納能力也都比較強(qiáng),不過對(duì)應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強(qiáng)。
    2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
    教學(xué)目標(biāo)。
    一、知識(shí)目標(biāo)。
    1、在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,,增加對(duì)一元二次方程的感性認(rèn)識(shí).
    3、掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
    二、能力目標(biāo)。
    1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.
    2、由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力.
    四、情感目標(biāo)。
    1、培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí).
    2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí)。
    教學(xué)重點(diǎn)和難點(diǎn)。
    難點(diǎn):1、從實(shí)際問題中抽象出一元二次方程。2、正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”
    初中一元二次方程教案篇十一
    (2)掌握一元二次方程的.一般形式,會(huì)判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
    (一)創(chuàng)設(shè)情景,引入新課。
    由學(xué)生說出這幾個(gè)方程的共同特征,從而引出一元二次方程的概念。
    (二)新授。
    1:一元二次方程的概念。(一個(gè)未知數(shù)、最高次2次、等式兩邊都是整式)。
    任一個(gè)一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
    3:講解例子。
    5:講解例子。
    6:一般步驟。
    (三)小結(jié)。
    (四)布置作業(yè)。
    初中一元二次方程教案篇十二
    解一元二次方程有四種方法,直接開平方法、配方法、公式法、因式分解法,這四種方法各有千秋。直接開平方法很簡(jiǎn)單,在這里不做過多的介紹。為保證學(xué)生掌握基本的運(yùn)算技能,教學(xué)中進(jìn)行了一定量的訓(xùn)練,但要避免學(xué)生簡(jiǎn)單的模仿。我們?cè)谔骄恳辉畏匠探夥ǖ倪^程中,要加強(qiáng)思想方法的滲透,發(fā)展學(xué)生的思維能力。在解一元二次方程的幾種方法中,均需要用到轉(zhuǎn)化的思想方法。如配方法需要將方程轉(zhuǎn)化為能直接開平方的形式,公式法能根據(jù)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程,所有這些均體現(xiàn)了轉(zhuǎn)化的思想。在教學(xué)時(shí)老師引導(dǎo)學(xué)生在主動(dòng)進(jìn)行觀察、思考核探究的基礎(chǔ)上,體會(huì)數(shù)學(xué)思想方法在其中的作用,充分發(fā)展學(xué)生的思維能力。
    1.會(huì)用配方法、公式法、因式分解法解簡(jiǎn)單數(shù)字系數(shù)的一元二次方程。
    2.能夠根據(jù)一元二次方程的特點(diǎn),靈活選用解方程的方法,體會(huì)解決問題策略的多樣性。
    1.參與對(duì)一元二次方程解法的探索,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的過程,對(duì)結(jié)果比較、驗(yàn)證、歸納、理清幾種解法之間的關(guān)系,并能根據(jù)方程的特點(diǎn)靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?BR>    在解一元二次方程的實(shí)踐中,交流、總結(jié)經(jīng)驗(yàn)和規(guī)律,體驗(yàn)數(shù)學(xué)活動(dòng)樂趣。
    重點(diǎn):掌握配方法、公式法、因式分解法解一元二次方程的步驟,并熟練運(yùn)用上述方法解題。
    難點(diǎn):根據(jù)方程的特點(diǎn)靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?BR>    探索發(fā)現(xiàn),講練結(jié)合。
    初中一元二次方程教案篇十三
    1、構(gòu)建本章的部分知識(shí)框圖。
    2、復(fù)習(xí)一元二次方程的概念、解法。
    1、通過對(duì)本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運(yùn)算能力。
    2、在解一元二次方程的過程中體會(huì)轉(zhuǎn)化等數(shù)學(xué)思想。
    1、一元二次方程的概念
    2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
    解法的靈活選擇;例4和例5的解法。
    導(dǎo)入新課
    問題:本章中,我們有哪些收獲?(教師點(diǎn)撥引導(dǎo)學(xué)生構(gòu)建本章部分知識(shí)框圖)
    共同探究
    例1
    例2
    (1)
    解法及其關(guān)系
    (2)
    根的形式
    x1=3
    x2=4
    (3)熟悉解法
    例3用四種解法分別解此方程
    (4)方法優(yōu)選
    例4
    例5
    解關(guān)于x的方程
    錯(cuò)誤解法
    正確解法
    提煉思想
    我們有哪些收獲?解方程的思想方法是什么?
    鞏固提高
    初中一元二次方程教案篇十四
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)重點(diǎn):
    1.體會(huì)方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)難點(diǎn):
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
    啟發(fā)引導(dǎo)合作交流。
    課件。
    計(jì)算機(jī)、實(shí)物投影。
    檢查預(yù)習(xí)引出課題。
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解。
    教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
    學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。
    這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。
    初中一元二次方程教案篇十五
    (2)掌握一元二次方程的一般形式,會(huì)判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
    【教學(xué)過程】。
    (一)創(chuàng)設(shè)情景,引入新課。
    由學(xué)生說出這幾個(gè)方程的共同特征,從而引出一元二次方程的概念。
    (二)新授。
    1:一元二次方程的概念。(一個(gè)未知數(shù)、最高次2次、等式兩邊都是整式)。
    任一個(gè)一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
    3:講解例子。
    5:講解例子。
    6:一般步驟。
    (三)小結(jié)。
    (四)布置作業(yè)。
    初中一元二次方程教案篇十六
    3、解決一些概念性的題目、
    4、態(tài)度、情感、價(jià)值觀。
    4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、
    一、復(fù)習(xí)引入。
    學(xué)生活動(dòng):列方程、
    問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
    整理、化簡(jiǎn),得:__________、
    問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)、
    整理,得:________、
    二、探索新知。
    學(xué)生活動(dòng):請(qǐng)口答下面問題、
    (1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
    (2)按照整式中的'多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
    (3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
    解:去括號(hào),得:
    移項(xiàng),得:4x2-26x+22=0。
    其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22、
    解:去括號(hào),得:
    x2+2x+1+x2-4=1。
    移項(xiàng),合并得:2x2+2x-4=0。
    其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4、
    三、鞏固練習(xí)。
    教材p32練習(xí)1、2。
    四、應(yīng)用拓展。
    分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、
    證明:2-8+17=(-4)2+1。
    ∵(-4)2≥0。
    ∴(-4)2+10,即(-4)2+1≠0。
    五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))。
    本節(jié)課要掌握:
    六、布置作業(yè)。
    初中一元二次方程教案篇十七
    1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.。
    3.解決一些概念性的題目.。
    4.態(tài)度、情感、價(jià)值觀。
    4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情。
    一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.。
    學(xué)生活動(dòng):列方程。
    問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
    整理、化簡(jiǎn),得:__________。
    問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)。
    整理,得:________。
    學(xué)生活動(dòng):請(qǐng)口答下面問題。
    (1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
    (2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
    (3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
    老師點(diǎn)評(píng):
    (1)都只含一個(gè)未知數(shù)x;
    (2)它們的最高次數(shù)都是2次的;
    (3)都有等號(hào),是方程.。
    解:去括號(hào),得:
    移項(xiàng),得:4x2-26x+22=0。
    其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.。
    解:去括號(hào),得:
    x2+2x+1+x2-4=1。
    移項(xiàng),合并得:2x2+2x-4=0。
    其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.。
    教材p32練習(xí)1、2。
    分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.。
    證明:2-8+17=(-4)2+1。
    ∵(-4)2≥0。
    ∴(-4)2+10,即(-4)2+1≠0。
    本節(jié)課要掌握:
    初中一元二次方程教案篇十八
    1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
    3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
    重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
    難點(diǎn):找對(duì)題目中的數(shù)量關(guān)系從而列出一元二次方程。
    (一)導(dǎo)入新課。
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)。
    師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
    (下去巡視)。
    (三)小結(jié)作業(yè)。
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
    四、板書設(shè)計(jì)。
    五、教學(xué)反思。