一次函數(shù)與二元一次方程課教學(xué)設(shè)計(精選17篇)

字號:

    社會制度是社會運行的基礎(chǔ),它規(guī)范了人們的行為和權(quán)利義務(wù)??偨Y(jié)時要客觀、準(zhǔn)確地評價自己的表現(xiàn),對得失有一個深入的思考??偨Y(jié)是在一段時間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結(jié)了吧。如何提高學(xué)習(xí)效率和質(zhì)量?這是每個學(xué)生都要探索的課題。以下是專家給出的提高學(xué)習(xí)效果的十個建議,請大家參考。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇一
    過程與方法。
    (2)通過“做一做”引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。
    情感與態(tài)度。
    (1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
    (2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力。
    教學(xué)重點。
    教學(xué)難點。
    數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識。
    教學(xué)準(zhǔn)備。
    教具:多媒體課件、三角板。
    學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
    教學(xué)過程。
    第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)。
    內(nèi)容:
    1.方程x+y=5的解有多少個?是這個方程的解嗎?
    2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
    3.在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
    4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
    由此得到本節(jié)課的第一個知識點:
    (2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。
    第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
    內(nèi)容:
    1.解方程組。
    2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像。
    (1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
    (2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解。
    (3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
    注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
    第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨立解決)。
    探究方程與函數(shù)的相互轉(zhuǎn)化。
    內(nèi)容:例1用作圖像的方法解方程組。
    例2如圖,直線與的交點坐標(biāo)是。
    第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
    內(nèi)容:
    1.已知一次函數(shù)與的圖像的交點為,則。
    2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
    (a)4(b)5(c)6(d)7。
    3.求兩條直線與和軸所圍成的三角形面積。
    4.如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?
    第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
    內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
    (2)一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程。
    2.方程組和對應(yīng)的兩條直線的關(guān)系:
    (1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
    (2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
    (1)代入消元法;
    (2)加減消元法;
    (3)圖像法。要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
    第六環(huán)節(jié)作業(yè)布置。
    習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇二
    (2)通過“做一做”引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。
    (1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
    (2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力。
    (2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系。
    數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識。
    教具:多媒體課件、三角板。
    學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
    第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)。
    內(nèi)容:
    1.方程x+y=5的解有多少個?是這個方程的解嗎?
    2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
    3.在一次函數(shù)y=的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
    4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
    由此得到本節(jié)課的第一個知識點:
    (1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
    第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
    內(nèi)容:
    1.解方程組。
    2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像。
    (1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
    (2)求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解。
    (3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
    注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
    第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨立解決)。
    探究方程與函數(shù)的相互轉(zhuǎn)化。
    內(nèi)容:例1用作圖像的方法解方程組。
    例2如圖,直線與的交點坐標(biāo)是。
    第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
    內(nèi)容:
    1.已知一次函數(shù)與的圖像的交點為,則。
    2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
    (a)4(b)5(c)6(d)7。
    3.求兩條直線與和軸所圍成的三角形面積。
    4.如圖,兩條直線與的交點坐標(biāo)可以看作哪個方程組的解?
    第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
    內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
    1.二元一次方程和一次函數(shù)的。圖像的關(guān)系;
    (1)以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
    2.方程組和對應(yīng)的兩條直線的關(guān)系:
    (1)方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
    (2)兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
    (1)代入消元法;
    (2)加減消元法;
    (3)圖像法。要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
    第六環(huán)節(jié)作業(yè)布置。
    習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇三
    3、會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
    情感與態(tài)度目標(biāo)。
    2、通過對實際問題的分析,培養(yǎng)關(guān)注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識。
    重點:二元一次方程的概念及二元一次方程的解的概念。
    難點。
    1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個,但不是任意的兩個數(shù)是它的解。
    2、把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
    1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
    2、通過觀察、思考、交流等活動,激發(fā)學(xué)習(xí)情緒,營造學(xué)習(xí)氣氛,給學(xué)生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。
    3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時鞏固所學(xué)知識。
    創(chuàng)設(shè)情境導(dǎo)入新課。
    1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?
    師生互動探索新知。
    1、發(fā)現(xiàn)新知。
    根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)。
    2、鞏固新知。
    相同點:方程兩邊都是整式,含有未知數(shù)的項的次數(shù)都是一次。
    如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。
    它山之石可以攻玉,以上就是為大家?guī)淼?篇《一次函數(shù)與二元一次方程課教學(xué)設(shè)計》,您可以復(fù)制其中的精彩段落、語句,也可以下載doc格式的文檔以便編輯使用。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇四
    知識目標(biāo):了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
    能力目標(biāo):通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
    情感目標(biāo):通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
    判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
    一、引入、實物投影。
    2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
    這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
    師:同學(xué)們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)。
    師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇五
    本節(jié)課通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:
    3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)模型間的聯(lián)系.。
    教學(xué)重點。
    教學(xué)難點。
    通過對數(shù)學(xué)模型關(guān)系的探究發(fā)展學(xué)生數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.。
    1.教法學(xué)法。
    啟發(fā)引導(dǎo)與自主探索相結(jié)合.。
    2.課前準(zhǔn)備。
    教具:多媒體課件、三角板.。
    學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.。
    1.某水箱有5噸水,若用水管向外排水,每小時排水1噸,則x小時后還剩余y噸水.
    (1)請找出自變量和因變量。
    (2)你能列出x,y的關(guān)系式嗎。
    (3)x,y的取值范圍是什么。
    (4)在平面直角坐標(biāo)系中畫出這個函數(shù)的圖形.(注意xy的取值范圍).
    2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?
    (3).在一次函數(shù)y=x5的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
    x+y=5與y=x5表示的關(guān)系相同。
    1.兩個一次函數(shù)圖象的交點坐標(biāo)是相應(yīng)的二元。
    (2)兩個函數(shù)的交點坐標(biāo)適合哪個方程?
    xy5(3).解方程組驗證一下你的發(fā)現(xiàn)。2xy1。
    練習(xí):隨堂練習(xí)1。鞏固由一次函數(shù)的交點坐標(biāo)找相應(yīng)的二元一次方程組的解。
    xy2(1)解。
    2xy5(2)以方程x+y=2。
    (3)以方程2x+y=5(4)方程組的解為坐標(biāo)的點在圖象上是哪個點?
    練習(xí):知識技能1。鞏固由方程組的解求相應(yīng)的一次函數(shù)的交點坐標(biāo)。更深入的體會二元一次方程組的解與一次函數(shù)交點坐標(biāo)之間的對應(yīng)關(guān)系。
    第三環(huán)節(jié)模型應(yīng)用。
    1.某公司要印制產(chǎn)品宣傳材料.
    印刷廠的費用。
    (1)請分別表示出兩個印刷廠費用與x的關(guān)系式。
    (2)在同一直角坐標(biāo)系中畫出函數(shù)的圖象。
    (3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?
    第四環(huán)節(jié)模型特例。
    想一想。
    么?
    (1)觀察發(fā)現(xiàn)直線平行無交點;
    (2)小組研究計算發(fā)現(xiàn)方程組無解;
    (3)從側(cè)面驗證了兩直線有交點,對應(yīng)的方程組有解,反之也成立;
    (4)歸納小結(jié):兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對應(yīng)成比例方程組無解。
    進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進一步挖掘出兩直線平行與k的關(guān)系。
    第五環(huán)節(jié)課堂小結(jié)。
    內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
    一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.。
    2.方程組和對應(yīng)的兩條直線的關(guān)系:
    方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
    兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
    第六環(huán)節(jié)作業(yè)布置。
    習(xí)題5.7。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇六
    本節(jié)課是在學(xué)生已經(jīng)學(xué)會從單個一次函數(shù)的圖象分析獲取信息,進而解決有關(guān)實際問題的基礎(chǔ)上展開的。因此,本節(jié)課的重點應(yīng)該放在怎樣從兩個函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學(xué)生的識圖能力與解決實際問題的能力。難點在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學(xué)生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學(xué)生感興趣的現(xiàn)實問題作素材,以交流合作為主要形式展開學(xué)習(xí)活動。
    例1:某種摩托車的油箱最多可儲油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關(guān)系引伸的問題帶來了挑戰(zhàn)性的懸念。只有讓學(xué)生在探索問題之中學(xué)會提出問題,才能最終體驗到數(shù)學(xué)的抽象,形成穩(wěn)定的學(xué)習(xí)興趣。
    2、本節(jié)課充分體現(xiàn)了學(xué)生在自主探索與合作交流中學(xué)會學(xué)習(xí)這一理念,學(xué)生有足夠的自主探索時間,有與同學(xué)合作互動的空間,有與老師交流表達的機會。學(xué)生不是從老師那里獲取知識,而是在數(shù)學(xué)活動的過程中發(fā)現(xiàn)規(guī)律、體驗成功。
    3、本節(jié)課通過函數(shù)圖象獲取信息,解決實際問題,培養(yǎng)學(xué)生的形象思維及數(shù)學(xué)應(yīng)用能力,同時培養(yǎng)學(xué)生良好的環(huán)保意識和熱愛生活的意識及利用函數(shù)圖象解決簡單的實際問題通過方程與函數(shù)關(guān)系的研究,建立良好的知識聯(lián)系。
    1、個別差生的積極性還未調(diào)動起來,還須探索出關(guān)注差生的方法來提高教學(xué)及格率。
    2、在分析一次函數(shù)表達式時,在課本上用的“數(shù)形結(jié)合”方法可另外用“待定系數(shù)法”分析;以便學(xué)生能拓展思維。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇七
    把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組.
    此外,組成方程組的各個方程也不必同時含有兩個未知數(shù).
    二.會檢驗一組數(shù)是不是某個二元一次方程組的解;。
    滿足每一個方程,只有這組數(shù)滿足方程組中的所有方程時,該組數(shù)才是原方程組的解,否則不是。
    三.會用代入法和加減法解二元一次方程組,了解代入消元法和加減消元法的基本思想;。
    代入法消元:
    1.代入消元法是解方程組的兩種基本方法之一。代入消元法就是把方程組其中一個方程的某個未知數(shù)用含另一個未知數(shù)的代數(shù)式表示,然后代入另一個方程,消去一個未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來解。這種解二元一次方程組的方法叫代入消元法,簡稱代入法。
    (2)將變形后的這個關(guān)系式代入另一個方程,消去一個未知數(shù),得到一個一元一次方程;。
    (3)解這個一元一次方程,求出一個未知數(shù)的值;。
    (4)將求得的這個未知數(shù)的值代入變形后的關(guān)系式中,求出另一個未知數(shù)的值;。
    加減法消元:
    1.加減消元法是解二元一次方程組的基本方法之一,加減消元法是通過將兩個方程相加(或相減)消去一個未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來解,這種解法叫做加減消元法,簡稱加減法。
    (3)解這個一元一次方程,求得其中一個未知數(shù)的值;。
    4.能夠根據(jù)題目特點熟練選用代入法或加減法解二元一次方程組;。
    5.能借助二元一次方程組解決一些實際問題,使用代數(shù)方法去反應(yīng)現(xiàn)實生活中的等量關(guān)系,體會代數(shù)方法的優(yōu)越性.
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇八
    (1)給出一個實際問題請同學(xué)們來分析題目,設(shè)出未知數(shù),尋找相等關(guān)系,列出方程,當(dāng)然前提是設(shè)兩個未知數(shù),得到一個二元一次方程組,然后給出概念,提醒學(xué)生要注意概念中是含有兩個未知數(shù)的兩個一次方程所組成的,接下來就給出幾個判斷鞏固定義。
    (3)做書本上的習(xí)題。這次備這節(jié)課時,我就想到以前上這課很沒有意思,學(xué)生覺得內(nèi)容很簡單很枯燥,根據(jù)簡單的實際問題來列方程組對他們而言也不是難事。在備課時我就從學(xué)生的角度去看教材,既然內(nèi)容簡單那就讓學(xué)生自學(xué)為主。所以我今天上課的流程變成先出事兩個問題情境(列二元一次方程組解決),然后直接給出本堂課的內(nèi)容:二元一次方程、二元一次方程的解、二元一次方程組以及二元一次方程組的解的概念,請同學(xué)們根據(jù)名稱思考,并舉例說明。給他們幾分鐘時間思考以后,就請學(xué)生來當(dāng)小老師,上黑板來講,也有同學(xué)覺得小老師講的不夠清楚,又上來重講的,一共請了3名同學(xué),有同學(xué)提出的問題很簡單,也有同學(xué)提出了一個引起大家爭議的問題,就是x=3,x+y=4這樣的方程組是不是二元一次方程組,在大家爭論以后我給出了正確答案以及這個概念中的注意點。最后在請學(xué)生來總結(jié)今天所學(xué)到的主要內(nèi)容和注意點。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇九
    “解二元一次方程組”是“二元一次方程組”一章中很重要的知識,占有重要的地位、通過本節(jié)課的教學(xué),使學(xué)生會用代入消元法和加減消元法解二元一次方程組;了解“消元”思想。
    教學(xué)后發(fā)現(xiàn),大部分學(xué)生能掌握二元一次議程組的解法,教學(xué)一開始給出了一個二元一次方程組。提問:含有兩個未知數(shù)的方程我們沒有學(xué)習(xí)過怎樣解,那么我們學(xué)過解什么類型的方程?答:一元一次方程。
    提問:那可怎么辦呢?這時,學(xué)生通過交流,教師只要略加指導(dǎo),方法自然得出,這其中也體現(xiàn)了化歸思想,教學(xué)的最后給出了一個三元一次方程組,同樣也沒有學(xué)過它的解法,那學(xué)過什么類型的方程組,這時又怎么辦呢?與教學(xué)開始時方法一樣,但這時不需點拔、指導(dǎo),學(xué)生按“消元”“化歸”的思想,化“三元”為“二元”,化“二元”為“一元”,這對學(xué)生今后獨立解決總是無疑是種好的方法。
    有個別同學(xué)在選擇方法上:是用代入法還是加減法,很猶豫,解答起來速度較慢,只要多加練習(xí),一定會即快又準(zhǔn)。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十
    本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.
    學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.
    1.教學(xué)目標(biāo)
    知識與技能目標(biāo)
    (1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
    (2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
    (3) 掌握二元一次方程組的圖像解法.
    過程與方法目標(biāo)
    (2) 通過做一做引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
    (3) 情感與態(tài)度目標(biāo)
    (1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
    (2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
    2.教學(xué)重點
    (1)二元一次方程和一次函數(shù)的關(guān)系;
    (2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
    3.教學(xué)難點
    數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
    1.教法學(xué)法
    啟發(fā)引導(dǎo)與自主探索相結(jié)合.
    2.課前準(zhǔn)備
    教具:多媒體課件、三角板.
    學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
    本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.
    第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)
    內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
    2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
    3.在一次函數(shù)y= 的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
    4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?
    由此得到本節(jié)課的第一個知識點:
    二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
    (1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
    (2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
    意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.
    效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.
    前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進入下一環(huán)節(jié).
    第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系
    內(nèi)容:1.解方程組
    2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的`圖像.
    (1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
    (2) 求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.
    (3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
    注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
    意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標(biāo)打下基礎(chǔ).
    效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.
    第三環(huán)節(jié) 典型例題
    探究方程與函數(shù)的相互轉(zhuǎn)化
    內(nèi)容:例1 用作圖像的方法解方程組
    例2 如圖,直線 與 的交點坐標(biāo)是 .
    意圖:設(shè)計例1進一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊.
    效果:進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
    第四環(huán)節(jié) 反饋練習(xí)
    內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點為 ,則 .
    2.已知一次函數(shù) 與 的圖像都經(jīng)過點a(2,0),且與 軸分別交于b,c兩點,則 的面積為( ).
    (a)4 (b)5 (c)6 (d)7
    3.求兩條直線 與 和 軸所圍成的三角形面積.
    4.如圖,兩條直線 與 的交點坐標(biāo)可以看作哪個方程組的解?
    意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.
    效果:加深了兩條直線交點的坐標(biāo)就是對應(yīng)的函數(shù)表達式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
    第五環(huán)節(jié) 課堂小結(jié)
    內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
    1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
    (1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
    (2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
    2.方程組和對應(yīng)的兩條直線的關(guān)系:
    (1) 方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
    (2) 兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
    3.解二元一次方程組的方法有3種:
    (1)代入消元法;
    (2)加減消元法;
    (3)圖像法. 要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
    意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進一步明確學(xué)什么,學(xué)了有什么用.
    第六環(huán)節(jié) 作業(yè)布置
    習(xí)題7.7
    附: 板書設(shè)計
    本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十一
    本節(jié)教學(xué)內(nèi)容是《二元一次方程與一次函數(shù)》,這節(jié)課以“回顧,提問”為先導(dǎo),以“操作,思考”為手段,以“數(shù),形結(jié)合”為要求,以“引導(dǎo),探究”為主線,處處呈現(xiàn)出師生互動,生生互動的景象,較好地體現(xiàn)了新的課程理念與要求,充分讓學(xué)生自主探究,合作交流,時刻注重學(xué)生學(xué)習(xí)過程的體驗與評價。新的課程標(biāo)準(zhǔn)提出:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的生活經(jīng)驗基礎(chǔ)之上,教師應(yīng)幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、教學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。由此,我設(shè)計了本節(jié)課的教學(xué)設(shè)計,基于上完課后的感想,我對本節(jié)課有如下的反思:
    1、從舊識引入,自然過渡。
    這節(jié)課由復(fù)習(xí)一次函數(shù)解析式和二元一次方程的形式引入,再提出x+y=5是一次函數(shù)還是二元一次方程這一問題,進而引出本節(jié)課的第一個內(nèi)容,激發(fā)了學(xué)生的興趣,使他們更快的融入課堂。
    2、在操作中,提出問題,深化認(rèn)識。
    對于此階段學(xué)生來說,他們樂于探索,富于幻想,但他們的數(shù)學(xué)推理能力以及對知識的主動遷移能力較弱,為幫助學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進學(xué)生主動發(fā)現(xiàn)問題,本節(jié)課我讓學(xué)生親自動手操作畫出一次函數(shù)的圖像,并解出二元一次方程的解,在畫圖過程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上”,接著引導(dǎo)學(xué)生反思:“一次函數(shù)圖像的點坐標(biāo)都適合相應(yīng)的二元一次方程嗎?”通過舉例、驗證,得出結(jié)論。同樣,在探索二元一次方程組與一次函數(shù)關(guān)系時,也是在操作中發(fā)現(xiàn)問題,這樣就給了學(xué)生充分體驗、自主探索知識的機會,使他們在自主探索、合作交流中找到了快樂,深化了認(rèn)識。
    3、以能力培養(yǎng)為核心,引導(dǎo)探索為主線,數(shù)形結(jié)合為要求。
    能力的培養(yǎng)是以自主探究為平臺,我通過讓學(xué)生小組交流合作并討論來解答幾個問題,進而得出結(jié)論,培養(yǎng)了他們的發(fā)現(xiàn)、分析、解決問題、歸納總結(jié)的能力。再由二元一次方程與一次函數(shù)的關(guān)系進一步擴展到二元一次方程組與一次函數(shù)的關(guān)系,層層遞進,學(xué)生基本掌握了本節(jié)課的重點、難點問題。通過總結(jié)二元一次方程組的解法:加減、消元、圖像法,通過分析他們的優(yōu)缺點可知圖像法得出的解是近似的這一結(jié)論,讓學(xué)生又體會到了數(shù)學(xué)的嚴(yán)謹(jǐn)性。在教學(xué)過程中,我充分滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會了數(shù)學(xué)的美。
    1、學(xué)生自己畫圖時不好確定交點坐標(biāo),在做這樣的題時,就一定會存在如何確定交點的精確度問題,從而使學(xué)生會認(rèn)為應(yīng)用圖像法來解二元一次方程組的方法無用處,進而不重視本節(jié)課的內(nèi)容。
    2、教學(xué)過程中,在探索二元一次方程與一次函數(shù)關(guān)系時,提出的問題與ppt課件中展示的問題部分重復(fù)了,浪費了一些時間,板書設(shè)計不夠簡潔。
    1、對于交點坐標(biāo)問題,應(yīng)該跟同學(xué)們講解清楚,我們要求的是掌握這個解二元一次方程組的圖像解法,我們借助科學(xué)技術(shù)很容易畫出一次函數(shù)的圖像,也就容易找到交點的精確坐標(biāo)。此外,一般來說如果考試當(dāng)中是會給出交點的坐標(biāo)。
    2、重新整理資料,將一些重復(fù)問題刪去,提取結(jié)論中一些重點語句,關(guān)鍵詞,板書做到精煉。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十二
    2.能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
    1.做圖像時要標(biāo)準(zhǔn)、精確,近似值才接近。
    先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。
    自主學(xué)習(xí)部分:
    問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
    (3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標(biāo)適合方程x+y=5嗎?
    (5)由以上的探究過程,你發(fā)現(xiàn)了什么?
    (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標(biāo)。
    合作探究:
    (1)用做圖像的方法解方程組。
    (2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十三
    學(xué)習(xí)目標(biāo):
    2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
    學(xué)習(xí)重點:
    學(xué)習(xí)難點:
    1、做圖像時要標(biāo)準(zhǔn)、精確,近似值才接近。
    學(xué)習(xí)方法:
    先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。
    自主學(xué)習(xí)部分:
    問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
    (3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標(biāo)適合方程x+y=5嗎?
    (5)由以上的探究過程,你發(fā)現(xiàn)了什么?
    (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標(biāo)。
    合作探究:
    (1)用做圖像的方法解方程組。
    (2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十四
    知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。
    情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
    教學(xué)重難點。
    難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
    教學(xué)過程。
    (一)引入新課。
    學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
    (二)進行新課。
    (3)是否直線上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程的解?
    此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。
    進一步歸納出:從數(shù)的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
    3、列一元二次不等式。
    解法1:設(shè)上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標(biāo),結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當(dāng)上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當(dāng)上網(wǎng)時間多于400分時,選擇方式b省錢。
    解法2:設(shè)上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標(biāo),類似地用點位置的高低直觀地找到答案。
    注意:所畫的函數(shù)圖象都是射線。
    4、習(xí)題。
    (1)、以方程的解為坐標(biāo)的所有點都在一次函數(shù)_____的圖象上。
    (2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標(biāo)是________。
    5、旅游問題。
    古城荊州歷史悠久,文化燦爛。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十五
    這節(jié)課,是一節(jié)平時課堂,學(xué)生進入錄播教室有些拘謹(jǐn),回答問題不積極,并且因為學(xué)生的基礎(chǔ)問題,所以課堂有些不夠活躍,思路不夠開闊。盡管每節(jié)課認(rèn)真準(zhǔn)備充分,但是感覺這節(jié)課還是存在問題。
    總體而言,在教學(xué)設(shè)計上我認(rèn)為存在兩點不足,第一是在導(dǎo)入新課時,沒有很好的激發(fā)學(xué)生學(xué)習(xí)的積極性,學(xué)生學(xué)起來很平淡,第二就是在介紹數(shù)形結(jié)合思想時,是一筆帶過,而數(shù)形結(jié)合對于以后的解題和數(shù)學(xué)學(xué)習(xí)都是比較重要的思想方法,所以應(yīng)該多花點時間在這個上面。
    在教學(xué)過程中,特別是學(xué)生解二元一次方程組,本來說很簡單的,但很多學(xué)生計算都出現(xiàn)了問題,所以在后面的教學(xué)中,要加強學(xué)生的計算能力。但是對于數(shù)學(xué)課堂用好課件,非常好,能提高課堂容量,學(xué)生基本能求出,會找兩個點;對于利用表格信息確定函數(shù)解析式,學(xué)生不知道是求函數(shù)的解析式;利用點的坐標(biāo)求函數(shù)解析式,可以借助圖形加以理解,所以基本達到教學(xué)目標(biāo)。但是整體有待于優(yōu)化課堂設(shè)計。
    將本文的word文檔下載到電腦,方便收藏和打印。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十六
    教材通過引例對圖像方法與代數(shù)方法的比較,使學(xué)生了解解決應(yīng)用問題的策略和方法是多樣性的,同時也使學(xué)生理解圖像方法與代數(shù)方法在解決具體問題中各自的優(yōu)劣,從而對方法作出正確的選擇.對于教材的這一方面的使用,教師應(yīng)根據(jù)自己學(xué)生的特點,選擇合理的方式去讓學(xué)生理解不同方法去解決同一問題。
    本節(jié)課主要要求學(xué)生能夠利用二元一次方程組解決一次函數(shù)的解析式問題,根據(jù)一次函數(shù)解析式進一步解決相關(guān)的一些問題。要讓學(xué)生理解為什么要用二元一次方程組去求解一次函數(shù)的解析式的必要性,從而掌握本堂課的基礎(chǔ)知識。在教學(xué)的過程中,要讓學(xué)生充分理解圖像方法和代數(shù)方法解決問題的特點,在這個基礎(chǔ)上,學(xué)生掌握用二元一次方程組解決一次函數(shù)的解析式問題才會有著堅實的理論基礎(chǔ),有關(guān)這一方面的題目要讓學(xué)生充分討論,其理解才會深刻;同時要以這一部分的知識為載體,結(jié)合教材例題,在補充分段圖形題,甚至表格題,讓學(xué)生充分理解用方程的思想去解決函數(shù)問題。
    一次函數(shù)與二元一次方程課教學(xué)設(shè)計篇十七
    3、學(xué)會開放性地尋求設(shè)計方案,培養(yǎng)分析。
    教學(xué)難點用方程組刻畫和解決實際問題的過程。
    知識重點經(jīng)歷和體驗用方程組解決實際問題的過程。
    教學(xué)過程(師生活動)設(shè)計理念。
    (出示問題)據(jù)以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實際問題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識。
    探索分析。
    研究策略以上問題有哪些解法?
    學(xué)生自主探索,合作交流,整理思路:
    (2)先求兩個小長方形的面積比,再計算分割線的位置.。
    (3)設(shè)未知數(shù),列方程組求解.。
    ……。
    學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。
    合作交流。
    解決問題引導(dǎo)學(xué)生回顧列方程解決實際問題的基本思路。
    (1)設(shè)未知數(shù)。
    (2)找相等關(guān)系。
    (3)列方程組。
    (4)檢驗并作答。
    解這個方程組得。
    過長方形土地的長邊上離一端約106m處,把這塊地分。
    為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。
    你還能設(shè)計別的種植方案嗎?
    用類似的方法,可沿平行于線段ab的方向分割長。
    方形.。
    教師巡視、指導(dǎo),師生共同講評.。
    比較分析,加深對方程組的認(rèn)識。
    畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。
    進一步滲透模型化的思想。
    引發(fā)學(xué)生思考,尋求解決途徑。
    拓展探究。
    按以下步驟展開問題的討論:
    (l)學(xué)生獨立思考,構(gòu)建數(shù)學(xué)模型.。
    (2)小組討論達成共識.。
    (3)學(xué)生板書講解.。
    (4)對方程組的解進行探究和討論,從而得到實際問題的結(jié)果.。
    (5)針對以上結(jié)論,你能再提出幾個探索性問題嗎?以學(xué)生學(xué)習(xí)生活中遇到的。
    問題展開討論,鞏固用二元一次。
    小結(jié)與作業(yè)。
    小結(jié)提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的`認(rèn)識?
    學(xué)生思考后回答、整理.。
    布置作業(yè)12、必做題:教科書116頁習(xí)題8.3第1(2)、4題。
    13、選做題:教科書117頁習(xí)題8.3第7題。
    14、備15、選題:
    (3)解方程組。
    小彬看見了,說:“我來試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!
    你能幫他們解開其中的奧秘嗎?
    提示學(xué)生先動手實踐,再分析討論.。
    分層次布1作業(yè).其中“必。
    做題”面向全體學(xué)生,鞏固知識、
    方法,加深理解廠選做題”面向。
    部分學(xué)有余力的學(xué)生,給他們一。
    定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。
    本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
    本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點:
    2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問題中的未知數(shù)不。
    易設(shè)定,這為學(xué)生開展探究活動提供了機會.。