教案的編寫需要根據(jù)學科的特點和課程目標進行細化和具體化。編寫教案時可以參考相關的教學經(jīng)驗和教學資源,不斷豐富自己的教學思路和方法。以下是小編為大家整理的一些優(yōu)秀教案范例,供大家參考。希望這些教案可以給廣大教師提供一些啟發(fā)和借鑒,幫助大家更好地編寫教案,提高教學質(zhì)量。只有在精心準備教案的基礎上,我們才能更好地指導學生,達到優(yōu)質(zhì)教學的效果。教案的編寫雖然需要花費一些時間和精力,但它將為我們的教學工作帶來巨大的價值和意義。所以,讓我們一起努力,編寫出更好的教案,為學生的學習發(fā)展貢獻自己的力量吧!
數(shù)學教案-多邊形的內(nèi)角和篇一
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
練習:
1.課本124頁3題.
小結:
知識:四邊形的有關概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè): 課本130頁 2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇二
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法。
五、教具、學具。
教具:多媒體課件。
學具:三角板、量角器。
六、教學媒體:大屏幕、實物投影。
七、教學過程:
(一)創(chuàng)設情境,設疑激思。
師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180?的和是540?。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結果得540?。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結果得540?。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結果得540?。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
(二)引申思考,培養(yǎng)創(chuàng)新。
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
(三)實際應用,優(yōu)勢互補。
(2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學生自己歸納總結:
2、運用轉(zhuǎn)化思想解決數(shù)學問題。
3、用數(shù)形結合的思想解決問題。
(五)作業(yè):練習冊第93頁1、2、3。
八、教學反思:
1、教的轉(zhuǎn)變。
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉(zhuǎn)變。
學生的角色從學會轉(zhuǎn)變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變。
整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
數(shù)學教案-多邊形的內(nèi)角和篇三
過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
講解法、練習法、分小組討論法。
結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
生成新知、深化新知、鞏固新知、小結作業(yè)。
1.導入新知。
首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎。
2.生成新知。
接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此。
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證。
在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3.深化新知。
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求。
內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
4.鞏固提高。
我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5.小結作業(yè)。
先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
數(shù)學教案-多邊形的內(nèi)角和篇四
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇五
過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
教學重點:多邊形的內(nèi)角和公式
教學難點:多邊形內(nèi)角和公式
講解法、練習法、分小組討論法
結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
生成新知、深化新知、鞏固新知、小結作業(yè)。
1. 導入新知
首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎。
2. 生成新知
接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證
在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3. 深化新知
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
4. 鞏固提高
我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5. 小結作業(yè)
先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
數(shù)學教案-多邊形的內(nèi)角和篇六
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
2,勇于放手,培養(yǎng)學生自學的能力。
在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
3,細節(jié)入手,培養(yǎng)學生良好習慣。
小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
數(shù)學教案-多邊形的內(nèi)角和篇七
知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
重點:多邊形內(nèi)角和定理的探索和應用。
教學難點:邊形定義的理解;多邊形內(nèi)角和公式的推導;轉(zhuǎn)化的數(shù)學思維方法的滲透.。
教學過程。
第一環(huán)節(jié)創(chuàng)設現(xiàn)實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
1.多媒體展示蜂窩,教師結合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環(huán)節(jié)概念形成(5分鐘,學生理解定義)。
第三環(huán)節(jié)實驗探究(12分鐘,學生動手操作,探究內(nèi)角和)。
(以四人小組為單位展開探究活動)。
活動一:利用四邊形探索四邊形內(nèi)角和。
要求:先獨立思考再小組合作交流完成.)。
(師巡視,了解學生探索進程并適當點撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進而引導學生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內(nèi)角和。
(要求:獨立思考,自主完成.)。
第四環(huán)節(jié)思維升華(5分鐘,教師引導學生進行推算)。
教學過程:
探索n邊形內(nèi)角和,并試著說明理由。
(結合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
n邊形的內(nèi)角和=(n—2)180°。
正n邊形的一個內(nèi)角==。
第五環(huán)節(jié)能力拓展(12分鐘,學生搶答)。
搶答題:
1.正八邊形的內(nèi)角和為_______.
3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
應用發(fā)散:
第六環(huán)節(jié)時小結:(3分鐘,學生填表)。
第七環(huán)節(jié)布置作業(yè):習題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學反思:
數(shù)學教案-多邊形的內(nèi)角和篇八
上完這節(jié)課后,自我感覺良好,學生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
首先我先復習相關知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學思想方法。在此教學中,只須真正實施民主的開放式教學,創(chuàng)設平等、民主、寬松的教學氛圍,使師生完全處于平等的地位,學生才能敞開思想,積極參與教學活動,才能最大限度地調(diào)動學生的積極性,激發(fā)他們的學習興趣,引導他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標落到實處,讓學生在自主參與學習,解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
六、案例點評。
陳老師在本節(jié)課的教學設計上,內(nèi)容豐富,過程非常具體,設計也較合理。整節(jié)課以推導多邊形的內(nèi)角和為線索,讓學生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學生的主體地位,體現(xiàn)了新的教學理念,也符合初中生的心理特點和年齡特征,因此在教學設計上是比較好的。
但是隨堂練習太少而不精,并且沒有梯度,能否可以設計一些具有一定難度的練習,使不同的學生得到不同層次的發(fā)展,為學有余力的學生提供更大的學習和發(fā)展空間。另外,關于多邊形的內(nèi)角和的推導不必要一一講解,只要引導學生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學生課后思考。
數(shù)學教案-多邊形的內(nèi)角和篇九
教學目標。
知識與技能。
掌握多邊形內(nèi)角和公式及外角和定理,并能應用.
過程與方法。
2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神.
情感態(tài)度價值觀。
通過猜想、推理等數(shù)學活動,感受數(shù)學充滿著探索以及數(shù)學結論的確定性,提高學生學習數(shù)學的熱情.
重點。
數(shù)學教案-多邊形的內(nèi)角和篇十
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
2,勇于放手,培養(yǎng)學生自學的能力。
在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
3,細節(jié)入手,培養(yǎng)學生良好習慣。
小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
數(shù)學教案-多邊形的內(nèi)角和篇十一
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內(nèi)角和定理;。
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
知識:四邊形的有關概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇十二
我在學校出了一節(jié)公開課,下面是我的教學反思。
教學回顧:
一:引入新課。提問三角形內(nèi)角和,正方形和長方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內(nèi)角和。
二:完成學案第一部分,用數(shù)學歸納法完成填空,總結得出多邊形內(nèi)角和公式。
三:練習。
四:課堂小結。
五:作業(yè)。
反思:
這節(jié)課本節(jié)的教學活動充分發(fā)揮學生的主體作用,激發(fā)了學生的學習興趣,使課堂充滿生機。在進行四邊形內(nèi)角和定理的教學時,設計完成三個步驟:
(1)通過動手操作,讓學生自己通過實驗的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
(2)讓學生把發(fā)現(xiàn)概括成命題;
(3)通過學生討論命題證明的不同方法。
整節(jié)課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的.內(nèi)容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對四邊形內(nèi)角和的證明方法做以補充(習題課時才加以補充)。
數(shù)學教案-多邊形的內(nèi)角和篇十三
1、回憶所學的平面圖形的面積推導過程,弄清圖形面積之間的內(nèi)在聯(lián)系,鞏固學生對面積計算公式的理解和記憶。
2、通過整理知識網(wǎng)絡圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
3、讓學生通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
4、體會數(shù)學與生活的聯(lián)系,培養(yǎng)學生學習數(shù)學的興趣,以及良好的學習習慣和學習態(tài)度。
通過整理知識網(wǎng)絡圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
根據(jù)本課的教學內(nèi)容,本課采用先整理后練習的復習模式。
本課的指導思想是發(fā)揮學生的主題作用,引導學生自主學習,使不同學生在數(shù)學課上得到不同的發(fā)展?!墩n標》指出:動手實踐、自主探索與合作交流是學生學習數(shù)學的.重要方式;學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。本課在回憶整理應用的教學環(huán)節(jié)中,通過教師引導和點撥,提高學生的歸納整理知識的能力,并充分調(diào)動了學生的學習積極性,從而提高了學生運用所學的知識解決問題的能力。
(一)整理和復習。
1、回憶。
課的開始,我讓學生回憶學過的平面圖形的面積,想到哪個說哪個,給了學生選擇的余地,提高學生回答問題的興趣。然后讓學生回憶推動過程時,采取了先讓同桌交流的方法,這是因為我分析學生可能會想到不同圖形的面積推導公式,為了照顧不同層次的學生,讓學生能人人動口,提高學生的語言表達能力。
2、整理。
在整理的過程中,學生邊說,我一邊用課件演示,空間想象能力強的學生可以閉上眼睛在頭腦中演示這個過程,空間想象能力弱的學生,可以借助多媒體來回憶,以便幫助他們更好的理解記憶面積公式。
(二)構建知識網(wǎng)絡圖。
構建知識網(wǎng)絡圖是課前我比較擔心的,我不知道學生會把知識網(wǎng)絡圖構建成什么樣子。雖然課上在我的引領下這樣比較好控制,但是為了照顧不同層次的學生,我把這項工作放在了課前,先讓學生在家里整理好,這要就避免了學生之間相互模仿,無法體現(xiàn)個性;再通過課上的回憶讓學生自己修改,使學生逐步學會整理歸納的方法;最后同學之間交流,完善知識網(wǎng)絡圖。在這個環(huán)節(jié),面對學生構建的知識網(wǎng)絡圖,只要有道理我就會給予肯定,這樣才能使學生敢于發(fā)表自己的意見,體現(xiàn)個體差異,增強自信心。
(三)解決問題。
在解決問題的過程中,我用了羊村村長領著大家去羊村參觀這一情境,充分調(diào)動了不同層次學生的學習積極性。
要想去羊村參觀就得闖關成功,這三關分別針對不同方面:第一關針對的是我們班的學困生,這些題讓他們回答,可以使他們獲得成功的體驗,幫助他們樹立自信心,提高學習數(shù)學的興趣;第二關考驗學生是否能靈活運用面積公式,針對的是中等學生;第三關是對學生在面積計算中經(jīng)常出現(xiàn)錯誤的地方進行針對性練習,面向全體學生,以提高做題正確率。
闖關成功后,計算玻璃的面積,是解決實際生活中的問題,讓學生體會到數(shù)學與生活的聯(lián)系。這塊玻璃是一個組合圖形,既可以用分割法計算,又可以用添補法計算,學生自己動手分一分、畫一畫,用自己的方法計算,充分體現(xiàn)了學生的個體差異。為了幫助學生理解,我制作了課件進行演示,直觀形象,針對學困生降低了難度。
(四)課堂作業(yè)。
課堂作業(yè)的設計也充分考慮到了不同層次的學生,第1題和第題較為簡單,學優(yōu)生做完后,給出了一道思考題,這道題為學有余力的學生準備。
(五)小結。
今天我們復習了多邊形的面積,并利用圖形之間的內(nèi)在聯(lián)系制作了知識網(wǎng)絡圖,還運用所學幫助羊村解決了實際問題,在這里懶羊羊代表羊村謝謝大家,帶給大家一首好聽的歌,請大家伴隨著歌聲下課。
數(shù)學教案-多邊形的內(nèi)角和篇十四
教學目標?。
知識技能。
通過探究,歸納出???。
數(shù)學思考。
1、?通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、?通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時。
時讓學生體會從特殊到一般的認識問題的方法。
3、?通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到。
論證幾何。
解決問題。
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度。
通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
重點。
難點。
在探索時,如何把多邊形轉(zhuǎn)化成三角形。
知識聯(lián)系。
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
知識背景。
對多邊形在生活中有所認識。
學習興趣。
通過探究過程更能激發(fā)學生學習的興趣。
教學工具。
三角板和幾何畫板。
教學流程設計。
活動流程圖。
活動內(nèi)容和目的。
活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和。
活動四、探索任意公式。
活動六、小結和布置作業(yè)?。
通過分組測量,得出這幾個。
通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學生的推理能力。
通過畫正八邊形體會和應用。
梳理所學知識,達到鞏固發(fā)展和提高的目的。
教學過程?設計。
問題與情景。
師生行為。
設計意圖。
設計情景:什么是正多邊形?
正八邊形有什么特點?
你會畫邊長為3cm的正八邊形嗎?
學生思考并回答問題。
學生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。
活動1、
在練習本畫出任意四邊形,五邊星,六邊形,七邊形。
通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想。
活動2(重點)(難點)。
學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結論的能力,同時也培養(yǎng)學生比較和歸納的能力。
通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。
活動4、探索任意。
把活動2和3中的結論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結性的結論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
活動5、畫一個邊長為3cm的八邊形。
讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
活動6、小結和布置作業(yè)?。
師生共同回顧本節(jié)所學過的內(nèi)容。
數(shù)學教案-多邊形的內(nèi)角和篇十五
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標?:
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點?:
教學過程?:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)?。
練習:
1.課本124頁3題.
小結:
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè)?:課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇十六
各位領導,各位老師:
大家下午好,很高興有機會參加這次教學研究活動。
我的教學設計是華師大版七年級數(shù)學(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標準,我從以下七個方面說一下本節(jié)課的教學設想:
從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
學生上節(jié)課剛剛學完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
新的課程標準注重學生所學內(nèi)容與現(xiàn)實生活的聯(lián)系,注重學生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標和本節(jié)課的內(nèi)容特點我確定以下教學目標及重點,難點。
【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
【教學難點】轉(zhuǎn)化的數(shù)學思維方法。
本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內(nèi)容。
【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
整個教學過程分五步完成。
1,創(chuàng)設情景,引入新課。
首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
2,合作交流,探索新知。
更進一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學生分組討論。
3,歸納總結,建構體系。
多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
4,實際應用,提高能力。
"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學知識在現(xiàn)實生活中的應用,又是本章第一節(jié)的延伸,同時也為下節(jié)打下了一個鋪墊。
5,分組競賽,升華情感。
四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
板書本節(jié)課學生所需掌握的知識目標:即多邊形內(nèi)角和與外角和定理。
本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質(zhì)疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
數(shù)學教案-多邊形的內(nèi)角和篇十七
學生已經(jīng)學過三角形的內(nèi)角和定理的知識基礎,并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數(shù)形結合的思想,加強對數(shù)學知識的應用,發(fā)展學生合情合理的推理能力和語言表達能力。
1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學生的合作交流的意識。
3.情感態(tài)度與價值觀:感受數(shù)學化歸的思想和實際應用的價值,同時培養(yǎng)學生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學習態(tài)度。
1、請看:我身后的建筑物是什么?——水立方。我看到水立方時發(fā)現(xiàn)它的膜結構的結合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學習教材第34頁“動腦筋”
【教學說明】“解放學生的手,解放學生的大腦”,鼓勵學生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
預設回答:能,可以引對角線,將多邊形分成幾個三角形。
讓學生合作交流討論,展示探究成果。教材第35頁“探究”
n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
【教學說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學生從特殊到一般歸納總結出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學推理過程和數(shù)學思考方法.
例:教材第36頁例1。
【教學說明】讓學生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()。
a.十三邊形b.十二邊形。
c.十一邊形d.十邊形。
2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
【教學說明】由學生自主完成,教師及時了解學生的學習效果,讓學生經(jīng)歷運用知識解決問題的過程.對需要幫助的學生及時點撥并加以強化.在完成上述題目后,讓學生完成練習冊中本課時的對應訓練部分.
1、這節(jié)課你有什么新的收獲?
教材第36頁練習1、2題。
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。
數(shù)學教案-多邊形的內(nèi)角和篇十八
1、通過測量、類比、推理等數(shù)學活動,探索多邊形的內(nèi)角和的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時。
時讓學生體會從特殊到一般的認識問題的方法。
3、通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到。
論證幾何。
解決問題。
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度。
通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
重點。
難點。
知識聯(lián)系。
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
知識背景。
對多邊形在生活中有所認識。
學習興趣。
通過探究過程更能激發(fā)學生學習的興趣。
教學工具。
三角板和幾何畫板。
教學流程設計。
活動流程圖。
活動內(nèi)容和目的。
活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和。
數(shù)學教案-多邊形的內(nèi)角和篇十九
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學目標。
2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
三、教學重、難點。
數(shù)學教案-多邊形的內(nèi)角和篇一
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內(nèi)角和定理;
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
四邊形的內(nèi)角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
練習:
1.課本124頁3題.
小結:
知識:四邊形的有關概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè): 課本130頁 2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇二
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法。
五、教具、學具。
教具:多媒體課件。
學具:三角板、量角器。
六、教學媒體:大屏幕、實物投影。
七、教學過程:
(一)創(chuàng)設情境,設疑激思。
師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180?的和是540?。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結果得540?。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結果得540?。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結果得540?。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
(二)引申思考,培養(yǎng)創(chuàng)新。
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
(三)實際應用,優(yōu)勢互補。
(2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學生自己歸納總結:
2、運用轉(zhuǎn)化思想解決數(shù)學問題。
3、用數(shù)形結合的思想解決問題。
(五)作業(yè):練習冊第93頁1、2、3。
八、教學反思:
1、教的轉(zhuǎn)變。
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉(zhuǎn)變。
學生的角色從學會轉(zhuǎn)變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變。
整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
數(shù)學教案-多邊形的內(nèi)角和篇三
過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
講解法、練習法、分小組討論法。
結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
生成新知、深化新知、鞏固新知、小結作業(yè)。
1.導入新知。
首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎。
2.生成新知。
接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此。
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證。
在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3.深化新知。
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求。
內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
4.鞏固提高。
我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5.小結作業(yè)。
先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
數(shù)學教案-多邊形的內(nèi)角和篇四
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇五
過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
教學重點:多邊形的內(nèi)角和公式
教學難點:多邊形內(nèi)角和公式
講解法、練習法、分小組討論法
結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
生成新知、深化新知、鞏固新知、小結作業(yè)。
1. 導入新知
首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎。
2. 生成新知
接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證
在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3. 深化新知
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
4. 鞏固提高
我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5. 小結作業(yè)
先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
數(shù)學教案-多邊形的內(nèi)角和篇六
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
2,勇于放手,培養(yǎng)學生自學的能力。
在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
3,細節(jié)入手,培養(yǎng)學生良好習慣。
小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
數(shù)學教案-多邊形的內(nèi)角和篇七
知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
重點:多邊形內(nèi)角和定理的探索和應用。
教學難點:邊形定義的理解;多邊形內(nèi)角和公式的推導;轉(zhuǎn)化的數(shù)學思維方法的滲透.。
教學過程。
第一環(huán)節(jié)創(chuàng)設現(xiàn)實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
1.多媒體展示蜂窩,教師結合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環(huán)節(jié)概念形成(5分鐘,學生理解定義)。
第三環(huán)節(jié)實驗探究(12分鐘,學生動手操作,探究內(nèi)角和)。
(以四人小組為單位展開探究活動)。
活動一:利用四邊形探索四邊形內(nèi)角和。
要求:先獨立思考再小組合作交流完成.)。
(師巡視,了解學生探索進程并適當點撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進而引導學生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內(nèi)角和。
(要求:獨立思考,自主完成.)。
第四環(huán)節(jié)思維升華(5分鐘,教師引導學生進行推算)。
教學過程:
探索n邊形內(nèi)角和,并試著說明理由。
(結合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
n邊形的內(nèi)角和=(n—2)180°。
正n邊形的一個內(nèi)角==。
第五環(huán)節(jié)能力拓展(12分鐘,學生搶答)。
搶答題:
1.正八邊形的內(nèi)角和為_______.
3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
應用發(fā)散:
第六環(huán)節(jié)時小結:(3分鐘,學生填表)。
第七環(huán)節(jié)布置作業(yè):習題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學反思:
數(shù)學教案-多邊形的內(nèi)角和篇八
上完這節(jié)課后,自我感覺良好,學生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
首先我先復習相關知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學思想方法。在此教學中,只須真正實施民主的開放式教學,創(chuàng)設平等、民主、寬松的教學氛圍,使師生完全處于平等的地位,學生才能敞開思想,積極參與教學活動,才能最大限度地調(diào)動學生的積極性,激發(fā)他們的學習興趣,引導他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標落到實處,讓學生在自主參與學習,解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
六、案例點評。
陳老師在本節(jié)課的教學設計上,內(nèi)容豐富,過程非常具體,設計也較合理。整節(jié)課以推導多邊形的內(nèi)角和為線索,讓學生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學生的主體地位,體現(xiàn)了新的教學理念,也符合初中生的心理特點和年齡特征,因此在教學設計上是比較好的。
但是隨堂練習太少而不精,并且沒有梯度,能否可以設計一些具有一定難度的練習,使不同的學生得到不同層次的發(fā)展,為學有余力的學生提供更大的學習和發(fā)展空間。另外,關于多邊形的內(nèi)角和的推導不必要一一講解,只要引導學生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學生課后思考。
數(shù)學教案-多邊形的內(nèi)角和篇九
教學目標。
知識與技能。
掌握多邊形內(nèi)角和公式及外角和定理,并能應用.
過程與方法。
2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神.
情感態(tài)度價值觀。
通過猜想、推理等數(shù)學活動,感受數(shù)學充滿著探索以及數(shù)學結論的確定性,提高學生學習數(shù)學的熱情.
重點。
數(shù)學教案-多邊形的內(nèi)角和篇十
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
2,勇于放手,培養(yǎng)學生自學的能力。
在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
3,細節(jié)入手,培養(yǎng)學生良好習慣。
小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
數(shù)學教案-多邊形的內(nèi)角和篇十一
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內(nèi)角和定理;。
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
知識:四邊形的有關概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇十二
我在學校出了一節(jié)公開課,下面是我的教學反思。
教學回顧:
一:引入新課。提問三角形內(nèi)角和,正方形和長方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內(nèi)角和。
二:完成學案第一部分,用數(shù)學歸納法完成填空,總結得出多邊形內(nèi)角和公式。
三:練習。
四:課堂小結。
五:作業(yè)。
反思:
這節(jié)課本節(jié)的教學活動充分發(fā)揮學生的主體作用,激發(fā)了學生的學習興趣,使課堂充滿生機。在進行四邊形內(nèi)角和定理的教學時,設計完成三個步驟:
(1)通過動手操作,讓學生自己通過實驗的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
(2)讓學生把發(fā)現(xiàn)概括成命題;
(3)通過學生討論命題證明的不同方法。
整節(jié)課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的.內(nèi)容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對四邊形內(nèi)角和的證明方法做以補充(習題課時才加以補充)。
數(shù)學教案-多邊形的內(nèi)角和篇十三
1、回憶所學的平面圖形的面積推導過程,弄清圖形面積之間的內(nèi)在聯(lián)系,鞏固學生對面積計算公式的理解和記憶。
2、通過整理知識網(wǎng)絡圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
3、讓學生通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
4、體會數(shù)學與生活的聯(lián)系,培養(yǎng)學生學習數(shù)學的興趣,以及良好的學習習慣和學習態(tài)度。
通過整理知識網(wǎng)絡圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
根據(jù)本課的教學內(nèi)容,本課采用先整理后練習的復習模式。
本課的指導思想是發(fā)揮學生的主題作用,引導學生自主學習,使不同學生在數(shù)學課上得到不同的發(fā)展?!墩n標》指出:動手實踐、自主探索與合作交流是學生學習數(shù)學的.重要方式;學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。本課在回憶整理應用的教學環(huán)節(jié)中,通過教師引導和點撥,提高學生的歸納整理知識的能力,并充分調(diào)動了學生的學習積極性,從而提高了學生運用所學的知識解決問題的能力。
(一)整理和復習。
1、回憶。
課的開始,我讓學生回憶學過的平面圖形的面積,想到哪個說哪個,給了學生選擇的余地,提高學生回答問題的興趣。然后讓學生回憶推動過程時,采取了先讓同桌交流的方法,這是因為我分析學生可能會想到不同圖形的面積推導公式,為了照顧不同層次的學生,讓學生能人人動口,提高學生的語言表達能力。
2、整理。
在整理的過程中,學生邊說,我一邊用課件演示,空間想象能力強的學生可以閉上眼睛在頭腦中演示這個過程,空間想象能力弱的學生,可以借助多媒體來回憶,以便幫助他們更好的理解記憶面積公式。
(二)構建知識網(wǎng)絡圖。
構建知識網(wǎng)絡圖是課前我比較擔心的,我不知道學生會把知識網(wǎng)絡圖構建成什么樣子。雖然課上在我的引領下這樣比較好控制,但是為了照顧不同層次的學生,我把這項工作放在了課前,先讓學生在家里整理好,這要就避免了學生之間相互模仿,無法體現(xiàn)個性;再通過課上的回憶讓學生自己修改,使學生逐步學會整理歸納的方法;最后同學之間交流,完善知識網(wǎng)絡圖。在這個環(huán)節(jié),面對學生構建的知識網(wǎng)絡圖,只要有道理我就會給予肯定,這樣才能使學生敢于發(fā)表自己的意見,體現(xiàn)個體差異,增強自信心。
(三)解決問題。
在解決問題的過程中,我用了羊村村長領著大家去羊村參觀這一情境,充分調(diào)動了不同層次學生的學習積極性。
要想去羊村參觀就得闖關成功,這三關分別針對不同方面:第一關針對的是我們班的學困生,這些題讓他們回答,可以使他們獲得成功的體驗,幫助他們樹立自信心,提高學習數(shù)學的興趣;第二關考驗學生是否能靈活運用面積公式,針對的是中等學生;第三關是對學生在面積計算中經(jīng)常出現(xiàn)錯誤的地方進行針對性練習,面向全體學生,以提高做題正確率。
闖關成功后,計算玻璃的面積,是解決實際生活中的問題,讓學生體會到數(shù)學與生活的聯(lián)系。這塊玻璃是一個組合圖形,既可以用分割法計算,又可以用添補法計算,學生自己動手分一分、畫一畫,用自己的方法計算,充分體現(xiàn)了學生的個體差異。為了幫助學生理解,我制作了課件進行演示,直觀形象,針對學困生降低了難度。
(四)課堂作業(yè)。
課堂作業(yè)的設計也充分考慮到了不同層次的學生,第1題和第題較為簡單,學優(yōu)生做完后,給出了一道思考題,這道題為學有余力的學生準備。
(五)小結。
今天我們復習了多邊形的面積,并利用圖形之間的內(nèi)在聯(lián)系制作了知識網(wǎng)絡圖,還運用所學幫助羊村解決了實際問題,在這里懶羊羊代表羊村謝謝大家,帶給大家一首好聽的歌,請大家伴隨著歌聲下課。
數(shù)學教案-多邊形的內(nèi)角和篇十四
教學目標?。
知識技能。
通過探究,歸納出???。
數(shù)學思考。
1、?通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、?通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時。
時讓學生體會從特殊到一般的認識問題的方法。
3、?通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到。
論證幾何。
解決問題。
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度。
通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
重點。
難點。
在探索時,如何把多邊形轉(zhuǎn)化成三角形。
知識聯(lián)系。
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
知識背景。
對多邊形在生活中有所認識。
學習興趣。
通過探究過程更能激發(fā)學生學習的興趣。
教學工具。
三角板和幾何畫板。
教學流程設計。
活動流程圖。
活動內(nèi)容和目的。
活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和。
活動四、探索任意公式。
活動六、小結和布置作業(yè)?。
通過分組測量,得出這幾個。
通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學生的推理能力。
通過畫正八邊形體會和應用。
梳理所學知識,達到鞏固發(fā)展和提高的目的。
教學過程?設計。
問題與情景。
師生行為。
設計意圖。
設計情景:什么是正多邊形?
正八邊形有什么特點?
你會畫邊長為3cm的正八邊形嗎?
學生思考并回答問題。
學生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。
活動1、
在練習本畫出任意四邊形,五邊星,六邊形,七邊形。
通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想。
活動2(重點)(難點)。
學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結論的能力,同時也培養(yǎng)學生比較和歸納的能力。
通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。
活動4、探索任意。
把活動2和3中的結論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結性的結論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
活動5、畫一個邊長為3cm的八邊形。
讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
活動6、小結和布置作業(yè)?。
師生共同回顧本節(jié)所學過的內(nèi)容。
數(shù)學教案-多邊形的內(nèi)角和篇十五
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內(nèi)角和定理.因為四邊形的有關概念及內(nèi)角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學目標?:
2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向?qū)W生滲透類比思想.
教學重點:
教學難點?:
教學過程?:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)?。
練習:
1.課本124頁3題.
小結:
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè)?:課本130頁2、3、4題.
數(shù)學教案-多邊形的內(nèi)角和篇十六
各位領導,各位老師:
大家下午好,很高興有機會參加這次教學研究活動。
我的教學設計是華師大版七年級數(shù)學(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標準,我從以下七個方面說一下本節(jié)課的教學設想:
從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
學生上節(jié)課剛剛學完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
新的課程標準注重學生所學內(nèi)容與現(xiàn)實生活的聯(lián)系,注重學生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標和本節(jié)課的內(nèi)容特點我確定以下教學目標及重點,難點。
【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
【教學難點】轉(zhuǎn)化的數(shù)學思維方法。
本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內(nèi)容。
【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
整個教學過程分五步完成。
1,創(chuàng)設情景,引入新課。
首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
2,合作交流,探索新知。
更進一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學生分組討論。
3,歸納總結,建構體系。
多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
4,實際應用,提高能力。
"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學知識在現(xiàn)實生活中的應用,又是本章第一節(jié)的延伸,同時也為下節(jié)打下了一個鋪墊。
5,分組競賽,升華情感。
四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
板書本節(jié)課學生所需掌握的知識目標:即多邊形內(nèi)角和與外角和定理。
本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質(zhì)疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
數(shù)學教案-多邊形的內(nèi)角和篇十七
學生已經(jīng)學過三角形的內(nèi)角和定理的知識基礎,并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數(shù)形結合的思想,加強對數(shù)學知識的應用,發(fā)展學生合情合理的推理能力和語言表達能力。
1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學生的合作交流的意識。
3.情感態(tài)度與價值觀:感受數(shù)學化歸的思想和實際應用的價值,同時培養(yǎng)學生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學習態(tài)度。
1、請看:我身后的建筑物是什么?——水立方。我看到水立方時發(fā)現(xiàn)它的膜結構的結合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學習教材第34頁“動腦筋”
【教學說明】“解放學生的手,解放學生的大腦”,鼓勵學生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
預設回答:能,可以引對角線,將多邊形分成幾個三角形。
讓學生合作交流討論,展示探究成果。教材第35頁“探究”
n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
【教學說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學生從特殊到一般歸納總結出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學推理過程和數(shù)學思考方法.
例:教材第36頁例1。
【教學說明】讓學生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()。
a.十三邊形b.十二邊形。
c.十一邊形d.十邊形。
2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
【教學說明】由學生自主完成,教師及時了解學生的學習效果,讓學生經(jīng)歷運用知識解決問題的過程.對需要幫助的學生及時點撥并加以強化.在完成上述題目后,讓學生完成練習冊中本課時的對應訓練部分.
1、這節(jié)課你有什么新的收獲?
教材第36頁練習1、2題。
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。
數(shù)學教案-多邊形的內(nèi)角和篇十八
1、通過測量、類比、推理等數(shù)學活動,探索多邊形的內(nèi)角和的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應用,同時。
時讓學生體會從特殊到一般的認識問題的方法。
3、通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過度到。
論證幾何。
解決問題。
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度。
通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
重點。
難點。
知識聯(lián)系。
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準備。
知識背景。
對多邊形在生活中有所認識。
學習興趣。
通過探究過程更能激發(fā)學生學習的興趣。
教學工具。
三角板和幾何畫板。
教學流程設計。
活動流程圖。
活動內(nèi)容和目的。
活動一,教師和學生任意畫幾個多邊形,用量角器測其內(nèi)角和。
數(shù)學教案-多邊形的內(nèi)角和篇十九
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學目標。
2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
三、教學重、難點。