高二數(shù)學斜率教案(熱門14篇)

字號:

    教案必須符合學生的學習特點和教學大綱的要求,能夠引導學生主動參與課堂學習。教案的編寫要注重多種教學手段的合理運用。在這里,我們?yōu)榇蠹艺砹艘恍┚帉懡贪傅募记珊徒?jīng)驗,希望能對你有所啟發(fā)。
    高二數(shù)學斜率教案篇一
    1.函數(shù)單調(diào)性的定義:
    (1)一般地,設函數(shù)的定義域為a,區(qū)間.
    如果對于區(qū)間i內(nèi)的任意兩個值,當時,都有_______________,那么就說在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
    如果對于區(qū)間i內(nèi)的任意兩個值,當時,都有_______________,那么就說在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
    (2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
    2.復合函數(shù)的單調(diào)性:
    對于函數(shù)如果當在區(qū)間上和在區(qū)間上同時具有單調(diào)性,則復合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
    3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
    (1)______________;(2)____________________;(3)__________________.
    【自我檢測】。
    1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
    2.函數(shù)在上是_____函數(shù)(填增或減).
    3.函數(shù)的單調(diào)區(qū)間是_____________________.
    4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實數(shù)a的取值范圍是________________________.
    5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
    6.函數(shù)的單調(diào)減區(qū)間是___________________.
    【例1】填空題:
    (1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
    (2)函數(shù)的單調(diào)減區(qū)間是________________.
    (3)若上是增函數(shù),則a的取值范圍是_____________.
    (4)若是r上的減函數(shù),則a的取值范圍是_________.
    【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
    【例3】已知函數(shù)對任意的,都有,且當時,.
    (1)求證:是r上的增函數(shù);。
    (2)若,解不等式.
    1.函數(shù)單調(diào)減區(qū)間是_________________.
    2.若函數(shù)在區(qū)間上具有單調(diào)性,則實數(shù)a的取值范圍是______.
    3.已知函數(shù)是定義在上的'增函數(shù),且,則實數(shù)x的取值范圍是_________________________.
    4.已知在內(nèi)是減函數(shù),,且,設,,則a,b的大小關(guān)系是_________________.
    5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))。
    6.函數(shù)的遞減區(qū)間是________________.
    7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
    8.已知函數(shù)滿足對任意的,都有成立,則a的取值范圍是_________.
    9.確定函數(shù)的單調(diào)性.
    10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
    錯題卡題號錯題原因分析。
    高二數(shù)學教案:數(shù)的單調(diào)性教案(答案)。
    一、課前準備:
    1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
    (2)單調(diào),單調(diào)區(qū)間。
    2.單調(diào)性,同則增異則減。
    3.(1)定義法(2)圖象法(3)導函數(shù)法。
    【自我檢測】。
    1.2.增3.和4.
    5.6.
    二、課堂活動:
    【例1】。
    (1)(2)(3)(4)。
    【例2】證明:設。
    【例3】(1)證明:
    (2)解:
    三、課后作業(yè)。
    1.2.3.4.
    5.減函數(shù)6.7.8.
    9.解:定義域為,任取,且。
    10.解:
    高二數(shù)學斜率教案篇二
    (1)了解周期現(xiàn)象在現(xiàn)實中廣泛存在;(2)感受周期現(xiàn)象對實際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數(shù)定義進行簡單運用。
    2、過程與方法。
    通過創(chuàng)設情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現(xiàn)象;從數(shù)學的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實踐中加以應用。
    3、情感態(tài)度與價值觀。
    通過本節(jié)的學習,使同學們對周期現(xiàn)象有一個初步的認識,感受生活中處處有數(shù)學,從而激發(fā)學生的學習積極性,培養(yǎng)學生學好數(shù)學的信心,學會運用聯(lián)系的觀點認識事物。
    高二數(shù)學斜率教案篇三
    1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
    2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
    體會直角坐標系的作用。
    能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學問題。
    新授課
    啟發(fā)、誘導發(fā)現(xiàn)教學.
    多媒體、實物投影儀
    一、復習引入:
    情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
    情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
    問題1:如何刻畫一個幾何圖形的位置?
    問題2:如何創(chuàng)建坐標系?
    二、學生活動
    學生回顧
    刻畫一個幾何圖形的位置,需要設定一個參照系
    1、數(shù)軸 它使直線上任一點p都可以由惟一的實數(shù)x確定
    2、平面直角坐標系
    在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點p都可以由惟一的實數(shù)對(x,y)確定。
    3、空間直角坐標系
    在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點p都可以由惟一的實數(shù)對(x,y,z)確定。
    三、講解新課:
    1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:
    任意一點都有確定的坐標與其對應;反之,依據(jù)一個點的坐標就能確定這個點的位置
    2、確定點的位置就是求出這個點在設定的坐標系中的坐標
    四、數(shù)學運用
    例1 選擇適當?shù)钠矫嬷苯亲鴺讼担硎具呴L為1的正六邊形的頂點。
    變式訓練
    變式訓練
    2在面積為1的中,,建立適當?shù)淖鴺讼?,求以m,n為焦點并過點p的橢圓方程
    例3 已知q(a,b),分別按下列條件求出p 的坐標
    (1)p是點q 關(guān)于點m(m,n)的對稱點
    (2)p是點q 關(guān)于直線l:x-y+4=0的對稱點(q不在直線1上)
    變式訓練
    用兩種以上的方法證明:三角形的三條高線交于一點。
    思考
    通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復合變換?
    五、小 結(jié):本節(jié)課學習了以下內(nèi)容:
    1.平面直角坐標系的意義。
    2. 利用平面直角坐標系解決相應的數(shù)學問題。
    六、課后作業(yè):
    高二數(shù)學斜率教案篇四
    1.掌握二項式定理和性質(zhì)以及推導過程。
    2.利用二項式定理求二項展開式中的項的系數(shù)及相關(guān)問題。
    3.使學生能把握數(shù)學問題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學思想。
    教學重點;二項展開式中項的系數(shù)的計算。
    1、復習引入:
    1.的展開式,項數(shù),通項;
    2.二項式系數(shù)的四個性質(zhì)。
    2、例題。
    1.二項式定理及二項式系數(shù)性質(zhì)的簡單應用:
    例1(1)除以9的余數(shù)是_____________________。
    (2)=_______________。
    a.b.c.d.
    (3)已知。
    則____________________。
    (4)如果展開式中奇數(shù)項的系數(shù)和為512,則這個展開式的第8項是()。
    a.b.c.d.
    (5)若則等于()。
    a.b.c.d.
    小結(jié)1.(1)注意二項式定理的正逆運用;
    (2)注意二項式系數(shù)的四個性質(zhì)的運用。
    2.二項展開式中項的系數(shù)計算:
    例2(1)展開式中常數(shù)項等于_____________.
    (2)在的展開式中x的系數(shù)為()。
    a.160b.240c.360d.800。
    (3)已知求:
    小結(jié)2.(1)局部問題抓通項;
    (2)整體系數(shù)賦值法。
    三、課堂練習。
    (1)展開式中,各系數(shù)之和是()。
    a.0b.1c.d.。
    (2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________。
    (3)的展開式中的系數(shù)為______________-(用數(shù)字作答)。
    (4)若,則。
    a.1b.0c.2d.。
    四、課堂小結(jié)。
    五、作業(yè)。
    高二數(shù)學斜率教案篇五
    教學目標:
    1、進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
    2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
    3、進一步提高問題探究意識、知識應用意識和同伴合作意識。
    教學重點:
    問題的提出與解決。
    教學難點:
    如何進行問題的探究。
    啟發(fā)探究式。
    教學過程:
    研究方向提示:
    1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
    2、研究所給數(shù)列的項之間的關(guān)系;
    3、研究所給數(shù)列的子數(shù)列;
    4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
    5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
    6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。
    針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
    課堂小結(jié):
    1、研究一個數(shù)列可以從哪些方面提出問題并進行研究?
    2、你最喜歡哪位同學的研究?為什么?
    高二數(shù)學斜率教案篇六
    (1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發(fā)學生學習興趣.(7)創(chuàng)設問題情景,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識.
    2、過程與方法。
    通過創(chuàng)設情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習.
    3、情態(tài)與價值。
    通過本節(jié)的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物.
    教學重難點。
    重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法.
    難點:終邊相同的角的表示.
    教學工具。
    投影儀等.
    教學過程。
    【創(chuàng)設情境】。
    思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25。
    小時,你應當如何將它校準?當時間校準以后,分針轉(zhuǎn)了多少度?
    [取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角.
    【探究新知】。
    1.初中時,我們已學習了角的概念,它是如何定義的呢?
    [展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形.如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點.
    [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性.為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle).
    8.學習小結(jié)。
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
    線上的角的集合.
    五、評價設計。
    1.作業(yè):習題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    課后小結(jié)。
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
    線上的角的集合.
    課后習題。
    作業(yè):
    1、習題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    板書。
    略
    高二數(shù)學斜率教案篇七
    一、說教材:
    1、地位、作用和特點:
    《___》是高中數(shù)學課本第__冊(_修)的第__章“___”的第__節(jié)內(nèi)容。
    本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《__》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是__;特點之二是:___。
    教學目標:
    根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
    (1)知識目標:a、b、c。
    (2)能力目標:a、b、c。
    (3)德育目標:a、b。
    教學的重點和難點:
    (1)教學重點:
    (2)教學難點:
    基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學__真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
    導入新課新課教學反饋發(fā)展。
    三、說學法:
    學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
    1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導出,這正是一個分析和推理的全過程。
    2、讓學生親自經(jīng)歷運用科學方法探索的過程。主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    四、教學過程:
    (一)、課題引入:
    教師創(chuàng)設問題情景(創(chuàng)設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學科學的有關(guān)情況。)激發(fā)學生的探究__,引導學生提出接下去要研究的問題。
    1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    五、板書設計:
    在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應用。
    六、說課綜述:
    以上是我對《___》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
    總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
    高二數(shù)學斜率教案篇八
    教學目標。
    1、知識與技能:
    (1)推廣角的概念、引入大于角和負角;
    (2)理解并掌握正角、負角、零角的定義;
    (3)理解任意角以及象限角的概念;
    (4)掌握所有與角終邊相同的角(包括角)的表示方法;
    (5)樹立運動變化觀點,深刻理解推廣后的角的概念;
    (6)揭示知識背景,引發(fā)學生學習興趣;
    (7)創(chuàng)設問題情景,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識。
    2、過程與方法:
    通過創(chuàng)設情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習。
    3、情態(tài)與價值:
    通過本節(jié)的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。
    教學重難點。
    重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
    難點:終邊相同的角的表示。
    教學工具。
    投影儀等。
    教學過程。
    【創(chuàng)設情境】。
    我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
    【探究新知】。
    1.初中時,我們已學習了角的概念,它是如何定義的呢?
    [展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。
    [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle)。
    3.學習小結(jié):
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。
    課后習題。
    作業(yè):
    1、習題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    板書。
    略
    高二數(shù)學斜率教案篇九
    《小二黑結(jié)婚》教案(人教版高二選修)。
    一、教學目的及要求。
    趙樹理的章回小說所體現(xiàn)的民族文化特色。
    二、講授的內(nèi)容提要。
    1、人物形象分析。
    2、思想意蘊。
    三、重點、難點。
    重點:民族化、大眾化特色。
    難點:思想意蘊。
    四、教學過程。
    教學課時:2課時。
    第一課時。
    分析二諸葛、三仙姑的同中有異的性格。
    兩人都具有封建思想,都反對兒女自由戀愛,想以家長身份主宰兒女婚姻;兩人都封建迷信,陰陽八卦、黃道黑道,規(guī)矩頗多。
    但兩人也有不同。二諸葛是虔誠的迷信,迷信成了他認識生活、對待生活的唯一標尺;三仙姑是虛假的迷信,迷信成了她欺騙別人、害人利己的法術(shù)。二諸葛既是一個封建家長制的維護者,同時他又是一個善良、厚道的父親;三仙姑則是一個無情的母親,為了滿足自己的欲望,她不惜犧牲女兒的前程。
    思想意蘊。
    趙樹理曾說:'我在作群眾工作的過程中,遇到了非解決不可而又不是輕易能解決了的問題,往往就變成了所要寫的主題。'《小二黑結(jié)婚》便是作者在太行山區(qū)工作時,面對現(xiàn)實困惑而作的藝術(shù)思考。小說描寫的是在解放區(qū)新的歷史條件下一對青年男女沖破封建傳統(tǒng)爭取婚姻自主的故事。小說抨擊了農(nóng)村中的封建殘余勢力,批判了人民群眾中的封建思想,歌頌了新的人物、新的時代風尚。作品完滿的結(jié)局說明了人民政權(quán)是人民實現(xiàn)自主婚姻的最可靠的保證。它表明,在解放區(qū),不僅政治和經(jīng)濟領(lǐng)域有了變革。而且在愛情、婚姻、家庭和道德領(lǐng)域也發(fā)生了天翻地覆的變化。小二黑和小芹的斗爭,已經(jīng)成為解放區(qū)人民反霸除暴的民主改革的一個組成部分。充滿自信,敢于斗爭的新一代農(nóng)民的成長,標志著一個深刻的社會變化已經(jīng)興起,并且正在深入發(fā)展。
    第二課時。
    分析作品的民族化、大眾化特色。
    主題和題材:趙樹理小說總是選取那些現(xiàn)實生活中迫切需要解決的具有重要社會意義的主題,但在選材上卻并不追求轟轟烈烈,而是從普通的日常生活現(xiàn)象入手,以小見大。如《小二黑結(jié)婚》以解放區(qū)仍然存在包辦婚姻的行為做突破口,通過人們司空見慣的生活現(xiàn)象,揭示出反封建思想斗爭的重要性和長期性問題,具有極其重要的現(xiàn)實意義。
    人物形象塑造:趙樹理小說的突出貢獻就是成功地描寫了各類不同思想性格的農(nóng)民形象。他一面熱情謳歌了二黑和小芹這樣的新型農(nóng)民的'典型代表,贊美他們的新思想、新品質(zhì),同時又著力刻畫了像二諸葛、三仙姑這樣一些暫時還愚昧落后但已經(jīng)開始走向轉(zhuǎn)變的農(nóng)民代表。深入挖掘農(nóng)民內(nèi)在的美好品德是趙樹理小說的主要出發(fā)點,于是往往寓批評于詼諧幽默之中,善意的諷刺與熱情的歌頌結(jié)合在一起。
    具體的藝術(shù)表現(xiàn)手法:在藝術(shù)結(jié)構(gòu)上,他借鑒了傳統(tǒng)評書、章回小說的結(jié)構(gòu)特點,采用單線條發(fā)展的手法,注重故事的連貫與完整,故事性強,適應我們民族特別是廣大農(nóng)民的欣賞習慣。在三組人物刻畫上,運用白描手法和注重細節(jié)、動作的描寫,并常給人物起綽號來加強其性格的鮮明性,如二諸葛、三仙姑等。語言樸實生動、幽默風趣,大量使用經(jīng)過提煉加工的地方農(nóng)民的方言口語,表現(xiàn)力強,真正做到了語言的大眾化。
    五、作業(yè)。
    追憶。
    高二數(shù)學斜率教案篇十
    這是一個特殊的線性規(guī)劃問題,再來研究它的解法。
    c.改變這個例子的個別條件,再來研究它的解法。
    將這個例子中方木料存有量改為,其他條件不變,則。
    作出可行域,如圖陰影部分,且過可行域內(nèi)點m(100,400)而平行于的直線離原點的距離最大,所以最優(yōu)解為(100,400),這時(元)。
    故生產(chǎn)書桌100、書櫥400張,可獲最大利潤56000元。
    總結(jié)、擴展。
    1.線性規(guī)劃問題的數(shù)字模型。
    2.線性規(guī)劃在兩類問題中的應用。
    布置作業(yè)。
    到附近的工廠、鄉(xiāng)鎮(zhèn)企業(yè)、商店、學校等作調(diào)查研究,了解線性規(guī)劃在實際中的應用,或提出能用線性規(guī)劃的知識提高生產(chǎn)效率的實際問題,并作出解答。把實習和研究活動的成果寫成實習報告、研究報告或小論文,并互相交流。
    探究活動。
    如何確定水電站的位置。
    由,,得b(300,700).于是直線的方程為。
    即
    高二數(shù)學斜率教案篇十一
    掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關(guān)知識的綜合應用。
    (一)主要知識:
    掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略。
    1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的'知識解決有關(guān)應用問題,
    2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
    高二數(shù)學斜率教案篇十二
    1、地位、作用和特點:
    《xxx》是高中數(shù)學課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內(nèi)容。
    本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I?、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xxx。
    教學目標:
    根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
    (1)知識目標:a、b、c。
    (2)能力目標:a、b、c。
    (3)德育目標:a、b。
    教學的重點和難點:
    (1)教學重點:
    (2)教學難點:
    基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學xx真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
    導入新課新課教學反饋發(fā)展。
    學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
    1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導出,這正是一個分析和推理的全過程。
    2、讓學生親自經(jīng)歷運用科學方法探索的過程。主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    (一)、課題引入:
    教師創(chuàng)設問題情景(創(chuàng)設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學科學的有關(guān)情況。)激發(fā)學生的探究xx,引導學生提出接下去要研究的問題。
    (二)、新課教學:
    1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的'實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應用。
    以上是我對《xxx》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
    總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
    高二數(shù)學斜率教案篇十三
    學習目標:
    1、了解本章的學習的內(nèi)容以及學習思想方法。
    2、能敘述隨機變量的定義。
    3、能說出隨機變量與函數(shù)的關(guān)系,
    4、能夠把一個隨機試驗結(jié)果用隨機變量表示。
    重點:能夠把一個隨機試驗結(jié)果用隨機變量表示。
    難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:
    環(huán)節(jié)一:隨機變量的定義。
    1.通過生活中的一些隨機現(xiàn)象,能夠概括出隨機變量的定義。
    2能敘述隨機變量的定義。
    3能說出隨機變量與函數(shù)的區(qū)別與聯(lián)系。
    一、閱讀課本33頁問題提出和分析理解,回答下列問題?
    1、了解一個隨機現(xiàn)象的規(guī)律具體指的是什么?
    2、分析理解中的兩個隨機現(xiàn)象的隨機試驗結(jié)果有什么不同?建立了什么樣的對應關(guān)系?
    總結(jié):
    3、隨機變量。
    (1)定義:
    這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結(jié)果所組成的。
    到的映射。
    (2)表示:隨機變量常用大寫字母.等表示.
    (3)隨機變量與函數(shù)的區(qū)別與聯(lián)系。
    函數(shù)隨機變量。
    自變量。
    因變量。
    因變量的范圍。
    相同點都是映射都是映射。
    環(huán)節(jié)二隨機變量的應用。
    1、能正確寫出隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機變量的描述隨機事件。
    例1:已知在10件產(chǎn)品中有2件不合格品?,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機變量的學案.這是一個隨機現(xiàn)象。(1)寫成該隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機變量來描述上述結(jié)果。
    例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個隨機變。
    量,分別說明下列集合所代表的隨機事件:
    (1){x=0}(2){x=1}。
    (3){x2}(4){x0}。
    變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個隨機變量,x的可能取值是?并說明這些值所表示的隨機試驗的結(jié)果.
    練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結(jié)果。
    (1)從學?;丶乙?jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);。
    小結(jié)(對標)。
    高二數(shù)學斜率教案篇十四
    style="color:#125b86">
    教材分析
    因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預見、解決問題的能力。
    學情分析。
    通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
    教學目標。
    1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
    2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
    3、能運用提公因式法、公式法進行綜合運用。
    4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。
    教學重點和難點。
    重點:靈活運用平方差公式進行分解因式。
    難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。