編寫教案有助于教師對課程內(nèi)容的深入理解和準(zhǔn)備,提高教學(xué)效果。編寫教案要注意語言的規(guī)范和精煉,方便教師和學(xué)生的理解。教學(xué)中的教案對于教師的教學(xué)效果至關(guān)重要,以下是小編為大家收集的一些教案樣例,供大家參考。
平方差公式教案篇一
在探索平方差公式的過程中,發(fā)展學(xué)生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達(dá),體會數(shù)學(xué)語言的嚴(yán)謹(jǐn)與簡潔。
激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識與創(chuàng)新能力。
重點。
難點。
一、復(fù)習(xí)導(dǎo)入。
1.回顧多項式乘多項式的法則。
2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?
(1);(2).
師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?
變形成:,
再試試把它當(dāng)成多項式乘法來算算,有什么發(fā)現(xiàn)?
繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?
我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個乘法公式,平方差公式。
二、新課講解。
探究新知。
1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?
討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?
3.從上面的計算中你有什么發(fā)現(xiàn)呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。
下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。
(1);(2);(3);
(4);(5);(6).
學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達(dá)到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
三、典例剖析。
師生共同解答,教師板書。初學(xué)運用時要寫清楚步驟。
學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識別乘法公式里的。
例3.計算:
學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運用公式計算。
四、課堂練習(xí)。
1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?
(1);
(1);(2);
(3);(4).
3.計算:
(1);(2);
教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進(jìn)行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。
五、小結(jié)。
師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進(jìn)行辨析、強(qiáng)調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。
六、布置作業(yè)。
p50第1、6題。
平方差公式教案篇二
本節(jié)課選自人教版八年級上冊第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例。對它的學(xué)習(xí)和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡等內(nèi)容奠定了基礎(chǔ),同時也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,中公教育專家認(rèn)為,平方差公式作為初中階段的第一個公式,在教學(xué)中具有很重要地位。
二、說學(xué)情。
學(xué)生已熟練掌握了冪的運算和整式乘法,但在進(jìn)行多項式乘法運算時常常會出現(xiàn)符號錯誤及漏項等問題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級學(xué)生的認(rèn)知水平,理解上有困難。因此,我們把教學(xué)難點定為:理解平方差公式的。結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、說教學(xué)目標(biāo)。
基于對教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標(biāo)定位為:
知識與技能目標(biāo):了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運用平方差公式解決問題。
過程與方法目標(biāo):經(jīng)歷平方差公式產(chǎn)生的探究過程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實際問題的策略。
情感態(tài)度與價值觀目標(biāo):通過探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會成功的喜悅,培養(yǎng)團(tuán)結(jié)協(xié)助的意識,增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。
教學(xué)重點:理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。
教學(xué)難點:運用平方差公式解決問題。
四、說教法、學(xué)法。
課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動,即讓學(xué)生先說話、先動手、先總結(jié),讓學(xué)生主動提問、主動探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。
五、說教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入新課。
數(shù)學(xué)課標(biāo)強(qiáng)調(diào):“數(shù)學(xué)來源于實際生活”,為了體現(xiàn)這一思想,我設(shè)計了一個實際問題。這里只提供情境,刺激學(xué)生主動提出問題,因為“提出問題”比“解決問題”更重要。這個以生活實例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說明平方差公式的幾何意義做好鋪墊。
(二)合作交流,探求新知。
首先,我用情境中一道題目,并再安排了兩個練習(xí),通過對特殊的多項式與多項式相乘的計算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)習(xí)近平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認(rèn)識規(guī)律,引出乘法公式----平方差公式。
順勢鼓勵學(xué)生用自己的語言歸納表述,總結(jié)出公式,從而提高學(xué)生的語言組織與表達(dá)能力。
然后,教師通過分析公式的本質(zhì)特征使學(xué)生掌握公式,在認(rèn)清公式的結(jié)構(gòu)特征的基礎(chǔ)上,
進(jìn)一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運用中能得心應(yīng)手,起到事半功倍的效果。
最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認(rèn)識平方差公式的幾何意義,再次驗證了猜想。滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會從多角度、多方面來思考問題。
(三)鞏固深化,內(nèi)化新知。
總結(jié)出平方差公式后,我先設(shè)計兩個簡單練習(xí)題。通過練習(xí),使學(xué)生加深對平方差公式結(jié)構(gòu)特點的認(rèn)識和理解,進(jìn)一步掌握平方差公式的本質(zhì)特征和運用平方差公式必須具備的條件。
然后設(shè)計了三個例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計的一道實際問題。
例1有兩道小題,其中設(shè)計第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯。例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯后教師及時糾正,使學(xué)生認(rèn)識深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項式乘法的綜合,強(qiáng)調(diào)不能用公式的仍按多項式乘法法則進(jìn)行。
例3運用平方差公式解決實際問題,體現(xiàn)了數(shù)學(xué)來源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價值,設(shè)計此題與平方差公式的幾何意義相吻合,加深學(xué)生對平方差公式的理解。
(四)反饋練習(xí),鞏固新知。
練習(xí)題的設(shè)計有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高。加強(qiáng)基本知識和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。
在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。
(五)當(dāng)堂練習(xí)。
這部分給出兩類練習(xí)題。
設(shè)計意圖(第一類題是完全平方公式的直接應(yīng)用,通過實例,使學(xué)生進(jìn)一步體會到完全平方公式中字母a,b的含義是很廣泛的,它可以是數(shù),也可以是整式)(第二道題直接給出一些同學(xué)的錯誤認(rèn)識,強(qiáng)調(diào)錯誤原因并引導(dǎo)學(xué)生走出誤區(qū))。
(六)課堂小結(jié)。
設(shè)計意圖:(讓學(xué)生回想本節(jié)課的主要內(nèi)容完全平方公式,教師再次強(qiáng)調(diào)并指出易錯點和需注意的地方公式中項數(shù)、符號、字母及其指數(shù)。)。
(七)布置作業(yè)。
作業(yè)分必做題和選做題兩部分。
設(shè)計意圖:(必做題鞏固本節(jié)課知識,讓學(xué)生熟練應(yīng)用公式。選做題為下節(jié)課的學(xué)習(xí)做鋪墊,同時分層布置作業(yè)也滿足了不同層次學(xué)生的要求)。
平方差公式教案篇三
教學(xué)目標(biāo):
一、知識與技能。
1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進(jìn)行簡單的乘法運算。
二、過程與方法。
1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。
數(shù)學(xué)式子表達(dá)出,即給出公式。
2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。
號感和語言描述能力。
三、情感與態(tài)度。
以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.
教學(xué)重點:公式的簡單運用。
教學(xué)難點:公式的推導(dǎo)。
教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。
課前準(zhǔn)備:投影儀、幻燈片。
平方差公式教案篇四
1.掌握平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的理解;(重點)。
2.掌握平方差公式的應(yīng)用.(重點)。
一、情境導(dǎo)入。
1.教師引導(dǎo)學(xué)生回憶多項式與多項式相乘的法則.
學(xué)生積極舉手回答.
多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加.
2.教師肯定學(xué)生的表現(xiàn),并講解一種特殊形式的多項式與多項式相乘——平方差公式.
二、合作探究。
探究點:平方差公式。
【類型一】直接運用平方差公式進(jìn)行計算。
平方差公式教案篇五
平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會到它所蘊含的新的教學(xué)理念,新的教學(xué)方式和方法。
1、在教學(xué)設(shè)計時應(yīng)提供充分探索與交流的空間,使學(xué)生進(jìn)一步經(jīng)歷觀察,實驗、猜測、推理、交流、反思等活動,我在設(shè)計中讓學(xué)生從計算花圃面積入手,要求學(xué)生找出不同的計算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時也激活了學(xué)生的思維,所以這個探究過程是很有效的。
2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實感受到兩者之間的聯(lián)系,學(xué)會一些探究的基本方法與思路,并體會到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。
3、加強(qiáng)師生之間的活動也是必要的。在活動中,通過我的組織、引導(dǎo)和鼓勵下,學(xué)生不斷地思考和探究,并積極地進(jìn)行交流,使活動有序進(jìn)行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動中,營造出了一個和諧,寬松的教學(xué)環(huán)境。
平方差公式教案篇六
這節(jié)課學(xué)習(xí)的主要內(nèi)容是運用平方差公式進(jìn)行因式分解,學(xué)習(xí)時如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復(fù)的運用、反復(fù)的操練的話,學(xué)生學(xué)起來就會覺得沒有味道,對數(shù)學(xué)有一種厭煩感,所以我就想到了運用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。
在新課引入的過程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學(xué)生嘗試一下。可以說,對新問題的引入,是采取了由淺入深的方法,使學(xué)生對新知識不產(chǎn)生任何的畏懼感。
在這節(jié)課中就明顯出現(xiàn)了這個問題,許多學(xué)生容易產(chǎn)生的問題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點時要考慮到學(xué)生的思維障礙,不可操之過急,否則適得其反。
平方差公式教案篇七
本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
讓學(xué)生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認(rèn)識,有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計算的知識的基礎(chǔ)上充分認(rèn)識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
(二)過程與方法。
1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態(tài)度。
1.通過探究平方差公式,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式教案篇八
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
教學(xué)重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過程設(shè)計。
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學(xué)生動腦、動筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進(jìn)行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進(jìn)行計算。
課堂練習(xí)。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進(jìn)行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
課堂練習(xí)。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法。
2、運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教案篇九
本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識上升為理性思維的認(rèn)知規(guī)律,得出抽象的。概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強(qiáng)學(xué)生應(yīng)用知識解決問題的能力,從而達(dá)到較好的授課效果。
數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。
但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。
本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。
平方差公式教案篇十
《平方差公式》這一節(jié)重點和難點就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學(xué)設(shè)計思想是從讓每一位學(xué)生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達(dá)到熟練運用的目的。只是在具體的教學(xué)手段和措施及側(cè)重點上有所區(qū)別。雖然如此,我個人認(rèn)為基本目標(biāo)已經(jīng)達(dá)到,也取得了初步成效,尤其是對易錯點的側(cè)重讓學(xué)生記憶深刻效果更明顯。
具體來說,成功之處我們都基本實現(xiàn)了教學(xué)目標(biāo),突出了教學(xué)重難點,教學(xué)過程環(huán)環(huán)相扣,題目設(shè)計逐層深入,及時反饋學(xué)習(xí)效果,精講多練。基本實現(xiàn)了預(yù)想的效果。我自認(rèn)為該課成功之處主要體現(xiàn)在:
1、課前準(zhǔn)備充分,教學(xué)設(shè)計合理充實,有很強(qiáng)的實用性和創(chuàng)造性。
2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學(xué)生興趣,給學(xué)生留下懸念,同時對平方差公式有了初步的感性認(rèn)識,從而揭示課題。然后再通過一系列的探索和練習(xí)以及公式的幾何解釋,使學(xué)生對新知識的理解由感性認(rèn)識到理性認(rèn)識的過渡。
3、選題合理、有針對性和層次性。在鞏固練習(xí)中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉(zhuǎn)換到涉及帶負(fù)號的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯的題型問題的暴露,及時處理。使得學(xué)生逐步加深對公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學(xué)生留下的疑問,最后實現(xiàn)創(chuàng)新,用簡便方法計算像2002×1998.使得整個課堂容量大,充實。
進(jìn)的例題練習(xí)讓學(xué)生逐步理解公式中字母的可變性。最后達(dá)到對公式的全面和深刻的理解和掌握,使公式的運用得到升華。
5、本節(jié)課的重點和難點就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運用公式時的易錯點。不僅在訓(xùn)練期間多次強(qiáng)調(diào)的方式提醒學(xué)生易錯點,相同項在前,相反項在后,結(jié)果才能用相同相的平方減去相反項的平方,平方時底是單項式但系數(shù)不是1或底數(shù)是多項式時不要忘記打上括號,而且在最后的小結(jié)中給學(xué)生總結(jié)更是讓學(xué)生影響深刻。
6、對公式進(jìn)行幾何意義的解釋,我通過直觀演示操作,將學(xué)生不易理解的問題,使它變得直觀,從而顯得簡單。
3、課堂效率有待提高。
改進(jìn)方向:1、繼續(xù)加強(qiáng)平時的“生本”理念的灌輸和學(xué)生討論、發(fā)言的培訓(xùn)和鼓勵。
2、教學(xué)設(shè)計時更全面、深入地考慮學(xué)生的問題也就是備課備學(xué)生。
3、加強(qiáng)對學(xué)生發(fā)現(xiàn)問題、總結(jié)規(guī)律、提出疑問等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
的培訓(xùn)。
4、課堂教學(xué)注重多措施了解學(xué)生學(xué)習(xí)效果的反饋。俗話說:“金無足赤,人無完人”。一節(jié)課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請各位同仁批評指正,本人一定笑納,并表示感謝。
平方差公式教案篇十一
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
幫助學(xué)生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
平方差公式教案篇十二
通過教學(xué)我對本節(jié)課的反思如下:
1、本節(jié)課我從復(fù)習(xí)舊知入手,在教學(xué)設(shè)計時提供充分探索與交流的空間,使學(xué)生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學(xué)要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學(xué)生被動學(xué)習(xí)的'局面。我在教學(xué)時沒有直接讓學(xué)生推導(dǎo)平方差公式,而是設(shè)置了一個做一做,讓學(xué)生通過計算四個多項式乘以多項式的題目,讓學(xué)生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學(xué)生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的一般能力,讓學(xué)生體會發(fā)現(xiàn)的愉悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感覺效果很好。
不足:在學(xué)生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學(xué)生順理成章的猜測公式的結(jié)果。
2、學(xué)生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學(xué)生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與—b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學(xué)生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果。我很細(xì)地給學(xué)生講了以上特點,學(xué)生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學(xué)中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學(xué)生錯誤主要是:(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學(xué)中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達(dá)到教學(xué)效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學(xué)生往往學(xué)起來容易,真正掌握起來困難。部分學(xué)生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
總之,在以后的教學(xué)中我會更深入的專研教材,結(jié)合教學(xué)目標(biāo)與要求,結(jié)合學(xué)生的實際特點,克服自己的弱點,盡量使數(shù)學(xué)課生動、自然、有趣。
平方差公式教案篇十三
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標(biāo)。為此,我作了如下努力:
1、把數(shù)學(xué)問題“蘊藏”在游戲中。
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學(xué)方式的運用。
把探究的機(jī)會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強(qiáng)的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教案篇十四
學(xué)習(xí)目標(biāo):
1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;。
3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認(rèn)識規(guī)律.
學(xué)習(xí)重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學(xué)習(xí)過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).
3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差。或者說兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。
二、試一試。
平方差公式教案篇十五
本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先提醒學(xué)生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來,應(yīng)用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認(rèn)識平方差公式的`結(jié)構(gòu)時候,重點突出學(xué)生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學(xué)設(shè)計中,教師只作為了一個點撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學(xué)生頭腦中形成一個清晰完整的數(shù)學(xué)模型,使學(xué)生在今后的練習(xí)中游刃有余。
不足之處:
教學(xué)中時間把握還是不足,在設(shè)計的題目中不怎么合理,應(yīng)按題目的難度從易到難。
有些題目的歸納可放手給學(xué)生討論后由學(xué)生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學(xué)語言還太隨意,數(shù)學(xué)的語言應(yīng)該嚴(yán)謹(jǐn)。在語調(diào)上應(yīng)該有所變化。
平方差公式教案篇十六
一、教學(xué)目標(biāo):
1、使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識;
3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
二、重點、難點:
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。
三、教學(xué)方法。
以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
四、教學(xué)過程。
(一)創(chuàng)設(shè)問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進(jìn)行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)。
(三)嘗試探究。
(四)鞏固練習(xí)。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學(xué)生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
(學(xué)生回答,教師總結(jié))。
(六)作業(yè)。
p106習(xí)題1—5題。
七、板書設(shè)計:
教學(xué)反思。
通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會,過于注重“收”,而“放”不夠。
平方差公式教案篇十七
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
把探究的機(jī)會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強(qiáng)的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教案篇一
在探索平方差公式的過程中,發(fā)展學(xué)生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達(dá),體會數(shù)學(xué)語言的嚴(yán)謹(jǐn)與簡潔。
激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識與創(chuàng)新能力。
重點。
難點。
一、復(fù)習(xí)導(dǎo)入。
1.回顧多項式乘多項式的法則。
2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?
(1);(2).
師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?
變形成:,
再試試把它當(dāng)成多項式乘法來算算,有什么發(fā)現(xiàn)?
繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?
我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個乘法公式,平方差公式。
二、新課講解。
探究新知。
1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?
討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?
3.從上面的計算中你有什么發(fā)現(xiàn)呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。
下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。
(1);(2);(3);
(4);(5);(6).
學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達(dá)到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
三、典例剖析。
師生共同解答,教師板書。初學(xué)運用時要寫清楚步驟。
學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識別乘法公式里的。
例3.計算:
學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運用公式計算。
四、課堂練習(xí)。
1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?
(1);
(1);(2);
(3);(4).
3.計算:
(1);(2);
教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進(jìn)行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。
五、小結(jié)。
師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進(jìn)行辨析、強(qiáng)調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。
六、布置作業(yè)。
p50第1、6題。
平方差公式教案篇二
本節(jié)課選自人教版八年級上冊第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例。對它的學(xué)習(xí)和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡等內(nèi)容奠定了基礎(chǔ),同時也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,中公教育專家認(rèn)為,平方差公式作為初中階段的第一個公式,在教學(xué)中具有很重要地位。
二、說學(xué)情。
學(xué)生已熟練掌握了冪的運算和整式乘法,但在進(jìn)行多項式乘法運算時常常會出現(xiàn)符號錯誤及漏項等問題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級學(xué)生的認(rèn)知水平,理解上有困難。因此,我們把教學(xué)難點定為:理解平方差公式的。結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、說教學(xué)目標(biāo)。
基于對教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標(biāo)定位為:
知識與技能目標(biāo):了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運用平方差公式解決問題。
過程與方法目標(biāo):經(jīng)歷平方差公式產(chǎn)生的探究過程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實際問題的策略。
情感態(tài)度與價值觀目標(biāo):通過探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會成功的喜悅,培養(yǎng)團(tuán)結(jié)協(xié)助的意識,增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。
教學(xué)重點:理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。
教學(xué)難點:運用平方差公式解決問題。
四、說教法、學(xué)法。
課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動,即讓學(xué)生先說話、先動手、先總結(jié),讓學(xué)生主動提問、主動探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。
五、說教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入新課。
數(shù)學(xué)課標(biāo)強(qiáng)調(diào):“數(shù)學(xué)來源于實際生活”,為了體現(xiàn)這一思想,我設(shè)計了一個實際問題。這里只提供情境,刺激學(xué)生主動提出問題,因為“提出問題”比“解決問題”更重要。這個以生活實例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說明平方差公式的幾何意義做好鋪墊。
(二)合作交流,探求新知。
首先,我用情境中一道題目,并再安排了兩個練習(xí),通過對特殊的多項式與多項式相乘的計算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)習(xí)近平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認(rèn)識規(guī)律,引出乘法公式----平方差公式。
順勢鼓勵學(xué)生用自己的語言歸納表述,總結(jié)出公式,從而提高學(xué)生的語言組織與表達(dá)能力。
然后,教師通過分析公式的本質(zhì)特征使學(xué)生掌握公式,在認(rèn)清公式的結(jié)構(gòu)特征的基礎(chǔ)上,
進(jìn)一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運用中能得心應(yīng)手,起到事半功倍的效果。
最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認(rèn)識平方差公式的幾何意義,再次驗證了猜想。滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會從多角度、多方面來思考問題。
(三)鞏固深化,內(nèi)化新知。
總結(jié)出平方差公式后,我先設(shè)計兩個簡單練習(xí)題。通過練習(xí),使學(xué)生加深對平方差公式結(jié)構(gòu)特點的認(rèn)識和理解,進(jìn)一步掌握平方差公式的本質(zhì)特征和運用平方差公式必須具備的條件。
然后設(shè)計了三個例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計的一道實際問題。
例1有兩道小題,其中設(shè)計第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯。例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯后教師及時糾正,使學(xué)生認(rèn)識深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項式乘法的綜合,強(qiáng)調(diào)不能用公式的仍按多項式乘法法則進(jìn)行。
例3運用平方差公式解決實際問題,體現(xiàn)了數(shù)學(xué)來源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價值,設(shè)計此題與平方差公式的幾何意義相吻合,加深學(xué)生對平方差公式的理解。
(四)反饋練習(xí),鞏固新知。
練習(xí)題的設(shè)計有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高。加強(qiáng)基本知識和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。
在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。
(五)當(dāng)堂練習(xí)。
這部分給出兩類練習(xí)題。
設(shè)計意圖(第一類題是完全平方公式的直接應(yīng)用,通過實例,使學(xué)生進(jìn)一步體會到完全平方公式中字母a,b的含義是很廣泛的,它可以是數(shù),也可以是整式)(第二道題直接給出一些同學(xué)的錯誤認(rèn)識,強(qiáng)調(diào)錯誤原因并引導(dǎo)學(xué)生走出誤區(qū))。
(六)課堂小結(jié)。
設(shè)計意圖:(讓學(xué)生回想本節(jié)課的主要內(nèi)容完全平方公式,教師再次強(qiáng)調(diào)并指出易錯點和需注意的地方公式中項數(shù)、符號、字母及其指數(shù)。)。
(七)布置作業(yè)。
作業(yè)分必做題和選做題兩部分。
設(shè)計意圖:(必做題鞏固本節(jié)課知識,讓學(xué)生熟練應(yīng)用公式。選做題為下節(jié)課的學(xué)習(xí)做鋪墊,同時分層布置作業(yè)也滿足了不同層次學(xué)生的要求)。
平方差公式教案篇三
教學(xué)目標(biāo):
一、知識與技能。
1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進(jìn)行簡單的乘法運算。
二、過程與方法。
1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。
數(shù)學(xué)式子表達(dá)出,即給出公式。
2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。
號感和語言描述能力。
三、情感與態(tài)度。
以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.
教學(xué)重點:公式的簡單運用。
教學(xué)難點:公式的推導(dǎo)。
教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。
課前準(zhǔn)備:投影儀、幻燈片。
平方差公式教案篇四
1.掌握平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的理解;(重點)。
2.掌握平方差公式的應(yīng)用.(重點)。
一、情境導(dǎo)入。
1.教師引導(dǎo)學(xué)生回憶多項式與多項式相乘的法則.
學(xué)生積極舉手回答.
多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加.
2.教師肯定學(xué)生的表現(xiàn),并講解一種特殊形式的多項式與多項式相乘——平方差公式.
二、合作探究。
探究點:平方差公式。
【類型一】直接運用平方差公式進(jìn)行計算。
平方差公式教案篇五
平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會到它所蘊含的新的教學(xué)理念,新的教學(xué)方式和方法。
1、在教學(xué)設(shè)計時應(yīng)提供充分探索與交流的空間,使學(xué)生進(jìn)一步經(jīng)歷觀察,實驗、猜測、推理、交流、反思等活動,我在設(shè)計中讓學(xué)生從計算花圃面積入手,要求學(xué)生找出不同的計算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時也激活了學(xué)生的思維,所以這個探究過程是很有效的。
2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實感受到兩者之間的聯(lián)系,學(xué)會一些探究的基本方法與思路,并體會到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。
3、加強(qiáng)師生之間的活動也是必要的。在活動中,通過我的組織、引導(dǎo)和鼓勵下,學(xué)生不斷地思考和探究,并積極地進(jìn)行交流,使活動有序進(jìn)行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動中,營造出了一個和諧,寬松的教學(xué)環(huán)境。
平方差公式教案篇六
這節(jié)課學(xué)習(xí)的主要內(nèi)容是運用平方差公式進(jìn)行因式分解,學(xué)習(xí)時如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復(fù)的運用、反復(fù)的操練的話,學(xué)生學(xué)起來就會覺得沒有味道,對數(shù)學(xué)有一種厭煩感,所以我就想到了運用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。
在新課引入的過程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學(xué)生嘗試一下。可以說,對新問題的引入,是采取了由淺入深的方法,使學(xué)生對新知識不產(chǎn)生任何的畏懼感。
在這節(jié)課中就明顯出現(xiàn)了這個問題,許多學(xué)生容易產(chǎn)生的問題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點時要考慮到學(xué)生的思維障礙,不可操之過急,否則適得其反。
平方差公式教案篇七
本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
讓學(xué)生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認(rèn)識,有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計算的知識的基礎(chǔ)上充分認(rèn)識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
(二)過程與方法。
1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態(tài)度。
1.通過探究平方差公式,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式教案篇八
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
教學(xué)重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過程設(shè)計。
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學(xué)生動腦、動筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進(jìn)行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進(jìn)行計算。
課堂練習(xí)。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進(jìn)行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
課堂練習(xí)。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法。
2、運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教案篇九
本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識上升為理性思維的認(rèn)知規(guī)律,得出抽象的。概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強(qiáng)學(xué)生應(yīng)用知識解決問題的能力,從而達(dá)到較好的授課效果。
數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。
但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。
本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。
平方差公式教案篇十
《平方差公式》這一節(jié)重點和難點就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學(xué)設(shè)計思想是從讓每一位學(xué)生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達(dá)到熟練運用的目的。只是在具體的教學(xué)手段和措施及側(cè)重點上有所區(qū)別。雖然如此,我個人認(rèn)為基本目標(biāo)已經(jīng)達(dá)到,也取得了初步成效,尤其是對易錯點的側(cè)重讓學(xué)生記憶深刻效果更明顯。
具體來說,成功之處我們都基本實現(xiàn)了教學(xué)目標(biāo),突出了教學(xué)重難點,教學(xué)過程環(huán)環(huán)相扣,題目設(shè)計逐層深入,及時反饋學(xué)習(xí)效果,精講多練。基本實現(xiàn)了預(yù)想的效果。我自認(rèn)為該課成功之處主要體現(xiàn)在:
1、課前準(zhǔn)備充分,教學(xué)設(shè)計合理充實,有很強(qiáng)的實用性和創(chuàng)造性。
2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學(xué)生興趣,給學(xué)生留下懸念,同時對平方差公式有了初步的感性認(rèn)識,從而揭示課題。然后再通過一系列的探索和練習(xí)以及公式的幾何解釋,使學(xué)生對新知識的理解由感性認(rèn)識到理性認(rèn)識的過渡。
3、選題合理、有針對性和層次性。在鞏固練習(xí)中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉(zhuǎn)換到涉及帶負(fù)號的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯的題型問題的暴露,及時處理。使得學(xué)生逐步加深對公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學(xué)生留下的疑問,最后實現(xiàn)創(chuàng)新,用簡便方法計算像2002×1998.使得整個課堂容量大,充實。
進(jìn)的例題練習(xí)讓學(xué)生逐步理解公式中字母的可變性。最后達(dá)到對公式的全面和深刻的理解和掌握,使公式的運用得到升華。
5、本節(jié)課的重點和難點就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運用公式時的易錯點。不僅在訓(xùn)練期間多次強(qiáng)調(diào)的方式提醒學(xué)生易錯點,相同項在前,相反項在后,結(jié)果才能用相同相的平方減去相反項的平方,平方時底是單項式但系數(shù)不是1或底數(shù)是多項式時不要忘記打上括號,而且在最后的小結(jié)中給學(xué)生總結(jié)更是讓學(xué)生影響深刻。
6、對公式進(jìn)行幾何意義的解釋,我通過直觀演示操作,將學(xué)生不易理解的問題,使它變得直觀,從而顯得簡單。
3、課堂效率有待提高。
改進(jìn)方向:1、繼續(xù)加強(qiáng)平時的“生本”理念的灌輸和學(xué)生討論、發(fā)言的培訓(xùn)和鼓勵。
2、教學(xué)設(shè)計時更全面、深入地考慮學(xué)生的問題也就是備課備學(xué)生。
3、加強(qiáng)對學(xué)生發(fā)現(xiàn)問題、總結(jié)規(guī)律、提出疑問等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
的培訓(xùn)。
4、課堂教學(xué)注重多措施了解學(xué)生學(xué)習(xí)效果的反饋。俗話說:“金無足赤,人無完人”。一節(jié)課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請各位同仁批評指正,本人一定笑納,并表示感謝。
平方差公式教案篇十一
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
幫助學(xué)生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
平方差公式教案篇十二
通過教學(xué)我對本節(jié)課的反思如下:
1、本節(jié)課我從復(fù)習(xí)舊知入手,在教學(xué)設(shè)計時提供充分探索與交流的空間,使學(xué)生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學(xué)要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學(xué)生被動學(xué)習(xí)的'局面。我在教學(xué)時沒有直接讓學(xué)生推導(dǎo)平方差公式,而是設(shè)置了一個做一做,讓學(xué)生通過計算四個多項式乘以多項式的題目,讓學(xué)生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學(xué)生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的一般能力,讓學(xué)生體會發(fā)現(xiàn)的愉悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感覺效果很好。
不足:在學(xué)生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學(xué)生順理成章的猜測公式的結(jié)果。
2、學(xué)生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學(xué)生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與—b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學(xué)生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果。我很細(xì)地給學(xué)生講了以上特點,學(xué)生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學(xué)中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學(xué)生錯誤主要是:(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學(xué)中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達(dá)到教學(xué)效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學(xué)生往往學(xué)起來容易,真正掌握起來困難。部分學(xué)生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
總之,在以后的教學(xué)中我會更深入的專研教材,結(jié)合教學(xué)目標(biāo)與要求,結(jié)合學(xué)生的實際特點,克服自己的弱點,盡量使數(shù)學(xué)課生動、自然、有趣。
平方差公式教案篇十三
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標(biāo)。為此,我作了如下努力:
1、把數(shù)學(xué)問題“蘊藏”在游戲中。
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學(xué)方式的運用。
把探究的機(jī)會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強(qiáng)的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教案篇十四
學(xué)習(xí)目標(biāo):
1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;。
3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認(rèn)識規(guī)律.
學(xué)習(xí)重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學(xué)習(xí)過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).
3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差。或者說兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。
二、試一試。
平方差公式教案篇十五
本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先提醒學(xué)生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來,應(yīng)用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認(rèn)識平方差公式的`結(jié)構(gòu)時候,重點突出學(xué)生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學(xué)設(shè)計中,教師只作為了一個點撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學(xué)生頭腦中形成一個清晰完整的數(shù)學(xué)模型,使學(xué)生在今后的練習(xí)中游刃有余。
不足之處:
教學(xué)中時間把握還是不足,在設(shè)計的題目中不怎么合理,應(yīng)按題目的難度從易到難。
有些題目的歸納可放手給學(xué)生討論后由學(xué)生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學(xué)語言還太隨意,數(shù)學(xué)的語言應(yīng)該嚴(yán)謹(jǐn)。在語調(diào)上應(yīng)該有所變化。
平方差公式教案篇十六
一、教學(xué)目標(biāo):
1、使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識;
3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
二、重點、難點:
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。
三、教學(xué)方法。
以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
四、教學(xué)過程。
(一)創(chuàng)設(shè)問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進(jìn)行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)。
(三)嘗試探究。
(四)鞏固練習(xí)。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學(xué)生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
(學(xué)生回答,教師總結(jié))。
(六)作業(yè)。
p106習(xí)題1—5題。
七、板書設(shè)計:
教學(xué)反思。
通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會,過于注重“收”,而“放”不夠。
平方差公式教案篇十七
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
把探究的機(jī)會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強(qiáng)的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。