教案應(yīng)該具備可操作性,讓教師在教學(xué)過程中能夠準(zhǔn)確按照教案進(jìn)行教學(xué)。教案的編寫要經(jīng)過反復(fù)的修改和完善,符合實(shí)際教學(xué)的需要。希望這些教案范文能夠給大家提供一些啟示和靈感。
圓柱體積教案篇一
1.教學(xué)內(nèi)容。
本節(jié)課是蘇教國標(biāo)教材六年小學(xué)數(shù)學(xué)(下冊)第二單元25頁的例4教學(xué)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式解決一些簡單的實(shí)際問題。
2.本節(jié)課在教材中所處的地位和作用。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用。學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3.教材的重點(diǎn)和難點(diǎn)。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,等積轉(zhuǎn)化數(shù)學(xué)思想的培養(yǎng)以及觀察比較新舊圖形的聯(lián)系,做出合請推理,從而推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4.教學(xué)目標(biāo)。
(1)讓學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡單實(shí)際問題。
(2)使學(xué)生進(jìn)一步體會“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識解決實(shí)際問題的能力,發(fā)展空間觀念和初步的推理能力。
(3)通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
二、說教法。
從學(xué)生已有的知識水平和認(rèn)知規(guī)律出發(fā),經(jīng)過觀察、比較、猜想、思考、、驗(yàn)證等方法,自主探究,合情推理。
三、說教學(xué)過程。
本節(jié)課的教學(xué)過程分為六個(gè)教學(xué)環(huán)節(jié),主要包括:
1、復(fù)習(xí)引導(dǎo),揭示課題。
明確已有的圓柱的特征、體積概念的認(rèn)識、平面圖形公式的研究方法等知識水平,建立新的學(xué)習(xí)和探究欲望。
2、觀察比較,建立猜想。
在觀察長方體、正方體、圓柱體等底等高時(shí),猜想他們的體積是否都想等?猜想后強(qiáng)調(diào)“可能“相等,因?yàn)槭遣孪氲?。圓柱的體積是不是等于底面積乘高,我們還沒有研究出公式來,所以這里只能是一種沒有經(jīng)過驗(yàn)證的猜想,只能用“可能”相等,沒有經(jīng)過驗(yàn)證的觀點(diǎn),不可以用“一定“兩個(gè)字,讓學(xué)生體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。
3、激勵(lì)思考,提出驗(yàn)證的方法。
有沒有一個(gè)可以借鑒的好的研究方法,來證實(shí)等底等高的圓柱體與長方體、正方的體積有可能相等呢?或者說圓柱的體積也有可能等于底面積乘高呢?學(xué)生可以通過回憶平面圖形面積計(jì)算公式時(shí)的推導(dǎo)方法,獲取一些思考。
4、自主探究,合情推理。
在學(xué)生回憶的基礎(chǔ)上,可以提出使用“切割—轉(zhuǎn)化—觀察—比較—分析—推理”等方法,四人一組,來討論下面的問題:
小組討論綱要:
(1)用方法,把圓柱體轉(zhuǎn)化成了體。
(2)在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
(3)通過觀察比較,你發(fā)現(xiàn)了什么?
(4)怎么進(jìn)行合情推理?
(5)怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
把課堂還給學(xué)生,教師的角色是組織和引導(dǎo)。
5、學(xué)以致用,解決實(shí)際問題。
應(yīng)用所推導(dǎo)出來的圓柱體積計(jì)算公式,解決一些生活中的簡單實(shí)際問題,理解生活中處處有數(shù)學(xué),體會數(shù)學(xué)的應(yīng)用價(jià)值和廣泛領(lǐng)域。
6、全課小結(jié),提升認(rèn)識水平。
在研究圓柱體積公式的時(shí)候,我們運(yùn)用了哪些方法?這里的切割是指切割舊圖形,還是切割要研究的新圖形?轉(zhuǎn)化是指轉(zhuǎn)化成已學(xué)過的舊圖形,還是轉(zhuǎn)化成沒有學(xué)過的新圖形?觀察比較什么?怎樣分析推理?這里蘊(yùn)藏著什么樣的數(shù)學(xué)思想?最后問大家這樣一個(gè)問題,發(fā)明電燈重要,還是使用電燈重要,哪個(gè)更能造福人類,造福子孫萬代?科學(xué)家、發(fā)明家就是這樣誕生的,他們善于猜想、善于發(fā)現(xiàn),敢于探究。如果我們將來想成為科學(xué)家,我們必須具備這樣的品質(zhì)。通過這節(jié)課的學(xué)習(xí),你敢不敢大膽去嘗試、去探究圓錐體的體積計(jì)算公式,或是更廣泛的研究上下底面都是相等的三角形、上下底面都是相等的正多邊形等一些直棱柱的體積計(jì)算方法呢?在研究中,你會發(fā)現(xiàn),數(shù)學(xué)很美,它是思維的體操,有興趣的同學(xué),可以把你研究的成果告訴老師一起分享。
四、說教學(xué)反思。
在本節(jié)課的教學(xué)中,我主要讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),在實(shí)踐中提升,從而獲得知識。講課時(shí),我再利用教具學(xué)具和課件雙重演示,讓學(xué)生通過眼看、腦想、討論等一系列活動(dòng)后,用自己的語言說出圓柱體體積計(jì)算公式的推導(dǎo)過程。我的第一層次是復(fù)習(xí)。通過復(fù)習(xí)來導(dǎo)入新課。第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析的和歸納能力。第三層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
這節(jié)課,在設(shè)計(jì)上充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于樂中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
當(dāng)然,由于經(jīng)驗(yàn)不足,在教學(xué)過程中還有很多環(huán)節(jié)沒有處理好。懇請大家提出寶貴的意見和建議。
圓柱體積教案篇二
運(yùn)用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、過程方法。
讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、情感態(tài)度價(jià)值觀。
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
圓柱體積教案篇三
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報(bào),教師設(shè)疑)。
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
(2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
(3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗(yàn)結(jié)果填入實(shí)驗(yàn)報(bào)告1中。(課件出示)。
(4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
(1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
(2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
(5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計(jì)算器計(jì)算體積,并填入實(shí)驗(yàn)報(bào)告2中。(課件出示)。
4、確定方法,探究實(shí)驗(yàn),驗(yàn)證體積公式。
(1)、首先要求學(xué)生利用實(shí)驗(yàn)工具,自主商討確定研究方法。
(2)、學(xué)生通過討論交流確定了兩種驗(yàn)證方案。
方案一:將圓柱c放入水中,驗(yàn)證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計(jì)算新形體的體積,驗(yàn)證圓柱d的體積。
(3)、學(xué)生按照自己所設(shè)想的方案動(dòng)手實(shí)驗(yàn),并記錄有關(guān)數(shù)據(jù),填入實(shí)驗(yàn)報(bào)告2中。
(5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
(6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長方體體積那樣,用底面積乘以高。
(7)、小結(jié):
要想求出一個(gè)圓柱的體積,需要知道什么條件?
(8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh。
1、課件出示例4,學(xué)生獨(dú)立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計(jì)算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習(xí)。
(1)、一個(gè)長方形的紙片長是6分米,寬4分米。用它分別圍成兩個(gè)圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計(jì)算說明理由。(得數(shù)保留兩位小數(shù))。
談?wù)勥@節(jié)課你有哪些收獲。
教學(xué)內(nèi)容:人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)過程。
圓柱體積教案篇四
面對復(fù)習(xí)的問題,學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時(shí),學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計(jì)算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的重點(diǎn)解決問題,我滿懷信心(兩個(gè)復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨(dú)立思考,怎樣計(jì)算圓柱體的體積?正當(dāng)大家苦思冥想的時(shí)候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個(gè)舉手,把別人的風(fēng)頭都給搶去了,他是一個(gè)愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是壓一壓他的積極性。給大家留一點(diǎn)思考的時(shí)間,等一會再說你的方法,誰知道這個(gè)積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價(jià)他呢,耐不住性子啊,再穩(wěn)重一些多好???):我是這樣想的,這是一個(gè)圓柱體的生日蛋糕,我想把它橫著切成一個(gè)個(gè)圓片,分給你們吃。霎時(shí)間,下面的同學(xué)都笑了,過了一會,一個(gè)學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系???有啊,這個(gè)圓柱體蛋糕的體積就是每一個(gè)圓片的面積乘上圓片的個(gè)數(shù)。這樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時(shí)候了:你給大家解釋一下,圓片是什么?圓片的個(gè)數(shù)又是什么?圓片就是圓柱的底面積,圓片的個(gè)數(shù)就是圓柱的高。
這種推導(dǎo)圓柱體體積的'計(jì)算方法,是出乎我意料之外的,因?yàn)椋鉀Q問題前,已經(jīng)復(fù)習(xí)了長方體體積計(jì)算方法與圓的面積的推導(dǎo)方法,都是為把圓柱體進(jìn)行等分轉(zhuǎn)化成長方體體積來推導(dǎo)做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計(jì)算圓柱體體積的道理,實(shí)際是積分思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到預(yù)想方法之前了。真是計(jì)劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個(gè)想法在他腦海里轉(zhuǎn)瞬即逝,那么這個(gè)精彩的火花就不會在課堂上呈現(xiàn)。
由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會,及時(shí)的捕捉學(xué)生的思維靈感,精彩就會不期而至?!秷A柱體的體積》這一課我學(xué)到了很多東西。
圓柱體積教案篇五
談話:前面我們認(rèn)識了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)。
啟發(fā):看到這個(gè)課題,你們會想到什么?這堂課要解決什么問題呀?(可能學(xué)生會提出以下幾個(gè)問題)。
引導(dǎo):
(1)什么是圓柱的體積?
(2)圓柱的體積和什么有關(guān)?
(3)圓柱的體積公式是怎樣推導(dǎo)出來的?
(4)圓柱的體積是怎樣求出來的?
(5)學(xué)習(xí)圓柱的體積公式有什么用?
談話:對!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小。
談話:這堂課我們主要解決三個(gè)問題:(出示探究問題)。
1、圓柱的體積和什么有關(guān)?
2、這個(gè)公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實(shí)際問題?
【設(shè)計(jì)意圖】直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
1、提出問題。
談話:現(xiàn)在請大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計(jì)算。是怎樣計(jì)算的?
引導(dǎo):我們已經(jīng)學(xué)過長方體、正方體的體積計(jì)算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高。
正方體的體積=棱長×棱長×棱長。
統(tǒng)一為:長方體或正方體的體積=底面積×高。
談話:長方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長方體的面都是平面圖形,圓柱的側(cè)面是一個(gè)曲面。
引導(dǎo):它的側(cè)面是一個(gè)曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想。
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)。
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本。
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)。
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個(gè)辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長方體。
談話:以前我們學(xué)習(xí)圓的面積時(shí)也是運(yùn)用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計(jì)算公式。
(用多媒體演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)。
【設(shè)計(jì)意圖】在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運(yùn)用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識,又為學(xué)習(xí)新知識作好鋪墊,能夠促進(jìn)學(xué)生充分運(yùn)用遷移規(guī)律把新舊知識聯(lián)系起來組成一個(gè)新的知識結(jié)構(gòu)。
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導(dǎo):長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導(dǎo):無數(shù)份,可以永遠(yuǎn)分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個(gè)圖形就越接近于長方體。
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報(bào):把圓柱體轉(zhuǎn)化為近似的`長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長方體的體積就可以了。
匯報(bào):
(1)轉(zhuǎn)化后的近似長方體的底面積與原來的圓柱體的底面積相等。
(2)轉(zhuǎn)化后的近似長方體的高與原來的圓柱體的高相等。
因?yàn)椋洪L方體的體積=底面積×高。
(教師要求學(xué)生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導(dǎo)的過程。)。
長方體的體積=底面積×高。
交流:我們也可以用字母表示圓柱的體積計(jì)算公式:v=sh(板書)。
引導(dǎo):剛才我們的猜想是正確的,圓柱的體積既和底面積有關(guān),又和高有關(guān)。
現(xiàn)在請同學(xué)們把圓柱體積公式的推導(dǎo)過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關(guān)。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長方體。
通過比一比、算一算成功地推導(dǎo)出圓柱的體積計(jì)算公式,解決了我們前兩個(gè)要探究的問題。
【設(shè)計(jì)意圖】要求每個(gè)學(xué)生動(dòng)手操作,打破了過去教師演示教具學(xué)生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學(xué)思想,讓學(xué)生自己從嘗試中推導(dǎo)圓柱體積的公式。
圓柱體積教案篇六
1.結(jié)合實(shí)際讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
理解并掌握圓柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
掌握圓柱體積公式的推導(dǎo)過程。
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(gè)(一個(gè)為橡皮泥)、水槽、水。
一、情境激趣導(dǎo)入新課。
2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)。
二、自主探究,學(xué)習(xí)新知。
(一)設(shè)疑。
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個(gè)圓柱學(xué)具的體積嗎?
2、再出示一個(gè)用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)。
(二)猜想。
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測一個(gè),圓柱的體積公式可能是什么?說說你的理由?
(三)驗(yàn)證。
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個(gè)實(shí)驗(yàn)?zāi)??結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)。
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)。
3、指名兩位學(xué)生上臺用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時(shí),拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1)圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2)長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3)長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4)你認(rèn)為圓柱的體積可以怎樣計(jì)算?
(生匯報(bào)交流,師根據(jù)學(xué)生講述適時(shí)板書。)。
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是v=sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價(jià))。
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)。
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個(gè)圓柱的體積?(測不同數(shù)據(jù)計(jì)算)。
11、練一練:列式計(jì)算求下列各圓柱體的體積。
(1)底面半徑2cm,高5cm。
(2)底面直徑6dm,高1m。
(3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升。
1、判斷正誤:
(1)等底等高的圓柱體和長方體體積相等?!ǎ?。
(2)一個(gè)圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()。
(3)圓柱的底面積越大,它的體積就越大?!ǎ?BR> (4)一個(gè)圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。……()。
四、全課總結(jié)自我評價(jià)。
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
圓柱的體積是幾何知識的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動(dòng)中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個(gè)裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時(shí)意識到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時(shí),學(xué)生意識到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個(gè)十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會靈活應(yīng)用知識解決簡單的實(shí)際問題,在鞏固體積計(jì)算方法的同時(shí),進(jìn)一步感受到數(shù)學(xué)知識的使用價(jià)值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。
動(dòng)手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動(dòng)手操作的機(jī)會,為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺,通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個(gè)學(xué)生上臺操作演示,然后再課件動(dòng)態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個(gè)探究過程以學(xué)生自主學(xué)習(xí)為主,知識的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
圓柱體積教案篇七
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。
在課的設(shè)計(jì)上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握。
圓柱體積教案篇八
本節(jié)課是學(xué)生在學(xué)習(xí)了長方體和立方體的基礎(chǔ)上進(jìn)行教學(xué)的,它是一種比較常見的立體圖形,學(xué)生對圓柱都有初步的感性認(rèn)識。本節(jié)重點(diǎn)是圓柱的特征和圓柱側(cè)面積的計(jì)算。上課伊始,我先組織學(xué)生復(fù)習(xí)圓柱的特征、長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程,由此引出圓柱的體積一課題。為了讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
反思不足:1、練習(xí)有些少。在學(xué)生練習(xí)這個(gè)環(huán)節(jié)中,最能反映學(xué)生掌握情況。應(yīng)該再從不同的角度設(shè)計(jì)多種練習(xí)題目來考察學(xué)生的知識掌握情況。2、本節(jié)課節(jié)奏較快,沒有去檢測一下學(xué)生每個(gè)環(huán)節(jié)掌握了沒有。3、數(shù)學(xué)要應(yīng)用于生活,應(yīng)該多出些有關(guān)生活實(shí)際的練習(xí)題。
圓柱體積教案篇九
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、猜測、操作、驗(yàn)證、歸納等活動(dòng)中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的價(jià)值,同時(shí)掌握必要的基礎(chǔ)知識與基本技能。
在這節(jié)課中,我先是復(fù)習(xí)了長方體、正方體體積的計(jì)算,然后順勢提出“如何計(jì)算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測、操作、交流等數(shù)學(xué)活動(dòng),如有學(xué)生想用單位立方體來擺,可是因圓柱體的側(cè)面是曲面,無法量出。在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的方法。通過學(xué)生對“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”的回答,從而引出:用割拼的方法將它轉(zhuǎn)化為其他的圖形。出示教具將圓柱沿底面已經(jīng)平分割成16等份,將其插拼成一個(gè)近似長方體;接著再啟發(fā)提問將圓柱體沿底面平分32、64等份,再拼成近似的長方體;。使學(xué)生知道“把它平分成很多很多等份,拼成的圖形將會越來越接近長方體”。通過讓學(xué)生觀察比較,延伸想象發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?最后,再從長方體的體積公式推導(dǎo)出圓柱體的體積計(jì)算公式。由此至終讓學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程,并伴隨著問題的圓滿解決,又使學(xué)生體驗(yàn)到了成功的喜悅與滿足。與此同時(shí),使學(xué)生理解與感受到了數(shù)學(xué)的魅力。
圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。在計(jì)算的過程中,發(fā)現(xiàn)學(xué)生單位名稱用錯(cuò),體積單位用面積單位。為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。對于書中所給的立體圖形,認(rèn)識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(個(gè)別學(xué)生不清楚)。在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。注意引導(dǎo)學(xué)生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。
圓柱體積教案篇十
在教學(xué)圓柱的體積時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識。通過這節(jié)課的教學(xué),我覺得成功之處有以下幾個(gè)方面:
圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計(jì)算方法,并強(qiáng)調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨(dú)立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。
學(xué)生在探究新知時(shí),教師要給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),學(xué)生親身參與操作,先用小刀把一根火腿腸切成一個(gè)圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體。找一找:這個(gè)長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計(jì)算公式。
為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體。”但是,到底拼成的圖形怎樣更接近長方體?演示動(dòng)畫后,學(xué)生不僅對這個(gè)切拼過程一目了然,同時(shí)又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
圓柱體積教案篇十一
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思。
圓柱體積教案篇十二
掌握圓柱的體積計(jì)算公式,能夠正確計(jì)算圓柱的體積。
【過程與方法】。
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價(jià)值觀】。
感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
提問:長方體和正方體的體積公式是什么?
(正方體)體積=底面積×高。今天我們再來研究另一個(gè)熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知。
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預(yù)設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長方體。
預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長方體的圖形。此時(shí)教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學(xué)生進(jìn)行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進(jìn)行回答。
預(yù)設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
提問:圓柱的體積公式是什么?
用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預(yù)設(shè):v=sh。
教師強(qiáng)調(diào)字母v、s是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預(yù)設(shè)1:可以用長方體體積公式推導(dǎo)出圓柱體體積公式;
預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預(yù)設(shè)3:計(jì)算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習(xí)。
試一試。
一個(gè)圓柱形零件,底面半徑是5厘米,高是8厘米。這個(gè)零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)。
提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
圓柱體積教案篇十三
本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進(jìn)行的解決問題。這要求學(xué)生對圓柱的體積公式掌握的比較扎實(shí),并要求理論與實(shí)際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。
在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機(jī)地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨(dú)立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點(diǎn),突破重難點(diǎn)。通過2個(gè)瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進(jìn)行轉(zhuǎn)化時(shí),讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實(shí)際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級學(xué)科特點(diǎn),并且靈活運(yùn)用生命化課堂的四自模式、新技術(shù),運(yùn)用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時(shí)提出的問題應(yīng)該更簡潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時(shí)常為此感到糾結(jié)。
剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
圓柱體積教案篇十四
教學(xué)目標(biāo)是:使學(xué)生知道圓柱體的體積公式推導(dǎo)過程;理解并掌握圓柱體的體積公式及相關(guān)的推論。并能正確運(yùn)用公式解決一些簡單的實(shí)際問題。通過對圓柱體體積公式的教學(xué),加深學(xué)生對立體圖形的認(rèn)識,培養(yǎng)學(xué)生的觀察能力,抽象和概括能力及綜合運(yùn)用能力,發(fā)展學(xué)生的空間觀念,同時(shí)滲透一些關(guān)于極限的辨證唯物主義思想。
學(xué)習(xí)本節(jié)課應(yīng)具備的舊知識是:
1、長方體的體積公式及推導(dǎo)過程。
2、圓面積公式的推導(dǎo)過程。
在教學(xué)中就是要運(yùn)用圓面積公式的推導(dǎo)方法,將圓柱體轉(zhuǎn)化為長方體,從而由長方體體積公式推導(dǎo)出圓柱體體積公式。因此根據(jù)本節(jié)課的特點(diǎn)我采用的教學(xué)方法是:
1、有目的的運(yùn)用啟發(fā)引導(dǎo)的方法組織教學(xué)。
2、采用演示實(shí)驗(yàn)的方法,讓學(xué)生觀察比較,從而發(fā)現(xiàn)規(guī)律,找出體積公式。
3、適當(dāng)采用“嘗試——失敗——總結(jié)——再嘗試——再總結(jié)”的方法,引導(dǎo)學(xué)生找到推導(dǎo)公式的合理方法。
4、利用多變的練習(xí),加深學(xué)生對公式的理解,找到公式的根本內(nèi)涵。但是要注意循序漸進(jìn),由易到難,由簡到繁。
在學(xué)法指導(dǎo)上,主要是讓學(xué)生學(xué)會觀察、比較,歸納概括出體積公式。通過直觀實(shí)驗(yàn),吸引學(xué)生主動(dòng)、認(rèn)真觀察圖形的拼接過程,積極回答觀察結(jié)果,主動(dòng)參與到教學(xué)中去,并且在教師的啟發(fā)下,進(jìn)行歸納概括。培養(yǎng)學(xué)生的自學(xué)能力及概括能力。
本節(jié)課所需教具為:圓柱體割拼組合教具及事先寫好習(xí)題的小黑板。
教學(xué)一開始,首先復(fù)習(xí)。目的是:一是通過復(fù)習(xí)舊知識,為新課作好準(zhǔn)備;二是引出新課。
一開始先復(fù)習(xí)體積的概念及長方體的體積公式。這個(gè)練習(xí)可采用提問的方式,但是這些知識已學(xué)過較長時(shí)間,所以適當(dāng)?shù)臅r(shí)侯教師要加以啟發(fā)提示。
接下來,教師引導(dǎo)學(xué)生回憶長方體體積公式的推導(dǎo)過程,及圓面積公式的推導(dǎo)方法,為新課做準(zhǔn)備。
然后,提問:圓柱體的特點(diǎn)是什么?圓柱體的側(cè)面積、表面積公式是什么?由于這些內(nèi)容剛剛學(xué)過,學(xué)生很容易回答,可以提問基礎(chǔ)較差的學(xué)生,并加以鼓勵(lì),使他們樹立信心,提高興趣,以便學(xué)習(xí)新課。
通過以上復(fù)習(xí),鞏固了舊知識,為學(xué)習(xí)新知識做好了鋪墊,同時(shí)調(diào)動(dòng)了全體學(xué)生的學(xué)習(xí)興趣。利用這一有利時(shí)機(jī),教師及時(shí)引導(dǎo)、設(shè)疑:
這樣就順利轉(zhuǎn)入了新課的學(xué)習(xí)。
這時(shí)教師出示圓柱體模型。
首先引導(dǎo)學(xué)生用長方體公式的推導(dǎo)方法嘗試。提問:“我們學(xué)過的長方體體積是用單位體積的小正方體塊來量出的,現(xiàn)在我們也用同樣的方法來量一下,現(xiàn)在這個(gè)圓柱體的體積是多少?”
學(xué)生反復(fù)嘗試后回答:“無法量出?!?BR> 這時(shí)教師再問:“什么地方量不出來?為什么?”
學(xué)生回答:“圓柱體的側(cè)面是曲面,無法量出。”
在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的'方法。這樣充分利用學(xué)生的好奇心理,調(diào)動(dòng)學(xué)生情緒,轉(zhuǎn)入圓柱體體積公式的教學(xué)。
教師啟發(fā)提問:“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”通過學(xué)生的回答,引出新思路:用割拼的方法將它轉(zhuǎn)化為其他的圖形。
得到了新的方法以后,教師進(jìn)行演示實(shí)驗(yàn)1:先將圓柱沿底面平分割成8等份,對拼成一個(gè)近似長方體。學(xué)生觀察割拼過程。
教師提出問題:“這個(gè)圓柱體拼成了一個(gè)近似的什么立體圖形?為什么說它是近似的?它的哪一部分不是長方體的組成部分?”
學(xué)生回答后,接著再進(jìn)行演示實(shí)驗(yàn)2:將圓柱體沿底面平分16等份,再拼成近似的長方體。
再問:“這次是不是更象長方體了?”
這時(shí)教師啟發(fā)學(xué)生想象;“把它平分成很多很多等份,這樣拼成的圖形將會怎樣?”
教師總結(jié):“將會無限趨近于長方體,并且最終會得到一個(gè)長方體?!?BR> 然后及時(shí)引導(dǎo)學(xué)生觀察這個(gè)長方體,并把它與圓柱體進(jìn)行比較,提問:“這個(gè)長方體的哪部分與圓柱體相同?”因?yàn)槟P透髅娴念伾煌?,所以學(xué)生會很快回答出來:“底面積與高?!?BR> “那么這個(gè)長方體體積與圓柱體體積有什么關(guān)系?”學(xué)生回答:“相同。”
“長方體的體積是怎樣計(jì)算的?”學(xué)生回答:“底面積乘以高。”
“那么圓柱體是否也可以這樣算呢?”學(xué)生回答:“是的。”
這時(shí)教師根據(jù)學(xué)生的回答,及時(shí)板書這兩個(gè)公式。
通過以上的教學(xué),引導(dǎo)學(xué)生歸納概括出了圓柱體的體積公式。這樣先通過復(fù)習(xí)做知識的鋪墊,然后由學(xué)生進(jìn)行嘗試,充分運(yùn)用思維的遷移規(guī)律,用圓面積公式的推導(dǎo)方法搭起了橋梁,順利地實(shí)現(xiàn)了本節(jié)課的第一個(gè)目標(biāo)。并且在推導(dǎo)過程中滲透了關(guān)于極限的辨證唯物主義思想。
學(xué)生通過嘗試得到了成功的喜悅,思想高度興奮。教師及時(shí)利用這一時(shí)機(jī),將公式向深處拓展。設(shè)問:“如果不知道圓柱體的底面積和高,怎么求體積?”學(xué)生考慮,教師出示嘗試題:
1、已知圓柱體的底面半徑和高,怎樣求體積?
2、已知圓柱體的底面直徑和高,怎樣求體積?
3、已知圓柱體的底面周長和高,怎樣求體積?
4、已知圓柱體的側(cè)面積和高,怎樣求體積?
學(xué)生分組討論。討論完畢后,每組選一名代表回答,其他同學(xué)做適當(dāng)補(bǔ)充。學(xué)生回答完畢后,教師及時(shí)進(jìn)行總結(jié),并且板書有關(guān)公式的推論。
通過以上練習(xí),避免了學(xué)生只注意了公式的表面特征,而忽略了公式的本質(zhì)特征。使學(xué)生明確,不論條件怎樣變化,最終都要?dú)w到底面積乘以高上來。從而使學(xué)生理解了本公式的內(nèi)涵,為靈活運(yùn)用公式做好了知識的準(zhǔn)備。
最后要求學(xué)生用字母表示公式。由于此方法學(xué)生早已熟悉,所以可全班集體回答。
學(xué)生理解和掌握了公式后,教師及時(shí)出示習(xí)題,指導(dǎo)學(xué)生將公式應(yīng)用于實(shí)際:
(出示準(zhǔn)備好的小黑板)。
提問:“這兩道題是否要進(jìn)行單位換算?各應(yīng)選用什么公式?”學(xué)生回答完畢后,一起獨(dú)立完成。教師巡視檢查,發(fā)現(xiàn)問題,及時(shí)補(bǔ)救。
最后,對本節(jié)課進(jìn)行小結(jié)。提出應(yīng)用公式時(shí)應(yīng)注意的問題:1、仔細(xì)審題,弄清條件的變化。2、單位名稱要統(tǒng)一。
布置課后作業(yè)。
本節(jié)課到此結(jié)束。
圓柱體積教案篇十五
本節(jié)課是蘇教國標(biāo)教材六年小學(xué)數(shù)學(xué)(下冊)第二單元25頁的例4教學(xué)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式解決一些簡單的實(shí)際問題。
2.本節(jié)課在教材中所處的地位和作用。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用。學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3.教材的重點(diǎn)和難點(diǎn)。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,等積轉(zhuǎn)化數(shù)學(xué)思想的培養(yǎng)以及觀察比較新舊圖形的聯(lián)系,做出合請推理,從而推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4.教學(xué)目標(biāo)。
(1)讓學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡單實(shí)際問題。
(2)使學(xué)生進(jìn)一步體會“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識解決實(shí)際問題的能力,發(fā)展空間觀念和初步的推理能力。
(3)通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
從學(xué)生已有的知識水平和認(rèn)知規(guī)律出發(fā),經(jīng)過觀察、比較、猜想、思考、、驗(yàn)證等方法,自主探究,合情推理。
本節(jié)課的教學(xué)過程分為六個(gè)教學(xué)環(huán)節(jié),主要包括:
1、復(fù)習(xí)引導(dǎo),揭示課題。
明確已有的圓柱的特征、體積概念的認(rèn)識、平面圖形公式的研究方法等知識水平,建立新的學(xué)習(xí)和探究欲望。
2、觀察比較,建立猜想。
在觀察長方體、正方體、圓柱體等底等高時(shí),猜想他們的體積是否都想等?猜想后強(qiáng)調(diào)“可能“相等,因?yàn)槭遣孪氲?。圓柱的體積是不是等于底面積乘高,我們還沒有研究出公式來,所以這里只能是一種沒有經(jīng)過驗(yàn)證的猜想,只能用“可能”相等,沒有經(jīng)過驗(yàn)證的觀點(diǎn),不可以用“一定“兩個(gè)字,讓學(xué)生體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。
3、激勵(lì)思考,提出驗(yàn)證的方法。
有沒有一個(gè)可以借鑒的好的研究方法,來證實(shí)等底等高的圓柱體與長方體、正方的體積有可能相等呢?或者說圓柱的體積也有可能等于底面積乘高呢?學(xué)生可以通過回憶平面圖形面積計(jì)算公式時(shí)的推導(dǎo)方法,獲取一些思考。
4、自主探究,合情推理。
在學(xué)生回憶的基礎(chǔ)上,可以提出使用“切割—轉(zhuǎn)化—觀察—比較—分析—推理”等方法,四人一組,來討論下面的問題:
小組討論綱要:
(1)用方法,把圓柱體轉(zhuǎn)化成了體。
(2)在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
(3)通過觀察比較,你發(fā)現(xiàn)了什么?
(4)怎么進(jìn)行合情推理?
(5)怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
把課堂還給學(xué)生,教師的角色是組織和引導(dǎo)。
5、學(xué)以致用,解決實(shí)際問題。
應(yīng)用所推導(dǎo)出來的圓柱體積計(jì)算公式,解決一些生活中的簡單實(shí)際問題,理解生活中處處有數(shù)學(xué),體會數(shù)學(xué)的應(yīng)用價(jià)值和廣泛領(lǐng)域。
6、全課小結(jié),提升認(rèn)識水平。
在研究圓柱體積公式的時(shí)候,我們運(yùn)用了哪些方法?這里的切割是指切割舊圖形,還是切割要研究的新圖形?轉(zhuǎn)化是指轉(zhuǎn)化成已學(xué)過的舊圖形,還是轉(zhuǎn)化成沒有學(xué)過的新圖形?觀察比較什么?怎樣分析推理?這里蘊(yùn)藏著什么樣的數(shù)學(xué)思想?最后問大家這樣一個(gè)問題,發(fā)明電燈重要,還是使用電燈重要,哪個(gè)更能造福人類,造福子孫萬代?科學(xué)家、發(fā)明家就是這樣誕生的,他們善于猜想、善于發(fā)現(xiàn),敢于探究。如果我們將來想成為科學(xué)家,我們必須具備這樣的品質(zhì)。通過這節(jié)課的學(xué)習(xí),你敢不敢大膽去嘗試、去探究圓錐體的體積計(jì)算公式,或是更廣泛的研究上下底面都是相等的.三角形、上下底面都是相等的正多邊形等一些直棱柱的體積計(jì)算方法呢?在研究中,你會發(fā)現(xiàn),數(shù)學(xué)很美,它是思維的體操,有興趣的同學(xué),可以把你研究的成果告訴老師一起分享。
在本節(jié)課的教學(xué)中,我主要讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),在實(shí)踐中提升,從而獲得知識。講課時(shí),我再利用教具學(xué)具和課件雙重演示,讓學(xué)生通過眼看、腦想、討論等一系列活動(dòng)后,用自己的語言說出圓柱體體積計(jì)算公式的推導(dǎo)過程。我的第一層次是復(fù)習(xí)。通過復(fù)習(xí)來導(dǎo)入新課。第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析的和歸納能力。第三層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
這節(jié)課,在設(shè)計(jì)上充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于樂中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
當(dāng)然,由于經(jīng)驗(yàn)不足,在教學(xué)過程中還有很多環(huán)節(jié)沒有處理好。懇請大家提出寶貴的意見和建議。
圓柱體積教案篇十六
新課程標(biāo)準(zhǔn)指出,“數(shù)學(xué)課程不僅要考慮教學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有知識經(jīng)驗(yàn)基礎(chǔ)之上?!币虼吮救苏J(rèn)為教學(xué)中成功的關(guān)鍵在于:教師的“教”立足于學(xué)生的“學(xué)”基于這種理念來設(shè)計(jì)教學(xué)的。
根據(jù)新課程理念,本節(jié)課的教學(xué)設(shè)計(jì)主要意在兩個(gè)方面:引導(dǎo)學(xué)生“玩”數(shù)學(xué),幫助學(xué)生“悟”數(shù)學(xué)。
本節(jié)課主要采用操作實(shí)踐、自主探索、合作交流、積極思考等活動(dòng)方式,讓學(xué)生從中感受、理解知識的產(chǎn)生和發(fā)展的過程,倡導(dǎo)發(fā)現(xiàn)數(shù)學(xué)的樂趣。
1、說教材。
圓柱體的體積是在學(xué)生學(xué)習(xí)長方體的體積以及圓柱的認(rèn)識的基礎(chǔ)上進(jìn)行教學(xué)的。內(nèi)容包括圓柱體體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算它的體積。
2、說教學(xué)目標(biāo)及重難點(diǎn)。
目標(biāo)是:
(1)知道圓柱體體積的推導(dǎo)過程,會應(yīng)用該公式計(jì)算圓柱的體積。
(2)初步建立空間觀念和邏輯推理能力。
(3)知道知識間是可以互相轉(zhuǎn)化的。
(1)啟發(fā)引導(dǎo),組織教學(xué)。
(2)直觀演示,操作發(fā)現(xiàn)。
(3)運(yùn)用遷移,循序漸進(jìn)。
(1)學(xué)會通過觀察、比較、推理能力概括出圓柱體體積的推導(dǎo)過程。
(2)學(xué)會用舊知轉(zhuǎn)化成新知,解決新問題的能力。
(3)學(xué)會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
1、激趣設(shè)疑,導(dǎo)入新課。
2、回憶圓面積公式推導(dǎo)過程以及長方體體積公式。
1)用課件出示圓面積公式推導(dǎo)過程。
2)板書長方體體積公式。
3、猜想:圓柱體積的大小跟哪些條件有關(guān)?
2)學(xué)生用學(xué)具將圓柱體體積轉(zhuǎn)化成長方體體積。
3)學(xué)生匯報(bào),師課件演示。
4)小組討論。
拼成的圓柱體的底面積與長方體底面積有什么關(guān)系?
拼成的圓柱體的高與長方體的高有什么關(guān)系?
拼成的圓柱體的體積與長方體的體積有什么關(guān)系?
6)總結(jié)出知道底面半徑,直徑,底面周長和高怎樣求體積。
5、出示例4、例5。
1)例4讓學(xué)生說解題思路,師板書。
2)例5放手讓學(xué)生自學(xué),發(fā)現(xiàn)問題及時(shí)解決。
6、練習(xí)環(huán)節(jié)。
1)基本練習(xí)。
看圖列式,并寫出相應(yīng)的公式。
(設(shè)計(jì)意圖是鞏固新知識,加深對新知識的理解。并轉(zhuǎn)化為能力。)。
2)變式練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生的思維靈活性,防止受定勢影響。)。
3)拓展練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生思維的深度和廣度)。
4)升華練習(xí)。
激趣設(shè)疑。
(設(shè)計(jì)意圖是通過學(xué)生親自測量,仔細(xì)去算,使課堂真正活起來)。
本節(jié)課板書簡單、明了,既體現(xiàn)新舊知識之間的轉(zhuǎn)化,又體現(xiàn)新舊知識之間的聯(lián)系,具有指導(dǎo)性。藝術(shù)性。概括性。總結(jié)性。
圓柱體積教案篇十七
大家好!
今天我說課的內(nèi)容是人教版六年級數(shù)學(xué)下冊第二單元《圓柱和圓錐》中的第二課時(shí)《圓柱的體積》。本次說課包括五個(gè)內(nèi)容:說教材、說學(xué)情、說教學(xué)目標(biāo)、說教學(xué)重難點(diǎn)、說學(xué)法、說教法、說教學(xué)程序。下面我從幾個(gè)方面對本節(jié)課進(jìn)行說課。
《圓柱和圓錐》這一單元是在學(xué)習(xí)了長方體和立方體的基礎(chǔ)上進(jìn)入了小學(xué)里學(xué)習(xí)立體圖形的最后階段,這個(gè)單元知識的綜合性和對學(xué)生的要求都比較高,化歸和類比是常用的思想方法要進(jìn)行總結(jié),長方形正方形以及圓的基礎(chǔ)知識都是本單元的認(rèn)知基礎(chǔ)。教學(xué)中注重讓學(xué)生積極主動(dòng)地實(shí)踐研究,讓學(xué)生在合作探究的過程中自主發(fā)現(xiàn)規(guī)律,先用想一想的思考,回憶圓面積公式推導(dǎo)過程,激活原先“化曲為直”的極限思想和“轉(zhuǎn)化”的思想方法記憶儲存,接著用較多的篇幅講解切拼的過程,便于學(xué)生理解和感受轉(zhuǎn)化的過程和極限思想,然后推導(dǎo)圓柱體積的計(jì)算公式,并抽象到字母公式。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用?!秷A柱的體積》一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,學(xué)生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長方體并不難,學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
知識與技能:
讓學(xué)生經(jīng)歷通過用切割拼合的方法借助長方體的體積公式,推導(dǎo)出圓柱體積公式的教學(xué)活動(dòng)過程,使學(xué)生理解圓柱體積公式的推導(dǎo)過程。能夠運(yùn)用公式正確地計(jì)算圓柱的體積。并會解決一些簡單的實(shí)際問題。
過程與方法:
教學(xué)時(shí),要充分利用教具、學(xué)具,引導(dǎo)學(xué)生觀察、操作和交流探索新知。
情感、態(tài)度與價(jià)值觀:
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握圓柱體積計(jì)算公式及熟練運(yùn)用計(jì)公式解決實(shí)際問題。引導(dǎo)學(xué)生經(jīng)歷圓柱體積計(jì)算方法的探索過程,體會化曲為直的數(shù)學(xué)思想方法。
從學(xué)生已有的知識水平和認(rèn)識規(guī)律出發(fā),為了更好地突出重點(diǎn),化解難點(diǎn),掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,充分利用直觀教具,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作討論,使學(xué)生在豐富感性認(rèn)識的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識上升到理性認(rèn)識,體會知識的由來,并通過已學(xué)知識解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
課堂教學(xué)中,不是老師單純地傳授知識,而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
1.學(xué)會通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2.學(xué)會利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3.學(xué)會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
對本節(jié)課的教學(xué),我們設(shè)計(jì)了以下幾個(gè)環(huán)節(jié)。
(一)復(fù)習(xí)舊知識,為引入新知識作準(zhǔn)備。
1.利用實(shí)驗(yàn),引出體積。
復(fù)習(xí)舊知:什么叫體積?你會計(jì)算下面那些圖形的體積?
2.質(zhì)疑,揭示學(xué)習(xí)目標(biāo)。
揭示學(xué)習(xí)目標(biāo):這節(jié)課我們就來探討圓柱的體積。
通過質(zhì)疑、揭示目標(biāo),學(xué)生就能清楚地知道了學(xué)習(xí)的主要任務(wù)和要求。使學(xué)生帶著目標(biāo),有目的、有準(zhǔn)備地學(xué)習(xí)下一步的新知識,學(xué)生就真正能成為學(xué)習(xí)的主人,也使教學(xué)變得更加明確具體,可操作、可檢測。同時(shí)也能激發(fā)起全體學(xué)生的參與達(dá)標(biāo)意識,學(xué)生的主體地位就充分地顯示出來了。
(二)觀察、質(zhì)疑、大膽猜想、培養(yǎng)想像能力。
觀察質(zhì)疑:利用兩個(gè)環(huán)節(jié)。
1、等底不同高,
2、不同底等高兩個(gè)環(huán)節(jié),
比較兩個(gè)圓柱的大小,讓學(xué)生體會圓柱體積的大小與高和底面積有關(guān)。鼓勵(lì)學(xué)生大膽猜想,并說明理由。學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
(三)演示操作,探究新知。
根據(jù)學(xué)生的猜想,通過課件演示,引導(dǎo)學(xué)生觀察,在交流中探究出圓柱的體積的計(jì)算方法,這一過程讓學(xué)生感受到了成功的喜悅,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(四)運(yùn)用公式,解決實(shí)際問題。
(五)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)。
(六)總結(jié)全課,深化教學(xué)目標(biāo)。
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識的得來是通過已學(xué)的知識來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識來解決的,望同學(xué)們能學(xué)會運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
圓柱體積教案篇十八
一、課堂活動(dòng)緊密聯(lián)系生活實(shí)際,體現(xiàn)了讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué)知識這一先進(jìn)的課程理念。課程標(biāo)準(zhǔn)中明確地告訴我們:數(shù)學(xué)的教學(xué)活動(dòng)都必須建立在學(xué)生原有的生龍活虎活經(jīng)驗(yàn)和學(xué)生原來的認(rèn)知基礎(chǔ)上的。謝老師都能恰當(dāng)?shù)倪\(yùn)用身邊的教學(xué)素材,創(chuàng)造有趣的教學(xué)情景。如:基礎(chǔ)練習(xí)中設(shè)計(jì)的各個(gè)問題,說說下列各題是求圓柱的什么?1、大廳里的圓柱形柱子的占地面積是求();2、圓柱形水池可蓄水多少升是求();3、壓路機(jī)前輪滾動(dòng)一周的面積是求()等。精心創(chuàng)設(shè)與生活緊密相關(guān)的問題情境,能引導(dǎo)學(xué)生從熟悉的生活環(huán)境來感受數(shù)學(xué),一方面可以使學(xué)生逐步養(yǎng)成善于觀察、勤于思考的良好習(xí)慣;另一方面可以激發(fā)學(xué)生的求知欲望和探究潛能。蘇聯(lián)教育家蘇霍姆林斯基說過:“在人的心靈深處有一種根深蒂固的需要,這就是希望感到自己是一個(gè)發(fā)現(xiàn)者、研究者和探索者,而在兒童的精神世界,這種需要特別強(qiáng)烈”。
授的現(xiàn)在的方法,而是教給學(xué)生解決問題的策略,給學(xué)生一把在知識的海洋中航行的槳,讓學(xué)生積極思考,大膽嘗試,在主動(dòng)探索中獲取成功并估驗(yàn)成功的喜悅。本節(jié)課中,謝老師設(shè)計(jì)的根據(jù)信息,展開想象的翅膀,讓學(xué)生提出自己喜歡的問題,可以說把整節(jié)課推向了高潮。眾所周知,復(fù)習(xí)課很多老師會上成單純的練習(xí)課,而謝老師這一環(huán)節(jié)的設(shè)計(jì)就完全避免了這一點(diǎn)。因?yàn)槭菑?fù)習(xí)課,學(xué)生已經(jīng)有了一定的知識儲備了,提問題既把學(xué)過的知識進(jìn)行重現(xiàn),而且把各個(gè)知識點(diǎn)之間千絲萬縷的聯(lián)系在最快的時(shí)間里充分展示出來。
三、合作交流,充分獲取數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。謝老師的課中,在不同程度上都能夠讓學(xué)生在合作交流中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的意見,與同伴交流,并充分給足了學(xué)生動(dòng)手、觀察、交流、合作的時(shí)間和空間,讓學(xué)生在具體的合作活動(dòng)中獲得知識,體驗(yàn)知識的形成過程,獲得學(xué)習(xí)的主動(dòng)權(quán)。
四、學(xué)習(xí)方法和教學(xué)手段多樣化,降低了學(xué)習(xí)難度,提高了學(xué)習(xí)效率。謝老師能充分利用多媒體進(jìn)行輔助教學(xué),同時(shí)將觀察、操作、討論、練習(xí)、轉(zhuǎn)化、對比等有效的學(xué)習(xí)方法與之相結(jié)合,大大提高的學(xué)習(xí)效率。
以上是我聽了這節(jié)課的總體感受,一點(diǎn)建議是:合作學(xué)習(xí)的.過程還需進(jìn)一步優(yōu)化,特別是對合作學(xué)習(xí)進(jìn)程中的分工情況、參與率、合作方法等因素還要重點(diǎn)考慮。
圓柱體積教案篇十九
各位領(lǐng)導(dǎo)、老師們:
大家好,今天我說課的內(nèi)容是《圓柱的體積》。
《圓柱的體積》是九年義務(wù)教育人教版小學(xué)數(shù)學(xué)六年級下冊第三單元的內(nèi)容。本單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用?!秷A柱的體積》是在學(xué)生已經(jīng)學(xué)過了圓的面積公式的推導(dǎo)過程和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后續(xù)學(xué)習(xí)的前提。
根據(jù)學(xué)生已有的知識水平和認(rèn)知規(guī)律,我初步擬定以下目標(biāo):
1、使學(xué)生能理解圓柱的體積公式,能夠運(yùn)用公式正確的計(jì)算圓柱的體積。
2、滲透轉(zhuǎn)化、等積變形、極限的數(shù)學(xué)思想。
3、通過圓柱體積公式的推導(dǎo)過程,讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。而圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,我把推導(dǎo)圓柱體積公式的過程定為本節(jié)課的難點(diǎn)。
為了掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,我采用以下教學(xué)方法:直觀演示法和知識遷移法。不僅能夠清楚地展現(xiàn)知識的形成過程,還能提高學(xué)生靈活運(yùn)用知識的能力。
本節(jié)課我采用的學(xué)法有觀察法和小組合作交流法。
為了有效的突出重點(diǎn)、突破難點(diǎn),我設(shè)計(jì)了以下教學(xué)環(huán)節(jié)。
(一)復(fù)習(xí)舊知,揭示課題。
1、上課伊始先出示一組立體圖形(長方體、正方體、圓柱)。
問:你會計(jì)算那些圖形的體積?提出“圓柱的體積怎樣計(jì)算?”從而揭示課題:這節(jié)課我們就來探討圓柱的體積。
(二)觀察、質(zhì)疑、大膽猜想。
師出示兩組不同的圓柱,讓學(xué)生說一說哪個(gè)圓柱大,由此引到圓柱也有體積。鼓勵(lì)學(xué)生大膽猜想,并說明理由。這一環(huán)節(jié)調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性及強(qiáng)烈的探究欲望,學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
怎樣證明圓柱的大小呢?圓柱的體積可能怎樣計(jì)算呢?讓學(xué)生利用自己的生活經(jīng)驗(yàn)和原有的知識自然的想到圓柱的體積的大小與底面積和高有關(guān),從而大膽的猜想出圓柱的體積公式。
(三)演示操作,探究新知。
實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn),根據(jù)學(xué)生的猜想,我提出以下問題讓學(xué)生思考:1、可以把長方體的體積計(jì)算公式直接移植過來嗎?2、圓柱和長方體有什么聯(lián)系和區(qū)別?學(xué)生思考后就會發(fā)現(xiàn)圓柱和長方體都有高,但底面不同,如果能把底面轉(zhuǎn)化成長方形就好了。然后讓學(xué)生小組合作討論交流如何把圓柱體轉(zhuǎn)化成長方體,并讓學(xué)生上臺操作演示是如何轉(zhuǎn)化的。
同時(shí)引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?讓他們把各自的發(fā)現(xiàn)在組內(nèi)互相交流,在交流中探究出圓柱的體積的計(jì)算方法。為了加深學(xué)生對圓柱體積公式的理解,我又課件演示,沿著圓柱底面直徑把圓柱切開,可以得到大小相等的16塊,再拼在一起,可以得到一個(gè)長方體,進(jìn)而可以想到把底面平均分成的次數(shù)越多平成的圖形越接近于長方體。最后讓學(xué)生小組內(nèi)說一說圓柱體計(jì)算公式的推導(dǎo)過程,再指名說,根據(jù)學(xué)生的小結(jié)我板書:圓柱的體積=底面積×高。并引導(dǎo)學(xué)生用字母表示出來。
整個(gè)探究過程充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,引導(dǎo)學(xué)生完成“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”。讓知識在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法有助于突破難點(diǎn),讓學(xué)生感受到了成功的喜悅。
關(guān)于難點(diǎn)的突破,我主要從以下幾個(gè)方面著手:
(1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運(yùn)用知識遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識。
(3)充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4)根據(jù)新舊知識的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識的形成。
(四)教學(xué)例6。
在掌握了圓柱體積計(jì)算的方法之后,我安排例6讓學(xué)生進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識的能力,同時(shí)把所學(xué)知識轉(zhuǎn)化為相應(yīng)的技能。
(五)練習(xí)。
1.基礎(chǔ)練習(xí)。通過練習(xí),鞏固新知識,加深對新知識的理解,
2、拓展練習(xí)。
這道題的安排是對所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢。
我的板書簡潔清晰,一目了然,能夠清楚的反映出本節(jié)課的知識。
總之,本節(jié)課我是本著復(fù)習(xí)舊知——發(fā)現(xiàn)問題——提出問題——猜想假設(shè)——實(shí)踐操作——解決問題這一條線進(jìn)行教學(xué)的。放手讓學(xué)生自己發(fā)現(xiàn)問題、解決問題,充分體現(xiàn)了學(xué)生的主體地位,讓學(xué)生體驗(yàn)到了成功的快樂。
我的說課到此結(jié)束,歡迎各位領(lǐng)導(dǎo)多提寶貴意見。謝謝!
圓柱體積教案篇一
1.教學(xué)內(nèi)容。
本節(jié)課是蘇教國標(biāo)教材六年小學(xué)數(shù)學(xué)(下冊)第二單元25頁的例4教學(xué)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式解決一些簡單的實(shí)際問題。
2.本節(jié)課在教材中所處的地位和作用。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用。學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3.教材的重點(diǎn)和難點(diǎn)。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,等積轉(zhuǎn)化數(shù)學(xué)思想的培養(yǎng)以及觀察比較新舊圖形的聯(lián)系,做出合請推理,從而推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4.教學(xué)目標(biāo)。
(1)讓學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡單實(shí)際問題。
(2)使學(xué)生進(jìn)一步體會“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識解決實(shí)際問題的能力,發(fā)展空間觀念和初步的推理能力。
(3)通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
二、說教法。
從學(xué)生已有的知識水平和認(rèn)知規(guī)律出發(fā),經(jīng)過觀察、比較、猜想、思考、、驗(yàn)證等方法,自主探究,合情推理。
三、說教學(xué)過程。
本節(jié)課的教學(xué)過程分為六個(gè)教學(xué)環(huán)節(jié),主要包括:
1、復(fù)習(xí)引導(dǎo),揭示課題。
明確已有的圓柱的特征、體積概念的認(rèn)識、平面圖形公式的研究方法等知識水平,建立新的學(xué)習(xí)和探究欲望。
2、觀察比較,建立猜想。
在觀察長方體、正方體、圓柱體等底等高時(shí),猜想他們的體積是否都想等?猜想后強(qiáng)調(diào)“可能“相等,因?yàn)槭遣孪氲?。圓柱的體積是不是等于底面積乘高,我們還沒有研究出公式來,所以這里只能是一種沒有經(jīng)過驗(yàn)證的猜想,只能用“可能”相等,沒有經(jīng)過驗(yàn)證的觀點(diǎn),不可以用“一定“兩個(gè)字,讓學(xué)生體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。
3、激勵(lì)思考,提出驗(yàn)證的方法。
有沒有一個(gè)可以借鑒的好的研究方法,來證實(shí)等底等高的圓柱體與長方體、正方的體積有可能相等呢?或者說圓柱的體積也有可能等于底面積乘高呢?學(xué)生可以通過回憶平面圖形面積計(jì)算公式時(shí)的推導(dǎo)方法,獲取一些思考。
4、自主探究,合情推理。
在學(xué)生回憶的基礎(chǔ)上,可以提出使用“切割—轉(zhuǎn)化—觀察—比較—分析—推理”等方法,四人一組,來討論下面的問題:
小組討論綱要:
(1)用方法,把圓柱體轉(zhuǎn)化成了體。
(2)在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
(3)通過觀察比較,你發(fā)現(xiàn)了什么?
(4)怎么進(jìn)行合情推理?
(5)怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
把課堂還給學(xué)生,教師的角色是組織和引導(dǎo)。
5、學(xué)以致用,解決實(shí)際問題。
應(yīng)用所推導(dǎo)出來的圓柱體積計(jì)算公式,解決一些生活中的簡單實(shí)際問題,理解生活中處處有數(shù)學(xué),體會數(shù)學(xué)的應(yīng)用價(jià)值和廣泛領(lǐng)域。
6、全課小結(jié),提升認(rèn)識水平。
在研究圓柱體積公式的時(shí)候,我們運(yùn)用了哪些方法?這里的切割是指切割舊圖形,還是切割要研究的新圖形?轉(zhuǎn)化是指轉(zhuǎn)化成已學(xué)過的舊圖形,還是轉(zhuǎn)化成沒有學(xué)過的新圖形?觀察比較什么?怎樣分析推理?這里蘊(yùn)藏著什么樣的數(shù)學(xué)思想?最后問大家這樣一個(gè)問題,發(fā)明電燈重要,還是使用電燈重要,哪個(gè)更能造福人類,造福子孫萬代?科學(xué)家、發(fā)明家就是這樣誕生的,他們善于猜想、善于發(fā)現(xiàn),敢于探究。如果我們將來想成為科學(xué)家,我們必須具備這樣的品質(zhì)。通過這節(jié)課的學(xué)習(xí),你敢不敢大膽去嘗試、去探究圓錐體的體積計(jì)算公式,或是更廣泛的研究上下底面都是相等的三角形、上下底面都是相等的正多邊形等一些直棱柱的體積計(jì)算方法呢?在研究中,你會發(fā)現(xiàn),數(shù)學(xué)很美,它是思維的體操,有興趣的同學(xué),可以把你研究的成果告訴老師一起分享。
四、說教學(xué)反思。
在本節(jié)課的教學(xué)中,我主要讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),在實(shí)踐中提升,從而獲得知識。講課時(shí),我再利用教具學(xué)具和課件雙重演示,讓學(xué)生通過眼看、腦想、討論等一系列活動(dòng)后,用自己的語言說出圓柱體體積計(jì)算公式的推導(dǎo)過程。我的第一層次是復(fù)習(xí)。通過復(fù)習(xí)來導(dǎo)入新課。第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析的和歸納能力。第三層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
這節(jié)課,在設(shè)計(jì)上充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于樂中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
當(dāng)然,由于經(jīng)驗(yàn)不足,在教學(xué)過程中還有很多環(huán)節(jié)沒有處理好。懇請大家提出寶貴的意見和建議。
圓柱體積教案篇二
運(yùn)用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、過程方法。
讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、情感態(tài)度價(jià)值觀。
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
圓柱體積教案篇三
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報(bào),教師設(shè)疑)。
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
(2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
(3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗(yàn)結(jié)果填入實(shí)驗(yàn)報(bào)告1中。(課件出示)。
(4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
(1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
(2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
(5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計(jì)算器計(jì)算體積,并填入實(shí)驗(yàn)報(bào)告2中。(課件出示)。
4、確定方法,探究實(shí)驗(yàn),驗(yàn)證體積公式。
(1)、首先要求學(xué)生利用實(shí)驗(yàn)工具,自主商討確定研究方法。
(2)、學(xué)生通過討論交流確定了兩種驗(yàn)證方案。
方案一:將圓柱c放入水中,驗(yàn)證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計(jì)算新形體的體積,驗(yàn)證圓柱d的體積。
(3)、學(xué)生按照自己所設(shè)想的方案動(dòng)手實(shí)驗(yàn),并記錄有關(guān)數(shù)據(jù),填入實(shí)驗(yàn)報(bào)告2中。
(5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
(6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長方體體積那樣,用底面積乘以高。
(7)、小結(jié):
要想求出一個(gè)圓柱的體積,需要知道什么條件?
(8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh。
1、課件出示例4,學(xué)生獨(dú)立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計(jì)算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習(xí)。
(1)、一個(gè)長方形的紙片長是6分米,寬4分米。用它分別圍成兩個(gè)圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計(jì)算說明理由。(得數(shù)保留兩位小數(shù))。
談?wù)勥@節(jié)課你有哪些收獲。
教學(xué)內(nèi)容:人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)過程。
圓柱體積教案篇四
面對復(fù)習(xí)的問題,學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時(shí),學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計(jì)算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的重點(diǎn)解決問題,我滿懷信心(兩個(gè)復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨(dú)立思考,怎樣計(jì)算圓柱體的體積?正當(dāng)大家苦思冥想的時(shí)候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個(gè)舉手,把別人的風(fēng)頭都給搶去了,他是一個(gè)愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是壓一壓他的積極性。給大家留一點(diǎn)思考的時(shí)間,等一會再說你的方法,誰知道這個(gè)積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價(jià)他呢,耐不住性子啊,再穩(wěn)重一些多好???):我是這樣想的,這是一個(gè)圓柱體的生日蛋糕,我想把它橫著切成一個(gè)個(gè)圓片,分給你們吃。霎時(shí)間,下面的同學(xué)都笑了,過了一會,一個(gè)學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系???有啊,這個(gè)圓柱體蛋糕的體積就是每一個(gè)圓片的面積乘上圓片的個(gè)數(shù)。這樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時(shí)候了:你給大家解釋一下,圓片是什么?圓片的個(gè)數(shù)又是什么?圓片就是圓柱的底面積,圓片的個(gè)數(shù)就是圓柱的高。
這種推導(dǎo)圓柱體體積的'計(jì)算方法,是出乎我意料之外的,因?yàn)椋鉀Q問題前,已經(jīng)復(fù)習(xí)了長方體體積計(jì)算方法與圓的面積的推導(dǎo)方法,都是為把圓柱體進(jìn)行等分轉(zhuǎn)化成長方體體積來推導(dǎo)做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計(jì)算圓柱體體積的道理,實(shí)際是積分思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到預(yù)想方法之前了。真是計(jì)劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個(gè)想法在他腦海里轉(zhuǎn)瞬即逝,那么這個(gè)精彩的火花就不會在課堂上呈現(xiàn)。
由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會,及時(shí)的捕捉學(xué)生的思維靈感,精彩就會不期而至?!秷A柱體的體積》這一課我學(xué)到了很多東西。
圓柱體積教案篇五
談話:前面我們認(rèn)識了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)。
啟發(fā):看到這個(gè)課題,你們會想到什么?這堂課要解決什么問題呀?(可能學(xué)生會提出以下幾個(gè)問題)。
引導(dǎo):
(1)什么是圓柱的體積?
(2)圓柱的體積和什么有關(guān)?
(3)圓柱的體積公式是怎樣推導(dǎo)出來的?
(4)圓柱的體積是怎樣求出來的?
(5)學(xué)習(xí)圓柱的體積公式有什么用?
談話:對!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小。
談話:這堂課我們主要解決三個(gè)問題:(出示探究問題)。
1、圓柱的體積和什么有關(guān)?
2、這個(gè)公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實(shí)際問題?
【設(shè)計(jì)意圖】直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
1、提出問題。
談話:現(xiàn)在請大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計(jì)算。是怎樣計(jì)算的?
引導(dǎo):我們已經(jīng)學(xué)過長方體、正方體的體積計(jì)算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高。
正方體的體積=棱長×棱長×棱長。
統(tǒng)一為:長方體或正方體的體積=底面積×高。
談話:長方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長方體的面都是平面圖形,圓柱的側(cè)面是一個(gè)曲面。
引導(dǎo):它的側(cè)面是一個(gè)曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想。
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)。
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本。
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)。
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個(gè)辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長方體。
談話:以前我們學(xué)習(xí)圓的面積時(shí)也是運(yùn)用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計(jì)算公式。
(用多媒體演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)。
【設(shè)計(jì)意圖】在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運(yùn)用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識,又為學(xué)習(xí)新知識作好鋪墊,能夠促進(jìn)學(xué)生充分運(yùn)用遷移規(guī)律把新舊知識聯(lián)系起來組成一個(gè)新的知識結(jié)構(gòu)。
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導(dǎo):長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導(dǎo):無數(shù)份,可以永遠(yuǎn)分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個(gè)圖形就越接近于長方體。
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報(bào):把圓柱體轉(zhuǎn)化為近似的`長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長方體的體積就可以了。
匯報(bào):
(1)轉(zhuǎn)化后的近似長方體的底面積與原來的圓柱體的底面積相等。
(2)轉(zhuǎn)化后的近似長方體的高與原來的圓柱體的高相等。
因?yàn)椋洪L方體的體積=底面積×高。
(教師要求學(xué)生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導(dǎo)的過程。)。
長方體的體積=底面積×高。
交流:我們也可以用字母表示圓柱的體積計(jì)算公式:v=sh(板書)。
引導(dǎo):剛才我們的猜想是正確的,圓柱的體積既和底面積有關(guān),又和高有關(guān)。
現(xiàn)在請同學(xué)們把圓柱體積公式的推導(dǎo)過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關(guān)。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長方體。
通過比一比、算一算成功地推導(dǎo)出圓柱的體積計(jì)算公式,解決了我們前兩個(gè)要探究的問題。
【設(shè)計(jì)意圖】要求每個(gè)學(xué)生動(dòng)手操作,打破了過去教師演示教具學(xué)生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學(xué)思想,讓學(xué)生自己從嘗試中推導(dǎo)圓柱體積的公式。
圓柱體積教案篇六
1.結(jié)合實(shí)際讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
理解并掌握圓柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
掌握圓柱體積公式的推導(dǎo)過程。
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(gè)(一個(gè)為橡皮泥)、水槽、水。
一、情境激趣導(dǎo)入新課。
2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)。
二、自主探究,學(xué)習(xí)新知。
(一)設(shè)疑。
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個(gè)圓柱學(xué)具的體積嗎?
2、再出示一個(gè)用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)。
(二)猜想。
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測一個(gè),圓柱的體積公式可能是什么?說說你的理由?
(三)驗(yàn)證。
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個(gè)實(shí)驗(yàn)?zāi)??結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)。
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)。
3、指名兩位學(xué)生上臺用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時(shí),拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1)圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2)長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3)長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4)你認(rèn)為圓柱的體積可以怎樣計(jì)算?
(生匯報(bào)交流,師根據(jù)學(xué)生講述適時(shí)板書。)。
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是v=sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價(jià))。
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)。
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個(gè)圓柱的體積?(測不同數(shù)據(jù)計(jì)算)。
11、練一練:列式計(jì)算求下列各圓柱體的體積。
(1)底面半徑2cm,高5cm。
(2)底面直徑6dm,高1m。
(3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升。
1、判斷正誤:
(1)等底等高的圓柱體和長方體體積相等?!ǎ?。
(2)一個(gè)圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()。
(3)圓柱的底面積越大,它的體積就越大?!ǎ?BR> (4)一個(gè)圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。……()。
四、全課總結(jié)自我評價(jià)。
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
圓柱的體積是幾何知識的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動(dòng)中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個(gè)裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時(shí)意識到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時(shí),學(xué)生意識到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個(gè)十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會靈活應(yīng)用知識解決簡單的實(shí)際問題,在鞏固體積計(jì)算方法的同時(shí),進(jìn)一步感受到數(shù)學(xué)知識的使用價(jià)值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。
動(dòng)手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動(dòng)手操作的機(jī)會,為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺,通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個(gè)學(xué)生上臺操作演示,然后再課件動(dòng)態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個(gè)探究過程以學(xué)生自主學(xué)習(xí)為主,知識的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
圓柱體積教案篇七
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。
在課的設(shè)計(jì)上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握。
圓柱體積教案篇八
本節(jié)課是學(xué)生在學(xué)習(xí)了長方體和立方體的基礎(chǔ)上進(jìn)行教學(xué)的,它是一種比較常見的立體圖形,學(xué)生對圓柱都有初步的感性認(rèn)識。本節(jié)重點(diǎn)是圓柱的特征和圓柱側(cè)面積的計(jì)算。上課伊始,我先組織學(xué)生復(fù)習(xí)圓柱的特征、長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程,由此引出圓柱的體積一課題。為了讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
反思不足:1、練習(xí)有些少。在學(xué)生練習(xí)這個(gè)環(huán)節(jié)中,最能反映學(xué)生掌握情況。應(yīng)該再從不同的角度設(shè)計(jì)多種練習(xí)題目來考察學(xué)生的知識掌握情況。2、本節(jié)課節(jié)奏較快,沒有去檢測一下學(xué)生每個(gè)環(huán)節(jié)掌握了沒有。3、數(shù)學(xué)要應(yīng)用于生活,應(yīng)該多出些有關(guān)生活實(shí)際的練習(xí)題。
圓柱體積教案篇九
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、猜測、操作、驗(yàn)證、歸納等活動(dòng)中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的價(jià)值,同時(shí)掌握必要的基礎(chǔ)知識與基本技能。
在這節(jié)課中,我先是復(fù)習(xí)了長方體、正方體體積的計(jì)算,然后順勢提出“如何計(jì)算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測、操作、交流等數(shù)學(xué)活動(dòng),如有學(xué)生想用單位立方體來擺,可是因圓柱體的側(cè)面是曲面,無法量出。在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的方法。通過學(xué)生對“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”的回答,從而引出:用割拼的方法將它轉(zhuǎn)化為其他的圖形。出示教具將圓柱沿底面已經(jīng)平分割成16等份,將其插拼成一個(gè)近似長方體;接著再啟發(fā)提問將圓柱體沿底面平分32、64等份,再拼成近似的長方體;。使學(xué)生知道“把它平分成很多很多等份,拼成的圖形將會越來越接近長方體”。通過讓學(xué)生觀察比較,延伸想象發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?最后,再從長方體的體積公式推導(dǎo)出圓柱體的體積計(jì)算公式。由此至終讓學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程,并伴隨著問題的圓滿解決,又使學(xué)生體驗(yàn)到了成功的喜悅與滿足。與此同時(shí),使學(xué)生理解與感受到了數(shù)學(xué)的魅力。
圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。在計(jì)算的過程中,發(fā)現(xiàn)學(xué)生單位名稱用錯(cuò),體積單位用面積單位。為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。對于書中所給的立體圖形,認(rèn)識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(個(gè)別學(xué)生不清楚)。在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。注意引導(dǎo)學(xué)生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。
圓柱體積教案篇十
在教學(xué)圓柱的體積時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識。通過這節(jié)課的教學(xué),我覺得成功之處有以下幾個(gè)方面:
圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計(jì)算方法,并強(qiáng)調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨(dú)立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。
學(xué)生在探究新知時(shí),教師要給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),學(xué)生親身參與操作,先用小刀把一根火腿腸切成一個(gè)圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體。找一找:這個(gè)長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計(jì)算公式。
為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體。”但是,到底拼成的圖形怎樣更接近長方體?演示動(dòng)畫后,學(xué)生不僅對這個(gè)切拼過程一目了然,同時(shí)又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
圓柱體積教案篇十一
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思。
圓柱體積教案篇十二
掌握圓柱的體積計(jì)算公式,能夠正確計(jì)算圓柱的體積。
【過程與方法】。
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價(jià)值觀】。
感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
提問:長方體和正方體的體積公式是什么?
(正方體)體積=底面積×高。今天我們再來研究另一個(gè)熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知。
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預(yù)設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長方體。
預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長方體的圖形。此時(shí)教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學(xué)生進(jìn)行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進(jìn)行回答。
預(yù)設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
提問:圓柱的體積公式是什么?
用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預(yù)設(shè):v=sh。
教師強(qiáng)調(diào)字母v、s是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預(yù)設(shè)1:可以用長方體體積公式推導(dǎo)出圓柱體體積公式;
預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預(yù)設(shè)3:計(jì)算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習(xí)。
試一試。
一個(gè)圓柱形零件,底面半徑是5厘米,高是8厘米。這個(gè)零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)。
提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
圓柱體積教案篇十三
本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進(jìn)行的解決問題。這要求學(xué)生對圓柱的體積公式掌握的比較扎實(shí),并要求理論與實(shí)際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。
在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機(jī)地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨(dú)立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點(diǎn),突破重難點(diǎn)。通過2個(gè)瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進(jìn)行轉(zhuǎn)化時(shí),讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實(shí)際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級學(xué)科特點(diǎn),并且靈活運(yùn)用生命化課堂的四自模式、新技術(shù),運(yùn)用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時(shí)提出的問題應(yīng)該更簡潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時(shí)常為此感到糾結(jié)。
剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
圓柱體積教案篇十四
教學(xué)目標(biāo)是:使學(xué)生知道圓柱體的體積公式推導(dǎo)過程;理解并掌握圓柱體的體積公式及相關(guān)的推論。并能正確運(yùn)用公式解決一些簡單的實(shí)際問題。通過對圓柱體體積公式的教學(xué),加深學(xué)生對立體圖形的認(rèn)識,培養(yǎng)學(xué)生的觀察能力,抽象和概括能力及綜合運(yùn)用能力,發(fā)展學(xué)生的空間觀念,同時(shí)滲透一些關(guān)于極限的辨證唯物主義思想。
學(xué)習(xí)本節(jié)課應(yīng)具備的舊知識是:
1、長方體的體積公式及推導(dǎo)過程。
2、圓面積公式的推導(dǎo)過程。
在教學(xué)中就是要運(yùn)用圓面積公式的推導(dǎo)方法,將圓柱體轉(zhuǎn)化為長方體,從而由長方體體積公式推導(dǎo)出圓柱體體積公式。因此根據(jù)本節(jié)課的特點(diǎn)我采用的教學(xué)方法是:
1、有目的的運(yùn)用啟發(fā)引導(dǎo)的方法組織教學(xué)。
2、采用演示實(shí)驗(yàn)的方法,讓學(xué)生觀察比較,從而發(fā)現(xiàn)規(guī)律,找出體積公式。
3、適當(dāng)采用“嘗試——失敗——總結(jié)——再嘗試——再總結(jié)”的方法,引導(dǎo)學(xué)生找到推導(dǎo)公式的合理方法。
4、利用多變的練習(xí),加深學(xué)生對公式的理解,找到公式的根本內(nèi)涵。但是要注意循序漸進(jìn),由易到難,由簡到繁。
在學(xué)法指導(dǎo)上,主要是讓學(xué)生學(xué)會觀察、比較,歸納概括出體積公式。通過直觀實(shí)驗(yàn),吸引學(xué)生主動(dòng)、認(rèn)真觀察圖形的拼接過程,積極回答觀察結(jié)果,主動(dòng)參與到教學(xué)中去,并且在教師的啟發(fā)下,進(jìn)行歸納概括。培養(yǎng)學(xué)生的自學(xué)能力及概括能力。
本節(jié)課所需教具為:圓柱體割拼組合教具及事先寫好習(xí)題的小黑板。
教學(xué)一開始,首先復(fù)習(xí)。目的是:一是通過復(fù)習(xí)舊知識,為新課作好準(zhǔn)備;二是引出新課。
一開始先復(fù)習(xí)體積的概念及長方體的體積公式。這個(gè)練習(xí)可采用提問的方式,但是這些知識已學(xué)過較長時(shí)間,所以適當(dāng)?shù)臅r(shí)侯教師要加以啟發(fā)提示。
接下來,教師引導(dǎo)學(xué)生回憶長方體體積公式的推導(dǎo)過程,及圓面積公式的推導(dǎo)方法,為新課做準(zhǔn)備。
然后,提問:圓柱體的特點(diǎn)是什么?圓柱體的側(cè)面積、表面積公式是什么?由于這些內(nèi)容剛剛學(xué)過,學(xué)生很容易回答,可以提問基礎(chǔ)較差的學(xué)生,并加以鼓勵(lì),使他們樹立信心,提高興趣,以便學(xué)習(xí)新課。
通過以上復(fù)習(xí),鞏固了舊知識,為學(xué)習(xí)新知識做好了鋪墊,同時(shí)調(diào)動(dòng)了全體學(xué)生的學(xué)習(xí)興趣。利用這一有利時(shí)機(jī),教師及時(shí)引導(dǎo)、設(shè)疑:
這樣就順利轉(zhuǎn)入了新課的學(xué)習(xí)。
這時(shí)教師出示圓柱體模型。
首先引導(dǎo)學(xué)生用長方體公式的推導(dǎo)方法嘗試。提問:“我們學(xué)過的長方體體積是用單位體積的小正方體塊來量出的,現(xiàn)在我們也用同樣的方法來量一下,現(xiàn)在這個(gè)圓柱體的體積是多少?”
學(xué)生反復(fù)嘗試后回答:“無法量出?!?BR> 這時(shí)教師再問:“什么地方量不出來?為什么?”
學(xué)生回答:“圓柱體的側(cè)面是曲面,無法量出。”
在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的'方法。這樣充分利用學(xué)生的好奇心理,調(diào)動(dòng)學(xué)生情緒,轉(zhuǎn)入圓柱體體積公式的教學(xué)。
教師啟發(fā)提問:“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”通過學(xué)生的回答,引出新思路:用割拼的方法將它轉(zhuǎn)化為其他的圖形。
得到了新的方法以后,教師進(jìn)行演示實(shí)驗(yàn)1:先將圓柱沿底面平分割成8等份,對拼成一個(gè)近似長方體。學(xué)生觀察割拼過程。
教師提出問題:“這個(gè)圓柱體拼成了一個(gè)近似的什么立體圖形?為什么說它是近似的?它的哪一部分不是長方體的組成部分?”
學(xué)生回答后,接著再進(jìn)行演示實(shí)驗(yàn)2:將圓柱體沿底面平分16等份,再拼成近似的長方體。
再問:“這次是不是更象長方體了?”
這時(shí)教師啟發(fā)學(xué)生想象;“把它平分成很多很多等份,這樣拼成的圖形將會怎樣?”
教師總結(jié):“將會無限趨近于長方體,并且最終會得到一個(gè)長方體?!?BR> 然后及時(shí)引導(dǎo)學(xué)生觀察這個(gè)長方體,并把它與圓柱體進(jìn)行比較,提問:“這個(gè)長方體的哪部分與圓柱體相同?”因?yàn)槟P透髅娴念伾煌?,所以學(xué)生會很快回答出來:“底面積與高?!?BR> “那么這個(gè)長方體體積與圓柱體體積有什么關(guān)系?”學(xué)生回答:“相同。”
“長方體的體積是怎樣計(jì)算的?”學(xué)生回答:“底面積乘以高。”
“那么圓柱體是否也可以這樣算呢?”學(xué)生回答:“是的。”
這時(shí)教師根據(jù)學(xué)生的回答,及時(shí)板書這兩個(gè)公式。
通過以上的教學(xué),引導(dǎo)學(xué)生歸納概括出了圓柱體的體積公式。這樣先通過復(fù)習(xí)做知識的鋪墊,然后由學(xué)生進(jìn)行嘗試,充分運(yùn)用思維的遷移規(guī)律,用圓面積公式的推導(dǎo)方法搭起了橋梁,順利地實(shí)現(xiàn)了本節(jié)課的第一個(gè)目標(biāo)。并且在推導(dǎo)過程中滲透了關(guān)于極限的辨證唯物主義思想。
學(xué)生通過嘗試得到了成功的喜悅,思想高度興奮。教師及時(shí)利用這一時(shí)機(jī),將公式向深處拓展。設(shè)問:“如果不知道圓柱體的底面積和高,怎么求體積?”學(xué)生考慮,教師出示嘗試題:
1、已知圓柱體的底面半徑和高,怎樣求體積?
2、已知圓柱體的底面直徑和高,怎樣求體積?
3、已知圓柱體的底面周長和高,怎樣求體積?
4、已知圓柱體的側(cè)面積和高,怎樣求體積?
學(xué)生分組討論。討論完畢后,每組選一名代表回答,其他同學(xué)做適當(dāng)補(bǔ)充。學(xué)生回答完畢后,教師及時(shí)進(jìn)行總結(jié),并且板書有關(guān)公式的推論。
通過以上練習(xí),避免了學(xué)生只注意了公式的表面特征,而忽略了公式的本質(zhì)特征。使學(xué)生明確,不論條件怎樣變化,最終都要?dú)w到底面積乘以高上來。從而使學(xué)生理解了本公式的內(nèi)涵,為靈活運(yùn)用公式做好了知識的準(zhǔn)備。
最后要求學(xué)生用字母表示公式。由于此方法學(xué)生早已熟悉,所以可全班集體回答。
學(xué)生理解和掌握了公式后,教師及時(shí)出示習(xí)題,指導(dǎo)學(xué)生將公式應(yīng)用于實(shí)際:
(出示準(zhǔn)備好的小黑板)。
提問:“這兩道題是否要進(jìn)行單位換算?各應(yīng)選用什么公式?”學(xué)生回答完畢后,一起獨(dú)立完成。教師巡視檢查,發(fā)現(xiàn)問題,及時(shí)補(bǔ)救。
最后,對本節(jié)課進(jìn)行小結(jié)。提出應(yīng)用公式時(shí)應(yīng)注意的問題:1、仔細(xì)審題,弄清條件的變化。2、單位名稱要統(tǒng)一。
布置課后作業(yè)。
本節(jié)課到此結(jié)束。
圓柱體積教案篇十五
本節(jié)課是蘇教國標(biāo)教材六年小學(xué)數(shù)學(xué)(下冊)第二單元25頁的例4教學(xué)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式解決一些簡單的實(shí)際問題。
2.本節(jié)課在教材中所處的地位和作用。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用。學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3.教材的重點(diǎn)和難點(diǎn)。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,等積轉(zhuǎn)化數(shù)學(xué)思想的培養(yǎng)以及觀察比較新舊圖形的聯(lián)系,做出合請推理,從而推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4.教學(xué)目標(biāo)。
(1)讓學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡單實(shí)際問題。
(2)使學(xué)生進(jìn)一步體會“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識解決實(shí)際問題的能力,發(fā)展空間觀念和初步的推理能力。
(3)通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
從學(xué)生已有的知識水平和認(rèn)知規(guī)律出發(fā),經(jīng)過觀察、比較、猜想、思考、、驗(yàn)證等方法,自主探究,合情推理。
本節(jié)課的教學(xué)過程分為六個(gè)教學(xué)環(huán)節(jié),主要包括:
1、復(fù)習(xí)引導(dǎo),揭示課題。
明確已有的圓柱的特征、體積概念的認(rèn)識、平面圖形公式的研究方法等知識水平,建立新的學(xué)習(xí)和探究欲望。
2、觀察比較,建立猜想。
在觀察長方體、正方體、圓柱體等底等高時(shí),猜想他們的體積是否都想等?猜想后強(qiáng)調(diào)“可能“相等,因?yàn)槭遣孪氲?。圓柱的體積是不是等于底面積乘高,我們還沒有研究出公式來,所以這里只能是一種沒有經(jīng)過驗(yàn)證的猜想,只能用“可能”相等,沒有經(jīng)過驗(yàn)證的觀點(diǎn),不可以用“一定“兩個(gè)字,讓學(xué)生體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。
3、激勵(lì)思考,提出驗(yàn)證的方法。
有沒有一個(gè)可以借鑒的好的研究方法,來證實(shí)等底等高的圓柱體與長方體、正方的體積有可能相等呢?或者說圓柱的體積也有可能等于底面積乘高呢?學(xué)生可以通過回憶平面圖形面積計(jì)算公式時(shí)的推導(dǎo)方法,獲取一些思考。
4、自主探究,合情推理。
在學(xué)生回憶的基礎(chǔ)上,可以提出使用“切割—轉(zhuǎn)化—觀察—比較—分析—推理”等方法,四人一組,來討論下面的問題:
小組討論綱要:
(1)用方法,把圓柱體轉(zhuǎn)化成了體。
(2)在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
(3)通過觀察比較,你發(fā)現(xiàn)了什么?
(4)怎么進(jìn)行合情推理?
(5)怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
把課堂還給學(xué)生,教師的角色是組織和引導(dǎo)。
5、學(xué)以致用,解決實(shí)際問題。
應(yīng)用所推導(dǎo)出來的圓柱體積計(jì)算公式,解決一些生活中的簡單實(shí)際問題,理解生活中處處有數(shù)學(xué),體會數(shù)學(xué)的應(yīng)用價(jià)值和廣泛領(lǐng)域。
6、全課小結(jié),提升認(rèn)識水平。
在研究圓柱體積公式的時(shí)候,我們運(yùn)用了哪些方法?這里的切割是指切割舊圖形,還是切割要研究的新圖形?轉(zhuǎn)化是指轉(zhuǎn)化成已學(xué)過的舊圖形,還是轉(zhuǎn)化成沒有學(xué)過的新圖形?觀察比較什么?怎樣分析推理?這里蘊(yùn)藏著什么樣的數(shù)學(xué)思想?最后問大家這樣一個(gè)問題,發(fā)明電燈重要,還是使用電燈重要,哪個(gè)更能造福人類,造福子孫萬代?科學(xué)家、發(fā)明家就是這樣誕生的,他們善于猜想、善于發(fā)現(xiàn),敢于探究。如果我們將來想成為科學(xué)家,我們必須具備這樣的品質(zhì)。通過這節(jié)課的學(xué)習(xí),你敢不敢大膽去嘗試、去探究圓錐體的體積計(jì)算公式,或是更廣泛的研究上下底面都是相等的.三角形、上下底面都是相等的正多邊形等一些直棱柱的體積計(jì)算方法呢?在研究中,你會發(fā)現(xiàn),數(shù)學(xué)很美,它是思維的體操,有興趣的同學(xué),可以把你研究的成果告訴老師一起分享。
在本節(jié)課的教學(xué)中,我主要讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),在實(shí)踐中提升,從而獲得知識。講課時(shí),我再利用教具學(xué)具和課件雙重演示,讓學(xué)生通過眼看、腦想、討論等一系列活動(dòng)后,用自己的語言說出圓柱體體積計(jì)算公式的推導(dǎo)過程。我的第一層次是復(fù)習(xí)。通過復(fù)習(xí)來導(dǎo)入新課。第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動(dòng)手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析的和歸納能力。第三層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
這節(jié)課,在設(shè)計(jì)上充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動(dòng)手、動(dòng)腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于樂中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動(dòng)手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
當(dāng)然,由于經(jīng)驗(yàn)不足,在教學(xué)過程中還有很多環(huán)節(jié)沒有處理好。懇請大家提出寶貴的意見和建議。
圓柱體積教案篇十六
新課程標(biāo)準(zhǔn)指出,“數(shù)學(xué)課程不僅要考慮教學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有知識經(jīng)驗(yàn)基礎(chǔ)之上?!币虼吮救苏J(rèn)為教學(xué)中成功的關(guān)鍵在于:教師的“教”立足于學(xué)生的“學(xué)”基于這種理念來設(shè)計(jì)教學(xué)的。
根據(jù)新課程理念,本節(jié)課的教學(xué)設(shè)計(jì)主要意在兩個(gè)方面:引導(dǎo)學(xué)生“玩”數(shù)學(xué),幫助學(xué)生“悟”數(shù)學(xué)。
本節(jié)課主要采用操作實(shí)踐、自主探索、合作交流、積極思考等活動(dòng)方式,讓學(xué)生從中感受、理解知識的產(chǎn)生和發(fā)展的過程,倡導(dǎo)發(fā)現(xiàn)數(shù)學(xué)的樂趣。
1、說教材。
圓柱體的體積是在學(xué)生學(xué)習(xí)長方體的體積以及圓柱的認(rèn)識的基礎(chǔ)上進(jìn)行教學(xué)的。內(nèi)容包括圓柱體體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算它的體積。
2、說教學(xué)目標(biāo)及重難點(diǎn)。
目標(biāo)是:
(1)知道圓柱體體積的推導(dǎo)過程,會應(yīng)用該公式計(jì)算圓柱的體積。
(2)初步建立空間觀念和邏輯推理能力。
(3)知道知識間是可以互相轉(zhuǎn)化的。
(1)啟發(fā)引導(dǎo),組織教學(xué)。
(2)直觀演示,操作發(fā)現(xiàn)。
(3)運(yùn)用遷移,循序漸進(jìn)。
(1)學(xué)會通過觀察、比較、推理能力概括出圓柱體體積的推導(dǎo)過程。
(2)學(xué)會用舊知轉(zhuǎn)化成新知,解決新問題的能力。
(3)學(xué)會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
1、激趣設(shè)疑,導(dǎo)入新課。
2、回憶圓面積公式推導(dǎo)過程以及長方體體積公式。
1)用課件出示圓面積公式推導(dǎo)過程。
2)板書長方體體積公式。
3、猜想:圓柱體積的大小跟哪些條件有關(guān)?
2)學(xué)生用學(xué)具將圓柱體體積轉(zhuǎn)化成長方體體積。
3)學(xué)生匯報(bào),師課件演示。
4)小組討論。
拼成的圓柱體的底面積與長方體底面積有什么關(guān)系?
拼成的圓柱體的高與長方體的高有什么關(guān)系?
拼成的圓柱體的體積與長方體的體積有什么關(guān)系?
6)總結(jié)出知道底面半徑,直徑,底面周長和高怎樣求體積。
5、出示例4、例5。
1)例4讓學(xué)生說解題思路,師板書。
2)例5放手讓學(xué)生自學(xué),發(fā)現(xiàn)問題及時(shí)解決。
6、練習(xí)環(huán)節(jié)。
1)基本練習(xí)。
看圖列式,并寫出相應(yīng)的公式。
(設(shè)計(jì)意圖是鞏固新知識,加深對新知識的理解。并轉(zhuǎn)化為能力。)。
2)變式練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生的思維靈活性,防止受定勢影響。)。
3)拓展練習(xí)。
(設(shè)計(jì)意圖是培養(yǎng)學(xué)生思維的深度和廣度)。
4)升華練習(xí)。
激趣設(shè)疑。
(設(shè)計(jì)意圖是通過學(xué)生親自測量,仔細(xì)去算,使課堂真正活起來)。
本節(jié)課板書簡單、明了,既體現(xiàn)新舊知識之間的轉(zhuǎn)化,又體現(xiàn)新舊知識之間的聯(lián)系,具有指導(dǎo)性。藝術(shù)性。概括性。總結(jié)性。
圓柱體積教案篇十七
大家好!
今天我說課的內(nèi)容是人教版六年級數(shù)學(xué)下冊第二單元《圓柱和圓錐》中的第二課時(shí)《圓柱的體積》。本次說課包括五個(gè)內(nèi)容:說教材、說學(xué)情、說教學(xué)目標(biāo)、說教學(xué)重難點(diǎn)、說學(xué)法、說教法、說教學(xué)程序。下面我從幾個(gè)方面對本節(jié)課進(jìn)行說課。
《圓柱和圓錐》這一單元是在學(xué)習(xí)了長方體和立方體的基礎(chǔ)上進(jìn)入了小學(xué)里學(xué)習(xí)立體圖形的最后階段,這個(gè)單元知識的綜合性和對學(xué)生的要求都比較高,化歸和類比是常用的思想方法要進(jìn)行總結(jié),長方形正方形以及圓的基礎(chǔ)知識都是本單元的認(rèn)知基礎(chǔ)。教學(xué)中注重讓學(xué)生積極主動(dòng)地實(shí)踐研究,讓學(xué)生在合作探究的過程中自主發(fā)現(xiàn)規(guī)律,先用想一想的思考,回憶圓面積公式推導(dǎo)過程,激活原先“化曲為直”的極限思想和“轉(zhuǎn)化”的思想方法記憶儲存,接著用較多的篇幅講解切拼的過程,便于學(xué)生理解和感受轉(zhuǎn)化的過程和極限思想,然后推導(dǎo)圓柱體積的計(jì)算公式,并抽象到字母公式。
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用?!秷A柱的體積》一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,學(xué)生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長方體并不難,學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
知識與技能:
讓學(xué)生經(jīng)歷通過用切割拼合的方法借助長方體的體積公式,推導(dǎo)出圓柱體積公式的教學(xué)活動(dòng)過程,使學(xué)生理解圓柱體積公式的推導(dǎo)過程。能夠運(yùn)用公式正確地計(jì)算圓柱的體積。并會解決一些簡單的實(shí)際問題。
過程與方法:
教學(xué)時(shí),要充分利用教具、學(xué)具,引導(dǎo)學(xué)生觀察、操作和交流探索新知。
情感、態(tài)度與價(jià)值觀:
通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握圓柱體積計(jì)算公式及熟練運(yùn)用計(jì)公式解決實(shí)際問題。引導(dǎo)學(xué)生經(jīng)歷圓柱體積計(jì)算方法的探索過程,體會化曲為直的數(shù)學(xué)思想方法。
從學(xué)生已有的知識水平和認(rèn)識規(guī)律出發(fā),為了更好地突出重點(diǎn),化解難點(diǎn),掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,充分利用直觀教具,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作討論,使學(xué)生在豐富感性認(rèn)識的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識上升到理性認(rèn)識,體會知識的由來,并通過已學(xué)知識解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
課堂教學(xué)中,不是老師單純地傳授知識,而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
1.學(xué)會通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2.學(xué)會利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3.學(xué)會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
對本節(jié)課的教學(xué),我們設(shè)計(jì)了以下幾個(gè)環(huán)節(jié)。
(一)復(fù)習(xí)舊知識,為引入新知識作準(zhǔn)備。
1.利用實(shí)驗(yàn),引出體積。
復(fù)習(xí)舊知:什么叫體積?你會計(jì)算下面那些圖形的體積?
2.質(zhì)疑,揭示學(xué)習(xí)目標(biāo)。
揭示學(xué)習(xí)目標(biāo):這節(jié)課我們就來探討圓柱的體積。
通過質(zhì)疑、揭示目標(biāo),學(xué)生就能清楚地知道了學(xué)習(xí)的主要任務(wù)和要求。使學(xué)生帶著目標(biāo),有目的、有準(zhǔn)備地學(xué)習(xí)下一步的新知識,學(xué)生就真正能成為學(xué)習(xí)的主人,也使教學(xué)變得更加明確具體,可操作、可檢測。同時(shí)也能激發(fā)起全體學(xué)生的參與達(dá)標(biāo)意識,學(xué)生的主體地位就充分地顯示出來了。
(二)觀察、質(zhì)疑、大膽猜想、培養(yǎng)想像能力。
觀察質(zhì)疑:利用兩個(gè)環(huán)節(jié)。
1、等底不同高,
2、不同底等高兩個(gè)環(huán)節(jié),
比較兩個(gè)圓柱的大小,讓學(xué)生體會圓柱體積的大小與高和底面積有關(guān)。鼓勵(lì)學(xué)生大膽猜想,并說明理由。學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
(三)演示操作,探究新知。
根據(jù)學(xué)生的猜想,通過課件演示,引導(dǎo)學(xué)生觀察,在交流中探究出圓柱的體積的計(jì)算方法,這一過程讓學(xué)生感受到了成功的喜悅,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(四)運(yùn)用公式,解決實(shí)際問題。
(五)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)。
(六)總結(jié)全課,深化教學(xué)目標(biāo)。
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識的得來是通過已學(xué)的知識來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識來解決的,望同學(xué)們能學(xué)會運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
圓柱體積教案篇十八
一、課堂活動(dòng)緊密聯(lián)系生活實(shí)際,體現(xiàn)了讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué)知識這一先進(jìn)的課程理念。課程標(biāo)準(zhǔn)中明確地告訴我們:數(shù)學(xué)的教學(xué)活動(dòng)都必須建立在學(xué)生原有的生龍活虎活經(jīng)驗(yàn)和學(xué)生原來的認(rèn)知基礎(chǔ)上的。謝老師都能恰當(dāng)?shù)倪\(yùn)用身邊的教學(xué)素材,創(chuàng)造有趣的教學(xué)情景。如:基礎(chǔ)練習(xí)中設(shè)計(jì)的各個(gè)問題,說說下列各題是求圓柱的什么?1、大廳里的圓柱形柱子的占地面積是求();2、圓柱形水池可蓄水多少升是求();3、壓路機(jī)前輪滾動(dòng)一周的面積是求()等。精心創(chuàng)設(shè)與生活緊密相關(guān)的問題情境,能引導(dǎo)學(xué)生從熟悉的生活環(huán)境來感受數(shù)學(xué),一方面可以使學(xué)生逐步養(yǎng)成善于觀察、勤于思考的良好習(xí)慣;另一方面可以激發(fā)學(xué)生的求知欲望和探究潛能。蘇聯(lián)教育家蘇霍姆林斯基說過:“在人的心靈深處有一種根深蒂固的需要,這就是希望感到自己是一個(gè)發(fā)現(xiàn)者、研究者和探索者,而在兒童的精神世界,這種需要特別強(qiáng)烈”。
授的現(xiàn)在的方法,而是教給學(xué)生解決問題的策略,給學(xué)生一把在知識的海洋中航行的槳,讓學(xué)生積極思考,大膽嘗試,在主動(dòng)探索中獲取成功并估驗(yàn)成功的喜悅。本節(jié)課中,謝老師設(shè)計(jì)的根據(jù)信息,展開想象的翅膀,讓學(xué)生提出自己喜歡的問題,可以說把整節(jié)課推向了高潮。眾所周知,復(fù)習(xí)課很多老師會上成單純的練習(xí)課,而謝老師這一環(huán)節(jié)的設(shè)計(jì)就完全避免了這一點(diǎn)。因?yàn)槭菑?fù)習(xí)課,學(xué)生已經(jīng)有了一定的知識儲備了,提問題既把學(xué)過的知識進(jìn)行重現(xiàn),而且把各個(gè)知識點(diǎn)之間千絲萬縷的聯(lián)系在最快的時(shí)間里充分展示出來。
三、合作交流,充分獲取數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。謝老師的課中,在不同程度上都能夠讓學(xué)生在合作交流中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的意見,與同伴交流,并充分給足了學(xué)生動(dòng)手、觀察、交流、合作的時(shí)間和空間,讓學(xué)生在具體的合作活動(dòng)中獲得知識,體驗(yàn)知識的形成過程,獲得學(xué)習(xí)的主動(dòng)權(quán)。
四、學(xué)習(xí)方法和教學(xué)手段多樣化,降低了學(xué)習(xí)難度,提高了學(xué)習(xí)效率。謝老師能充分利用多媒體進(jìn)行輔助教學(xué),同時(shí)將觀察、操作、討論、練習(xí)、轉(zhuǎn)化、對比等有效的學(xué)習(xí)方法與之相結(jié)合,大大提高的學(xué)習(xí)效率。
以上是我聽了這節(jié)課的總體感受,一點(diǎn)建議是:合作學(xué)習(xí)的.過程還需進(jìn)一步優(yōu)化,特別是對合作學(xué)習(xí)進(jìn)程中的分工情況、參與率、合作方法等因素還要重點(diǎn)考慮。
圓柱體積教案篇十九
各位領(lǐng)導(dǎo)、老師們:
大家好,今天我說課的內(nèi)容是《圓柱的體積》。
《圓柱的體積》是九年義務(wù)教育人教版小學(xué)數(shù)學(xué)六年級下冊第三單元的內(nèi)容。本單元是小學(xué)階段學(xué)習(xí)幾何形體知識的最后部分,是幾何知識的綜合運(yùn)用?!秷A柱的體積》是在學(xué)生已經(jīng)學(xué)過了圓的面積公式的推導(dǎo)過程和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)好這部分知識,為今后學(xué)習(xí)復(fù)雜的形體知識打下扎實(shí)的基礎(chǔ),是后續(xù)學(xué)習(xí)的前提。
根據(jù)學(xué)生已有的知識水平和認(rèn)知規(guī)律,我初步擬定以下目標(biāo):
1、使學(xué)生能理解圓柱的體積公式,能夠運(yùn)用公式正確的計(jì)算圓柱的體積。
2、滲透轉(zhuǎn)化、等積變形、極限的數(shù)學(xué)思想。
3、通過圓柱體積公式的推導(dǎo)過程,讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。而圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,我把推導(dǎo)圓柱體積公式的過程定為本節(jié)課的難點(diǎn)。
為了掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,我采用以下教學(xué)方法:直觀演示法和知識遷移法。不僅能夠清楚地展現(xiàn)知識的形成過程,還能提高學(xué)生靈活運(yùn)用知識的能力。
本節(jié)課我采用的學(xué)法有觀察法和小組合作交流法。
為了有效的突出重點(diǎn)、突破難點(diǎn),我設(shè)計(jì)了以下教學(xué)環(huán)節(jié)。
(一)復(fù)習(xí)舊知,揭示課題。
1、上課伊始先出示一組立體圖形(長方體、正方體、圓柱)。
問:你會計(jì)算那些圖形的體積?提出“圓柱的體積怎樣計(jì)算?”從而揭示課題:這節(jié)課我們就來探討圓柱的體積。
(二)觀察、質(zhì)疑、大膽猜想。
師出示兩組不同的圓柱,讓學(xué)生說一說哪個(gè)圓柱大,由此引到圓柱也有體積。鼓勵(lì)學(xué)生大膽猜想,并說明理由。這一環(huán)節(jié)調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性及強(qiáng)烈的探究欲望,學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
怎樣證明圓柱的大小呢?圓柱的體積可能怎樣計(jì)算呢?讓學(xué)生利用自己的生活經(jīng)驗(yàn)和原有的知識自然的想到圓柱的體積的大小與底面積和高有關(guān),從而大膽的猜想出圓柱的體積公式。
(三)演示操作,探究新知。
實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn),根據(jù)學(xué)生的猜想,我提出以下問題讓學(xué)生思考:1、可以把長方體的體積計(jì)算公式直接移植過來嗎?2、圓柱和長方體有什么聯(lián)系和區(qū)別?學(xué)生思考后就會發(fā)現(xiàn)圓柱和長方體都有高,但底面不同,如果能把底面轉(zhuǎn)化成長方形就好了。然后讓學(xué)生小組合作討論交流如何把圓柱體轉(zhuǎn)化成長方體,并讓學(xué)生上臺操作演示是如何轉(zhuǎn)化的。
同時(shí)引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?讓他們把各自的發(fā)現(xiàn)在組內(nèi)互相交流,在交流中探究出圓柱的體積的計(jì)算方法。為了加深學(xué)生對圓柱體積公式的理解,我又課件演示,沿著圓柱底面直徑把圓柱切開,可以得到大小相等的16塊,再拼在一起,可以得到一個(gè)長方體,進(jìn)而可以想到把底面平均分成的次數(shù)越多平成的圖形越接近于長方體。最后讓學(xué)生小組內(nèi)說一說圓柱體計(jì)算公式的推導(dǎo)過程,再指名說,根據(jù)學(xué)生的小結(jié)我板書:圓柱的體積=底面積×高。并引導(dǎo)學(xué)生用字母表示出來。
整個(gè)探究過程充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,引導(dǎo)學(xué)生完成“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”。讓知識在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法有助于突破難點(diǎn),讓學(xué)生感受到了成功的喜悅。
關(guān)于難點(diǎn)的突破,我主要從以下幾個(gè)方面著手:
(1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運(yùn)用知識遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識。
(3)充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4)根據(jù)新舊知識的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識的形成。
(四)教學(xué)例6。
在掌握了圓柱體積計(jì)算的方法之后,我安排例6讓學(xué)生進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識的能力,同時(shí)把所學(xué)知識轉(zhuǎn)化為相應(yīng)的技能。
(五)練習(xí)。
1.基礎(chǔ)練習(xí)。通過練習(xí),鞏固新知識,加深對新知識的理解,
2、拓展練習(xí)。
這道題的安排是對所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢。
我的板書簡潔清晰,一目了然,能夠清楚的反映出本節(jié)課的知識。
總之,本節(jié)課我是本著復(fù)習(xí)舊知——發(fā)現(xiàn)問題——提出問題——猜想假設(shè)——實(shí)踐操作——解決問題這一條線進(jìn)行教學(xué)的。放手讓學(xué)生自己發(fā)現(xiàn)問題、解決問題,充分體現(xiàn)了學(xué)生的主體地位,讓學(xué)生體驗(yàn)到了成功的快樂。
我的說課到此結(jié)束,歡迎各位領(lǐng)導(dǎo)多提寶貴意見。謝謝!