高一數(shù)學(xué)等差數(shù)列教案(實(shí)用15篇)

字號(hào):

    在教案中,教師可以明確教學(xué)目標(biāo)、安排教學(xué)內(nèi)容和方法,以及評(píng)價(jià)學(xué)生的學(xué)習(xí)情況。教案的編寫(xiě)應(yīng)當(dāng)充分考慮到學(xué)生的興趣和掌握程度。范文中的教案設(shè)計(jì)合理,思路清晰,值得學(xué)習(xí)借鑒。
    高一數(shù)學(xué)等差數(shù)列教案篇一
    【知識(shí)與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會(huì)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及蘊(yùn)含的數(shù)學(xué)思想。
    【過(guò)程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,提高知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高分析問(wèn)題和解決問(wèn)題的能力。
    【情感態(tài)度與價(jià)值觀】通過(guò)對(duì)等差數(shù)列的研究,具備主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
    【教學(xué)重點(diǎn)】。
    等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。
    【教學(xué)難點(diǎn)】。
    環(huán)節(jié)一:導(dǎo)入新課。
    教師ppt展示幾道題目:
    1.我們經(jīng)常這樣數(shù)數(shù),從0開(kāi)始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,252.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
    在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級(jí)別,其中交情的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):48,53,58,63。
    教師提問(wèn)學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。
    環(huán)節(jié)二:探索新知。
    學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念。
    如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。
    問(wèn)題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
    環(huán)節(jié)三:課堂練習(xí)。
    (1)1,2,4,6,8,10,12,……。
    (2)0,1,2,3,4,5,6,……。
    (3)3,3,3,3,3,3,3,……。
    (4)-8,-6,-4,-2,0,2,4,……。
    (5)3,0,-3,-6,-9,……。
    環(huán)節(jié)四:小結(jié)作業(yè)。
    關(guān)鍵字:從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
    作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問(wèn)題自己編寫(xiě)兩道等差數(shù)列的題目并進(jìn)行求解。
    高一數(shù)學(xué)等差數(shù)列教案篇二
    所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過(guò)程和方法”、“情感、態(tài)度、價(jià)值觀”。
    知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過(guò)程中,需要學(xué)生掌握什么,哪些些問(wèn)題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問(wèn)題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過(guò)度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
    過(guò)程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^(guò)程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過(guò)程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開(kāi)發(fā)。過(guò)程與方法是一個(gè)體驗(yàn)的過(guò)程、發(fā)現(xiàn)的過(guò)程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過(guò)程,我們更多地要讓學(xué)生掌握過(guò)程,不一定要統(tǒng)一的結(jié)果。
    情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂(lè)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過(guò)程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開(kāi)拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來(lái)回報(bào)社會(huì)。
    三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問(wèn)題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
    高一數(shù)學(xué)等差數(shù)列教案篇三
    2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見(jiàn)的`如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
    測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
    2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
    測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
    一、知識(shí)歸納
    2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
    測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
    二、例題討論
    一)利用方向角構(gòu)造三角形
    四)測(cè)量角度問(wèn)題
    例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
    高一數(shù)學(xué)等差數(shù)列教案篇四
    1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
    (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
    (2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
    (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
    2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
    3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
    (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
    (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
    (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
    (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
    (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
    (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
    函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
    高一數(shù)學(xué)等差數(shù)列教案篇五
    掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題。
    掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題。
    等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出。
    1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問(wèn)題的基本數(shù)學(xué)思想和方法。
    2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)。
    a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)。
    3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決。
    例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。
    (2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.
    例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。
    例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。
    高一數(shù)學(xué)等差數(shù)列教案篇六
    本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出
    (2)從算術(shù)平方根的意義引入.
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
    (第1課時(shí))
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
    3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
    對(duì)比、歸納、總結(jié)
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
    1課時(shí)
    五、教b具學(xué)具準(zhǔn)備
    投影儀、膠片、多媒體
    復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
    一、導(dǎo)入新課
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
    問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
    二、新課
    計(jì)算下列各題,并回答以下問(wèn)題:
    (1);(2);(3);
    1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.
    高一數(shù)學(xué)等差數(shù)列教案篇七
    3.通過(guò)參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣.
    教學(xué)重點(diǎn)是通項(xiàng)公式的認(rèn)識(shí);教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用.。
    用具。
    方法。
    研探式.
    一.復(fù)習(xí)提問(wèn)。
    等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來(lái)表示比較簡(jiǎn)單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.
    二.主體設(shè)計(jì)。
    通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡(jiǎn)單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡(jiǎn)單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來(lái),分類投影在屏幕上.
    1.方程思想的運(yùn)用。
    (1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第______項(xiàng).
    (2)已知等差數(shù)列中,首項(xiàng),則公差。
    (3)已知等差數(shù)列中,公差,則首項(xiàng)。
    這一類問(wèn)題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.
    2.基本量方法的使用。
    (1)已知等差數(shù)列中,,求的值.
    若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫(xiě)出通項(xiàng)公式,便可歸結(jié)為前一類問(wèn)題.解決這類問(wèn)題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
    教師提出新的問(wèn)題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說(shuō)明(例題可由學(xué)生或教師給出,視具體情況而定).
    類似的還有。
    (4)已知等差數(shù)列中,求的值.
    以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無(wú)定性的判斷?引出。
    4.研究項(xiàng)的符號(hào)。
    這是為研究等差數(shù)列前項(xiàng)和的最值所做的準(zhǔn)備工作.可配備的題目如。
    (1)已知數(shù)列的通項(xiàng)公式為,問(wèn)數(shù)列從第幾項(xiàng)開(kāi)始小于0?
    (2)等差數(shù)列從第________項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).
    三.小結(jié)。
    1.用方程思想認(rèn)識(shí)等差數(shù)列通項(xiàng)公式;
    四.板書(shū)設(shè)計(jì)。
    1.方程思想的運(yùn)用。
    2.基本量方法的使用。
    4.研究項(xiàng)的符號(hào)。
    高一數(shù)學(xué)等差數(shù)列教案篇八
    (1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
    (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
    (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
    (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
    (1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
    (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
    (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)?,增?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
    (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
    (1)學(xué)法:觀察、思考、交流、討論、概括。
    (2)實(shí)物模型、投影儀四、教學(xué)思路。
    1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ?,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
    2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
    1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
    3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
    (1)有兩個(gè)面互相平行;
    (2)其余各面都是平行四邊形;
    (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
    5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
    6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
    7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
    8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
    1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)。
    2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
    3、課本p8,習(xí)題1.1a組第1題。
    5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
    由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
    課本p8練習(xí)題1.1b組第1題。
    課外練習(xí)課本p8習(xí)題1.1b組第2題。
    高一數(shù)學(xué)等差數(shù)列教案篇九
    學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
    1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).
    (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
    (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.
    (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).
    2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
    3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
    (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
    (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
    (3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.
    (4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
    (5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
    (6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
    上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
    高一數(shù)學(xué)等差數(shù)列教案篇十
    2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
    3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
    1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
    3、雙曲線的漸進(jìn)線方程為、
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
    探究1、類比橢圓的幾何性質(zhì)寫(xiě)出雙曲線的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
    練習(xí):已知雙曲線經(jīng)過(guò),且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
    (1)過(guò)點(diǎn),離心率、
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
    例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
    4、設(shè)雙曲線的半焦距為,直線過(guò)、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
    將本文的word文檔下載到電腦,方便收藏和打印。
    高一數(shù)學(xué)等差數(shù)列教案篇十一
    (2)理解任意角的三角函數(shù)不同的定義方法;。
    (4)掌握并能初步運(yùn)用公式一;。
    (5)樹(shù)立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
    初中學(xué)過(guò):銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過(guò)單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào).最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
    任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過(guò)去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過(guò)運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解.
    本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
    教學(xué)重難點(diǎn)。
    重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
    難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解.
    高一數(shù)學(xué)等差數(shù)列教案篇十二
    (5)樹(shù)立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。
    初中學(xué)過(guò):銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過(guò)單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào)。最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
    任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過(guò)去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過(guò)運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解。
    本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。
    教學(xué)重難點(diǎn)。
    重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
    難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解。
    高一數(shù)學(xué)等差數(shù)列教案篇十三
    3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
    一、預(yù)習(xí)檢查。
    1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
    二、問(wèn)題探究。
    探究1、類比橢圓的幾何性質(zhì)寫(xiě)出雙曲線的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過(guò),且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過(guò)點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過(guò)點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率.
    例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練。
    1、已知雙曲線方程為,經(jīng)過(guò)它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識(shí)鞏固。
    1、已知雙曲線方程為,過(guò)一點(diǎn)(0,1),作一直線,使與雙曲線無(wú)交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過(guò)點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設(shè)雙曲線的半焦距為,直線過(guò)、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過(guò)點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高一數(shù)學(xué)等差數(shù)列教案篇十四
    對(duì)數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊(cè))第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對(duì)數(shù)函數(shù)相關(guān)知識(shí),分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對(duì)數(shù)比大小問(wèn)題,是對(duì)已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對(duì)數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識(shí)基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
    二、教學(xué)目標(biāo)。
    根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
    學(xué)習(xí)目標(biāo):
    1、復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)的圖像及性質(zhì)。
    2、運(yùn)用對(duì)數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小。
    能力目標(biāo):
    1、培養(yǎng)學(xué)生運(yùn)用圖形解決問(wèn)題的意識(shí)即數(shù)形結(jié)合能力。
    2、學(xué)生運(yùn)用已學(xué)知識(shí),已有經(jīng)驗(yàn)解決新問(wèn)題的能力。
    3、探索出方法,有條理闡述自己觀點(diǎn)的能力。
    德育目標(biāo):
    培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)。
    三、教材的重點(diǎn)及難點(diǎn)。
    教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):
    1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足。
    2、通過(guò)適當(dāng)?shù)木毩?xí),加強(qiáng)對(duì)解題方法的掌握及原理的理解。
    教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):
    1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
    2、小組合作探索新問(wèn)題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語(yǔ)言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    四、學(xué)生學(xué)情分析。
    長(zhǎng)處:高一學(xué)生經(jīng)過(guò)幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對(duì)于已學(xué)知識(shí)或用過(guò)的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識(shí),對(duì)于本節(jié)課而言,從知識(shí)上說(shuō),對(duì)數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過(guò),本節(jié)課是知識(shí)的應(yīng)用,從數(shù)學(xué)能力上說(shuō),指數(shù)比大小問(wèn)題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。
    學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來(lái)看,第三類對(duì)數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒(méi)有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過(guò)合作探究來(lái)完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來(lái)看,探索出方法,有條理闡述自己觀點(diǎn)的能力還需加強(qiáng)鍛煉,知識(shí)之間的聯(lián)系認(rèn)識(shí)上還顯不足。
    五、教法特點(diǎn)。
    新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖耍竟?jié)課遵循此原則重點(diǎn)采用問(wèn)題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問(wèn)題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說(shuō)、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語(yǔ)言闡述觀點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    六、教學(xué)過(guò)程分析。
    1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。
    設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣。
    2、溫故知新(已填表形式復(fù)習(xí)對(duì)數(shù)函數(shù)的圖像和性質(zhì))。
    設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識(shí)和方法,為學(xué)生形成知識(shí)間的聯(lián)系和框架建立平臺(tái),并為下一步的應(yīng)用打下基礎(chǔ)。
    3、預(yù)習(xí)后心得交流。
    1)同底對(duì)數(shù)比大小。
    2)既不同底數(shù),也不同真數(shù)的對(duì)數(shù)比大小。
    設(shè)計(jì)意圖:通過(guò)學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問(wèn)題的有效方法。
    4、合作探究——同真異底型的對(duì)數(shù)比大小。
    以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問(wèn)題。二是利用具體對(duì)數(shù)的大小關(guān)系探究出不同底對(duì)數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來(lái)解決此類型比大小問(wèn)題。
    設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識(shí),同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚(yú),不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問(wèn)題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒(méi)有了反思,他們就錯(cuò)過(guò)了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問(wèn)題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
    5、小結(jié)。
    6、思考題。
    以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。
    7、作業(yè)。
    包括兩個(gè)方面:
    1、書(shū)寫(xiě)作業(yè)。
    2、下節(jié)課前的預(yù)習(xí)作業(yè)。
    通過(guò)本節(jié)課的教學(xué)實(shí)例來(lái)看,這種通過(guò)課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過(guò)程中,我參與小組討論,對(duì)有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對(duì)于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動(dòng)起來(lái),課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對(duì)于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽(tīng),及時(shí)鼓勵(lì),給予學(xué)生微笑和語(yǔ)言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對(duì)于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識(shí)的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺(jué)得抽象,而是變成具體的,可操作的、具體的解題工具。
    高一數(shù)學(xué)等差數(shù)列教案篇十五
    通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法
    培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
    [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
    [教學(xué)方法]:講練結(jié)合法
    [授課類型]:復(fù)習(xí)課
    [課時(shí)安排]:1課時(shí)
    [教學(xué)過(guò)程]:集合部分匯總
    本單元主要介紹了以下三個(gè)問(wèn)題:
    1,集合的含義與特征
    2,集合的表示與轉(zhuǎn)化
    3,集合的基本運(yùn)算
    一,集合的含義與表示(含分類)
    1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
    2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類