教案不僅是一種教學工具,也是教師教學的一種思考過程。教師應該不斷反思和調整教學方法和策略,以滿足學生的學習需求和提高教學效果。下面的教案范例涵蓋了各個學科的不同教學內容和教學方法。
數(shù)學教案一元二次方程的應用篇一
新課程要求培養(yǎng)學生應用數(shù)學的意識與能力,作為數(shù)學教師,我們要充分利用已有的生活經(jīng)驗,把所學的數(shù)學知識用到現(xiàn)實中去,體會數(shù)學在現(xiàn)實中應用價值。
本章節(jié)的應用基本上是以學生熟悉的'現(xiàn)實生活為問題的背景,讓學生從具體的問題情境中抽象出數(shù)量關系,歸納出變化規(guī)律,并能用數(shù)學符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學生數(shù)學應用能力的問題,體現(xiàn)時代性,并且結合社會熱點、焦點問題,引導學生關注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學生從數(shù)學的角度分析社會現(xiàn)象,體會數(shù)學在現(xiàn)實生活中的作用。
對教學過程進行反思,既有成功的一面,又有不足之處。需改進的方面有:
1、由于怕完不成任務,給學生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。例如p46有多種解法,課后一些學生與老師交流,但課上沒有得到充分的展示。
2、只考慮捕捉學生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導致使一些同學陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學跟不上。
數(shù)學教案一元二次方程的應用篇二
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當時,
當時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
數(shù)學教案一元二次方程的應用篇三
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
1.的有關概念。
2.會把化成一般形式。
難點:的含義.
第12頁。
數(shù)學教案一元二次方程的應用篇四
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
【教學過程】。
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結。
(四)布置作業(yè)。
數(shù)學教案一元二次方程的應用篇五
學習目標:
2、進一步培養(yǎng)學生分析問題、解決問題的能力。
學習重點:
學習難點:
如何分析題意,找出等量關系,列方程。
學習過程:
一、復習提問:
二、探索新知。
1、情境導入。
2、合作探究、師生互動。
教師引導學生運用方程解決問題:
三、例題學習。
說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。
(小組合作交流教師點撥)。
時間基數(shù)降價降價后價錢。
第一次600600x600(1―x)。
第二次600(1―x)600(1―x)x600(1―x)2。
(由學生寫出解答過程)。
四、鞏固練習。
五、課堂總結:
1、善于將實際問題轉化為數(shù)學問題,嚴格審題,弄清各數(shù)據(jù)間相互關系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習:
a、x+(1+x)x=20%b、(1+x)2=20%。
c、(1+x)2=1、2d、(1+x%)2=1+20%。
2、某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()。
數(shù)學教案一元二次方程的應用篇六
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
數(shù)學教案一元二次方程的應用篇七
在日常生活中,許多問題都可以通過建立一元二次方程這個模型進行求解,然后回到實踐問題中進行解釋和檢驗,從而體會數(shù)學建模的思想方法,解決這類問題的關鍵是弄清實際問題中所包含的數(shù)量關系。
本節(jié)內容教材提供了與生活密切相關,且有一定思考和探究性的問題,所以在教學中我讓學生綜合已有的知識,經(jīng)過自主探索和合作交流嘗試解決,提高學生的思維品質和進行探究學習的能力。主要有以下幾個成功之處:
1、讓學生自主交流方法,充分展示學生不同層次的思維,互相學習,互相促進,從而創(chuàng)建平等、輕松的學習氛圍。
在出示了例7后,我提示學生解決此類問題可以自己畫出草圖,分析題目中的等量關系,學生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關系的條件,根據(jù)條件寫出文字的等量關系。在這個環(huán)節(jié)有的學生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學生可以寫出等量關系,我再讓會的學生說出理由。在這個教學過程中,學生互相學習,互相促進,輕松地學會了知識。
2、讓學生自主歸納,總結方法,尊重學生的個性選擇,學生的集體智慧更符合學生自己的口味,比教師說教更易于被學生接受。
例7的解答還有一種更簡單的方法,我讓學生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學生上來講述方法。學生用自己的語言講述,這樣其他人接受起來更快一些。并且,學生還總結此類問題的解決方法――將圖形平移,在以下練習的幾道題中都能得心應手的解答了。由此可見,通過自己思考學到的知識能夠靈活應用,且掌握的好。
在這節(jié)課的教學中也存在一些不足之處,教材中在例題之前設計了一個應用,在解決這個問題上耽誤了時間,延誤了下面的教學,導致設計的練習題沒有做完,所以在下次教學時,這個應用問題只讓學生列出方程即可,不必在解答上花費時間。另外,練習設計過于單一,只涉及到了例題這種類型的練習,變式練習題少,所以,在下次教學時,要設計兩道不同題型的題目。
由這節(jié)課的教學我領悟到,數(shù)學學習是學生自己建構數(shù)學知識的活動,學生應該主動探索知識的建構者,而不是模仿者,教學應促進學生主體的主動建構,離開了學生積極主動的學習,教師講得再好,也會經(jīng)常出現(xiàn)“教師講完了,學生仍不會”的現(xiàn)象。所以,在以后的教學中,我要更有意識的多給學生自主探索、合作交流的機會,更加激發(fā)學生的學習積極性,使學生在他們的最近發(fā)展區(qū)發(fā)展。
數(shù)學教案一元二次方程的應用篇八
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結果。
教學目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
數(shù)學教案一元二次方程的應用篇九
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
練習。
(三)小結。
(四)布置作業(yè)。
數(shù)學教案一元二次方程的應用篇十
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學教案一元二次方程的應用篇十一
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學教案一元二次方程的應用篇十二
九年級的學生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學習了一元一次方程及相關概念,學習了整式、分式和二次根式,從知識結構上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數(shù)學底子薄,基礎差,學生由于學習困難,基礎差,沒有自信,也就對數(shù)學的學習興趣越來越弱,有人甚至要放棄對數(shù)學的學習,作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。
教學目標。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。
3.通過本節(jié)課的學習,培養(yǎng)學生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價值觀。
2.通過本節(jié)知識的學習,使學生認識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學重點和難點。
難點:1.由實際問題向數(shù)學問題的轉化過程。2.正確識別一般式中的“項”及“系數(shù)”。
數(shù)學教案一元二次方程的應用篇十三
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
數(shù)學教案一元二次方程的應用篇十四
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.
1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關概念.
3.解決一些概念性的題目.
4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.
重難點關鍵。
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.
2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學過程。
一、復習引入。
學生活動:列方程.
如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.
如果假設ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.
二、探索新知。
學生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
移項,得:4x2-26x+22=0。
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1。
移項,合并得:2x2+2x-4=0。
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習。
教材p32練習1、2。
四、應用拓展。
例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1。
∵(m-4)20。
(m-4)2+10,即(m-4)2+10。
不論m取何值,該方程都是一元二次方程.
五、歸納小結(學生總結,老師點評)。
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)。
數(shù)學教案一元二次方程的應用篇十五
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
二、教學重難點。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
三、教學過程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
四、板書設計。
五、教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學教案一元二次方程的應用篇一
新課程要求培養(yǎng)學生應用數(shù)學的意識與能力,作為數(shù)學教師,我們要充分利用已有的生活經(jīng)驗,把所學的數(shù)學知識用到現(xiàn)實中去,體會數(shù)學在現(xiàn)實中應用價值。
本章節(jié)的應用基本上是以學生熟悉的'現(xiàn)實生活為問題的背景,讓學生從具體的問題情境中抽象出數(shù)量關系,歸納出變化規(guī)律,并能用數(shù)學符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學生數(shù)學應用能力的問題,體現(xiàn)時代性,并且結合社會熱點、焦點問題,引導學生關注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學生從數(shù)學的角度分析社會現(xiàn)象,體會數(shù)學在現(xiàn)實生活中的作用。
對教學過程進行反思,既有成功的一面,又有不足之處。需改進的方面有:
1、由于怕完不成任務,給學生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。例如p46有多種解法,課后一些學生與老師交流,但課上沒有得到充分的展示。
2、只考慮捕捉學生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導致使一些同學陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學跟不上。
數(shù)學教案一元二次方程的應用篇二
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當時,
當時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
數(shù)學教案一元二次方程的應用篇三
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
1.的有關概念。
2.會把化成一般形式。
難點:的含義.
第12頁。
數(shù)學教案一元二次方程的應用篇四
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
【教學過程】。
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結。
(四)布置作業(yè)。
數(shù)學教案一元二次方程的應用篇五
學習目標:
2、進一步培養(yǎng)學生分析問題、解決問題的能力。
學習重點:
學習難點:
如何分析題意,找出等量關系,列方程。
學習過程:
一、復習提問:
二、探索新知。
1、情境導入。
2、合作探究、師生互動。
教師引導學生運用方程解決問題:
三、例題學習。
說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。
(小組合作交流教師點撥)。
時間基數(shù)降價降價后價錢。
第一次600600x600(1―x)。
第二次600(1―x)600(1―x)x600(1―x)2。
(由學生寫出解答過程)。
四、鞏固練習。
五、課堂總結:
1、善于將實際問題轉化為數(shù)學問題,嚴格審題,弄清各數(shù)據(jù)間相互關系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習:
a、x+(1+x)x=20%b、(1+x)2=20%。
c、(1+x)2=1、2d、(1+x%)2=1+20%。
2、某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()。
數(shù)學教案一元二次方程的應用篇六
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
數(shù)學教案一元二次方程的應用篇七
在日常生活中,許多問題都可以通過建立一元二次方程這個模型進行求解,然后回到實踐問題中進行解釋和檢驗,從而體會數(shù)學建模的思想方法,解決這類問題的關鍵是弄清實際問題中所包含的數(shù)量關系。
本節(jié)內容教材提供了與生活密切相關,且有一定思考和探究性的問題,所以在教學中我讓學生綜合已有的知識,經(jīng)過自主探索和合作交流嘗試解決,提高學生的思維品質和進行探究學習的能力。主要有以下幾個成功之處:
1、讓學生自主交流方法,充分展示學生不同層次的思維,互相學習,互相促進,從而創(chuàng)建平等、輕松的學習氛圍。
在出示了例7后,我提示學生解決此類問題可以自己畫出草圖,分析題目中的等量關系,學生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關系的條件,根據(jù)條件寫出文字的等量關系。在這個環(huán)節(jié)有的學生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學生可以寫出等量關系,我再讓會的學生說出理由。在這個教學過程中,學生互相學習,互相促進,輕松地學會了知識。
2、讓學生自主歸納,總結方法,尊重學生的個性選擇,學生的集體智慧更符合學生自己的口味,比教師說教更易于被學生接受。
例7的解答還有一種更簡單的方法,我讓學生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學生上來講述方法。學生用自己的語言講述,這樣其他人接受起來更快一些。并且,學生還總結此類問題的解決方法――將圖形平移,在以下練習的幾道題中都能得心應手的解答了。由此可見,通過自己思考學到的知識能夠靈活應用,且掌握的好。
在這節(jié)課的教學中也存在一些不足之處,教材中在例題之前設計了一個應用,在解決這個問題上耽誤了時間,延誤了下面的教學,導致設計的練習題沒有做完,所以在下次教學時,這個應用問題只讓學生列出方程即可,不必在解答上花費時間。另外,練習設計過于單一,只涉及到了例題這種類型的練習,變式練習題少,所以,在下次教學時,要設計兩道不同題型的題目。
由這節(jié)課的教學我領悟到,數(shù)學學習是學生自己建構數(shù)學知識的活動,學生應該主動探索知識的建構者,而不是模仿者,教學應促進學生主體的主動建構,離開了學生積極主動的學習,教師講得再好,也會經(jīng)常出現(xiàn)“教師講完了,學生仍不會”的現(xiàn)象。所以,在以后的教學中,我要更有意識的多給學生自主探索、合作交流的機會,更加激發(fā)學生的學習積極性,使學生在他們的最近發(fā)展區(qū)發(fā)展。
數(shù)學教案一元二次方程的應用篇八
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結構:本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結果。
教學目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
數(shù)學教案一元二次方程的應用篇九
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一個一元二次方程都可以轉化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
練習。
(三)小結。
(四)布置作業(yè)。
數(shù)學教案一元二次方程的應用篇十
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學教案一元二次方程的應用篇十一
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學教案一元二次方程的應用篇十二
九年級的學生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學習了一元一次方程及相關概念,學習了整式、分式和二次根式,從知識結構上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數(shù)學底子薄,基礎差,學生由于學習困難,基礎差,沒有自信,也就對數(shù)學的學習興趣越來越弱,有人甚至要放棄對數(shù)學的學習,作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。
教學目標。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。
3.通過本節(jié)課的學習,培養(yǎng)學生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價值觀。
2.通過本節(jié)知識的學習,使學生認識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學重點和難點。
難點:1.由實際問題向數(shù)學問題的轉化過程。2.正確識別一般式中的“項”及“系數(shù)”。
數(shù)學教案一元二次方程的應用篇十三
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
數(shù)學教案一元二次方程的應用篇十四
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.
1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關概念.
3.解決一些概念性的題目.
4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.
重難點關鍵。
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.
2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學過程。
一、復習引入。
學生活動:列方程.
如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.
如果假設ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.
二、探索新知。
學生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
移項,得:4x2-26x+22=0。
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1。
移項,合并得:2x2+2x-4=0。
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習。
教材p32練習1、2。
四、應用拓展。
例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1。
∵(m-4)20。
(m-4)2+10,即(m-4)2+10。
不論m取何值,該方程都是一元二次方程.
五、歸納小結(學生總結,老師點評)。
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)。
數(shù)學教案一元二次方程的應用篇十五
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
二、教學重難點。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
三、教學過程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
四、板書設計。
五、教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。