人教版高中必修二數(shù)學(xué)教案大全(15篇)

字號(hào):

    教案是教師為指導(dǎo)教學(xué)活動(dòng)所編寫的一種教學(xué)設(shè)計(jì)綱要,它包含了教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過(guò)程等內(nèi)容。教案的編寫是為了指導(dǎo)和規(guī)范教學(xué)活動(dòng),使教學(xué)更加系統(tǒng)和科學(xué),提高教學(xué)效果。教案可以幫助教師更好地組織教學(xué)內(nèi)容,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,提高學(xué)生的學(xué)習(xí)效果。因此,編寫一份好的教案對(duì)教師教學(xué)的質(zhì)量至關(guān)重要。教案的編寫需要結(jié)合教學(xué)資源的合理利用。以下是一些實(shí)際教學(xué)中獲得好評(píng)的教案范文,它們展示了教師的教學(xué)才華和創(chuàng)造力。
    人教版高中必修二數(shù)學(xué)教案篇一
    在復(fù)習(xí)時(shí),由于解題的量很大,就更要求我們將解題活動(dòng)組織得生動(dòng)活潑、情趣盎然。讓學(xué)生領(lǐng)略到數(shù)學(xué)的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學(xué)題,即便具有相當(dāng)?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
    “山重水復(fù)”的困惑被“柳暗花明”的喜悅?cè)〈?,學(xué)生又怎能不贊嘆自己智能的威力?我們要使學(xué)生由“要我學(xué)”轉(zhuǎn)化為“我要學(xué)”,課堂上要想方設(shè)法調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運(yùn)用情感原理,喚起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情;二是運(yùn)用成功原理,變苦學(xué)為樂學(xué);三是在學(xué)法上教給學(xué)生“點(diǎn)金術(shù)”,等等。
    在課堂教學(xué)結(jié)構(gòu)上,更新教育觀念,始終堅(jiān)持以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)原則。
    教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學(xué)生通過(guò)自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西?!卑次覀兊恼f(shuō)法就是:師傅的任務(wù)在于度,徒弟的任務(wù)在于悟。數(shù)學(xué)課堂教學(xué)必須廢除“注入式”“滿堂灌”的教法。復(fù)習(xí)課也不能由教師包講,更不能成為教師展示自己解題“高難動(dòng)作”的“絕活表演”,而要讓學(xué)生成為學(xué)習(xí)的主人,讓他們?cè)谥鲃?dòng)積極的探索活動(dòng)中實(shí)現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學(xué)素養(yǎng)和悟性。
    作為教學(xué)活動(dòng)的組織者,教師的任務(wù)是點(diǎn)撥、啟發(fā)、誘導(dǎo)、調(diào)控,而這些都應(yīng)以學(xué)生為中心。復(fù)習(xí)課上有一個(gè)突出的矛盾,就是時(shí)間太緊,既要處理足量的題目,又要充分展示學(xué)生的思維過(guò)程,二者似乎是很難兼顧。我們可采用“焦點(diǎn)訪談”法較好地解決這個(gè)問題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過(guò)程中,常在某一點(diǎn)或某幾點(diǎn)上擱淺受阻,這些點(diǎn)被稱為“焦點(diǎn)”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進(jìn)行淺表性的啟發(fā)誘導(dǎo),好鋼要用在刀刃上,而只要在焦點(diǎn)處發(fā)動(dòng)學(xué)生探尋突破口,通過(guò)訪談,集中學(xué)生的智慧,讓學(xué)生的思維在關(guān)鍵處閃光,能力在要害處增長(zhǎng),弱點(diǎn)在隱蔽處暴露,意志在細(xì)微處磨礪。通過(guò)訪談實(shí)現(xiàn)學(xué)生間、師生間智慧和能力的互補(bǔ),促進(jìn)相互的心靈和感情的溝通。
    人教版高中必修二數(shù)學(xué)教案篇二
    集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
    本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問題、解決問題的能力。
    函數(shù)。
    函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會(huì)對(duì)具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識(shí),最終解決問題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)??疾楹瘮?shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
    規(guī)律方法總結(jié)。
    求函數(shù)解析式時(shí),針對(duì)條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
    人教版高中必修二數(shù)學(xué)教案篇三
    初中新課程中數(shù)學(xué)知識(shí)點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對(duì)這些知識(shí)點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來(lái)看,學(xué)生掌握了這些知識(shí)點(diǎn)對(duì)學(xué)習(xí)新的知識(shí)有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識(shí)也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
    2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化。
    初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對(duì)高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡(jiǎn)、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來(lái)看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開始就要切實(shí)提高學(xué)生的運(yùn)算能力。
    3、抓住學(xué)科特點(diǎn),做好順利過(guò)渡。
    高中數(shù)學(xué)知識(shí)量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識(shí)的難度和對(duì)學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識(shí)綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識(shí)點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過(guò)程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
    人教版高中必修二數(shù)學(xué)教案篇四
    了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
    (2)一元二次不等式。
    會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
    通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題。
    會(huì)從實(shí)際情境中抽象出二元一次不等式組.
    了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決.
    (4)基本不等式:
    了解基本不等式的證明過(guò)程.
    人教版高中必修二數(shù)學(xué)教案篇五
    集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問題、解決問題的能力。
    (二)規(guī)律方法總結(jié)。
    1、集合中元素的互異性是集合概念的重點(diǎn)考查內(nèi)容。一般給出兩個(gè)集合,并告知兩個(gè)集合之間的關(guān)系,求集合中某個(gè)參數(shù)的范圍或值的時(shí)候,要特別驗(yàn)證是否符合元素之間互異性。2、考查集合的運(yùn)算和包含關(guān)系,解題中常用到分類討論思想,分類時(shí)注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運(yùn)算問題是以已知的集合或運(yùn)算為背景,引出新的集合概念或運(yùn)算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。
    基本初等函數(shù)。
    基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識(shí)的必要的一步。與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運(yùn)算推理來(lái)解題。所以這部分內(nèi)容更注重通過(guò)函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來(lái)解題的能力。
    (二)規(guī)律方法總結(jié)。
    1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識(shí)結(jié)合考查綜合應(yīng)用知識(shí)解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。
    2、解對(duì)數(shù)方程(或不等式)就是將對(duì)數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價(jià)的,特別要考慮到對(duì)數(shù)函數(shù)定義域。
    人教版高中必修二數(shù)學(xué)教案篇六
    函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過(guò)建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡(jiǎn)的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
    1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
    3.函數(shù)方程思想的幾種重要形式。
    (1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
    (6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
    人教版高中必修二數(shù)學(xué)教案篇七
    對(duì)重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對(duì)性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識(shí),不要盲目地做題,要有針對(duì)性地選題,回味練習(xí).
    高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們?cè)趶?fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對(duì)數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
    應(yīng)注意實(shí)際問題的解決和探索性試題的研究。
    現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無(wú)患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
    人教版高中必修二數(shù)學(xué)教案篇八
    根據(jù)德國(guó)心理學(xué)家艾賓浩斯繪制的遺忘曲線,學(xué)生對(duì)知識(shí)的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對(duì)知識(shí)的理解,掌握知識(shí)的內(nèi)在聯(lián)系,延緩知識(shí)的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識(shí),使內(nèi)容條理化、清晰化地呈現(xiàn)在同學(xué)的面前,從而完成由厚到薄的過(guò)程,對(duì)重難點(diǎn)和關(guān)鍵點(diǎn),進(jìn)行重點(diǎn)的、有針對(duì)性的講解。配以適當(dāng)?shù)木毩?xí),提高學(xué)生對(duì)基本知識(shí)和基本方法的深刻性和準(zhǔn)確性的理解掌握。促進(jìn)學(xué)生科學(xué)合理的知識(shí)結(jié)構(gòu)的形成,使知識(shí)系統(tǒng)化和網(wǎng)絡(luò)化。
    舊知檢測(cè)。
    要想有效的提高課堂的復(fù)習(xí)效率,就須克服“眼高手低”的毛病。很多同學(xué)上課時(shí)處于一種混沌的狀態(tài),一聽就懂,一做就錯(cuò);一聽就會(huì),一到自己做就不會(huì)了。為避免這樣的情況,就必須讓學(xué)生更好地了解自己知識(shí)的掌握情況??梢栽O(shè)置幾個(gè)基礎(chǔ)的填空和一個(gè)左右的解答題,通過(guò)解答的過(guò)程讓學(xué)生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習(xí)的效率。
    精選精講。
    精心的選擇適量的典型例題,分析解決這些問題應(yīng)該是一堂復(fù)習(xí)課的核心內(nèi)容。解題的目的絕不是僅僅解決這個(gè)問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學(xué)思想方法,提高學(xué)生分析問題、解決問題的能力。
    人教版高中必修二數(shù)學(xué)教案篇九
    要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個(gè)好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實(shí)。
    想學(xué)好數(shù)學(xué),對(duì)數(shù)學(xué)感興趣。
    其實(shí)學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會(huì)到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對(duì)于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。
    多做題反復(fù)做,有題感。
    其實(shí)學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強(qiáng)學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會(huì)有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會(huì)做,你也會(huì)找到一些解題的思路和技巧。
    人教版高中必修二數(shù)學(xué)教案篇十
    專題八當(dāng)今世界經(jīng)濟(jì)的全球化趨勢(shì)。
    通史概要:
    當(dāng)今世界經(jīng)濟(jì)發(fā)展有兩個(gè)明顯的趨勢(shì):一是世界經(jīng)濟(jì)區(qū)域集團(tuán)化,二是世界經(jīng)濟(jì)全球化。世界經(jīng)濟(jì)區(qū)域集團(tuán)化是最終實(shí)現(xiàn)經(jīng)濟(jì)全球化的重要步驟和途徑,經(jīng)濟(jì)全球化則是區(qū)域經(jīng)濟(jì)集團(tuán)化的最終歸宿。
    世界經(jīng)濟(jì)區(qū)域集團(tuán)化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國(guó)家化、國(guó)際分工向縱深發(fā)展需要加強(qiáng)合作的結(jié)果,也是世界經(jīng)濟(jì)競(jìng)爭(zhēng)激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國(guó)際間經(jīng)濟(jì)競(jìng)爭(zhēng)和客觀上存在的分工。區(qū)域集團(tuán)化的發(fā)展分為三個(gè)階段:第一階段為五六十年代,世界經(jīng)濟(jì)集團(tuán)化的趨勢(shì)主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團(tuán)化成為一種世界經(jīng)濟(jì)現(xiàn)象。歐洲區(qū)域集團(tuán)化趨勢(shì)進(jìn)一步發(fā)展,如歐共體的建立;一些發(fā)展中國(guó)家的地區(qū)性經(jīng)濟(jì)集團(tuán)也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團(tuán)化掀起新的浪潮,進(jìn)入了較高層次的經(jīng)濟(jì)一體化時(shí)期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟(jì)集團(tuán)。
    世界經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢(shì)。它突出的表現(xiàn)在國(guó)際貿(mào)易、國(guó)際投資、國(guó)際金融和跨國(guó)公司的發(fā)展。經(jīng)濟(jì)全球化的過(guò)程中的問題是:在經(jīng)濟(jì)全球化的過(guò)程中,不可避免地把資本主義固有的矛盾擴(kuò)展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機(jī)、全球性的經(jīng)濟(jì)金融危機(jī)、恐怖組織活動(dòng)猖獗等等,直接影響到人類的生存與發(fā)展。
    我國(guó)在當(dāng)今世界經(jīng)濟(jì)發(fā)展趨勢(shì)中,作為發(fā)展中國(guó)家,應(yīng)該如何面對(duì)機(jī)遇和挑戰(zhàn),成了新時(shí)期經(jīng)濟(jì)發(fā)展人們共同關(guān)心的話題。從中國(guó)加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強(qiáng)同東盟的聯(lián)系的史實(shí)中,我們的態(tài)度是:在堅(jiān)持獨(dú)立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強(qiáng)國(guó)際的合作與交流,參與國(guó)際競(jìng)爭(zhēng),抓住機(jī)遇,接受挑戰(zhàn),在國(guó)際的競(jìng)爭(zhēng)和合作中,提高我國(guó)的經(jīng)濟(jì)發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟(jì)發(fā)展趨勢(shì)這一經(jīng)濟(jì)現(xiàn)象,樹立正確的.發(fā)展觀。
    一歐洲的聯(lián)合。
    課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
    教學(xué)目標(biāo):
    (1)知識(shí)與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟(jì)進(jìn)入“黃金時(shí)代”的原因;簡(jiǎn)述歐洲國(guó)家從“歐共體”走向歐盟的歷程,認(rèn)識(shí)歐洲聯(lián)盟成立對(duì)世界經(jīng)濟(jì)和政治格局的影響。
    概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
    (2)過(guò)程與方法:通過(guò)討論西歐經(jīng)濟(jì)在二戰(zhàn)后進(jìn)入“黃金時(shí)代”的共同原因,進(jìn)一步思考中國(guó)的社會(huì)主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗(yàn),學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實(shí)踐的能力;通過(guò)分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個(gè)歐洲走向聯(lián)合的過(guò)程,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
    (3)情感、態(tài)度與價(jià)值觀:通過(guò)對(duì)歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識(shí)當(dāng)今國(guó)際社會(huì)國(guó)家間團(tuán)結(jié)協(xié)作的重要性,樹立國(guó)際意識(shí);通過(guò)對(duì)歐洲走向聯(lián)合的史實(shí)的歸納,得出一個(gè)別國(guó)家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國(guó)的實(shí)際,進(jìn)一步探討一下我們可以借鑒哪些做法,從而樹立為我國(guó)社會(huì)主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。
    教學(xué)課時(shí):1課時(shí)。
    重點(diǎn)難點(diǎn):
    重點(diǎn):歐洲走向聯(lián)合過(guò)程及影響。
    難點(diǎn):歐洲走向聯(lián)合的原因。
    教學(xué)建議:
    1、本課共有三個(gè)方面的內(nèi)容,“西歐經(jīng)濟(jì)的'黃金時(shí)代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國(guó)經(jīng)濟(jì)在恢復(fù)的基礎(chǔ)上,進(jìn)入調(diào)整增長(zhǎng)期,被稱為西歐經(jīng)濟(jì)的“黃金時(shí)代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟(jì)一體化到政治一體化的發(fā)展趨勢(shì);“貨幣王國(guó)的世界公民”主要以歐元的流通為例,進(jìn)一步表明歐洲走向聯(lián)合的趨勢(shì)。
    2、西歐經(jīng)濟(jì)高速發(fā)展的共同原因:第一,西歐各國(guó)進(jìn)行社會(huì)改革和政策調(diào)整。進(jìn)行社會(huì)改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會(huì)矛盾,穩(wěn)定社會(huì)秩序;進(jìn)行政策調(diào)整,如:將一些私人壟斷企業(yè)國(guó)有化,并建立有關(guān)國(guó)計(jì)民生的重要工業(yè)部門。這些政策的推行,促進(jìn)了西歐經(jīng)濟(jì)的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計(jì)劃的實(shí)施,解決了西歐戰(zhàn)后經(jīng)濟(jì)發(fā)展的啟動(dòng)資金,西歐重工業(yè)在短時(shí)期內(nèi)完成了新的裝備,并有能力購(gòu)買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對(duì)產(chǎn)業(yè)部門進(jìn)行了改造,使勞動(dòng)生產(chǎn)率大大提高,從而有力地推動(dòng)了經(jīng)濟(jì)的高速發(fā)展。
    3、伴隨著歐洲經(jīng)濟(jì)合作的成功,歐洲經(jīng)濟(jì)不斷的恢復(fù),要求在國(guó)際上發(fā)揮更重要的作用。因而要加強(qiáng)在政治領(lǐng)域的合作成為歐洲各國(guó)的一致要求。面對(duì)二戰(zhàn)結(jié)束后以美蘇為首的兩極爭(zhēng)霸的冷戰(zhàn)格局,歐洲各國(guó)迫切要求組成一個(gè)更加強(qiáng)大的團(tuán)體來(lái)維護(hù)自己的利益。于是在政治領(lǐng)域的合作很快便實(shí)施開來(lái)。
    4、為進(jìn)一步加強(qiáng)歐洲共同體之間的經(jīng)濟(jì)合作與交流,減少共同體內(nèi)部成員國(guó)存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國(guó)之間流通,實(shí)現(xiàn)經(jīng)濟(jì)的聯(lián)合,從而進(jìn)一步加強(qiáng)歐洲各國(guó)之間的政治合作。
    二、發(fā)展的亞太。
    課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
    教學(xué)目標(biāo):
    (1)知識(shí)與能力:了解東盟的發(fā)展歷程,說(shuō)說(shuō)中國(guó)與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟(jì)合作組織建立的過(guò)程,探討亞太國(guó)家加強(qiáng)合作的途徑與方式。
    (2)過(guò)程與方法:通過(guò)搜集中國(guó)與東盟交往的材料,了解東盟日益擴(kuò)大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識(shí)歷史問題;通過(guò)上網(wǎng)等途徑搜集中國(guó)參加apec會(huì)議的資料,多渠道去了解和認(rèn)識(shí)apec建立的史實(shí)及影響。
    (3)情感、態(tài)度與價(jià)值觀:通過(guò)對(duì)東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟(jì)一體化進(jìn)程的學(xué)習(xí)和了解,體會(huì)當(dāng)今世界國(guó)家間加強(qiáng)合作、競(jìng)爭(zhēng)與發(fā)展的重要性,樹立合作與競(jìng)爭(zhēng)的意識(shí)。
    教學(xué)課時(shí):1課時(shí)。
    重點(diǎn)難點(diǎn):
    重點(diǎn):通過(guò)了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
    難點(diǎn):中國(guó)積極參與世界區(qū)域經(jīng)濟(jì)組織的意義。
    教學(xué)建議:
    1、在經(jīng)濟(jì)全球化的進(jìn)程中,亞太地區(qū)的經(jīng)濟(jì)集團(tuán)化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟(jì)集團(tuán)有兩個(gè)分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟(jì)發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個(gè)經(jīng)濟(jì)區(qū)域集團(tuán)為例,介紹了當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。每個(gè)集團(tuán)內(nèi)部有著自身的規(guī)則的同時(shí)也不斷與其它區(qū)域集團(tuán)相聯(lián)系,從而使世界經(jīng)濟(jì)形成了密不可分的一個(gè)整體。
    2、東南亞國(guó)家聯(lián)盟自1967成立以來(lái),已經(jīng)歷時(shí)近三分之一世紀(jì)。東盟在維護(hù)和促進(jìn)各成員國(guó)相互間的政治和經(jīng)濟(jì)合作,實(shí)現(xiàn)地區(qū)和平穩(wěn)定,加快成員國(guó)經(jīng)濟(jì)增長(zhǎng),提高成員國(guó)人民生活水平等方面都取得了顯著成績(jī)。尤其是在國(guó)際政治方面,極大地增強(qiáng)了東盟的國(guó)際地位。東盟在由四大洲國(guó)家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國(guó)家參加的亞歐會(huì)議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺(tái)上成為使日本、中國(guó)和印度等大國(guó)瞠乎其后的主角。
    3、日本經(jīng)濟(jì)的崛起,特別是歐洲經(jīng)濟(jì)一體化實(shí)施的外在壓力,美國(guó)、加拿大和墨西哥3國(guó)發(fā)展各自經(jīng)濟(jì)的內(nèi)在動(dòng)力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國(guó)又是山水相連的鄰邦;語(yǔ)言文字、價(jià)值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟(jì)互補(bǔ)性強(qiáng);相互貿(mào)易基礎(chǔ)良好,美、加、墨3國(guó)具有實(shí)行經(jīng)濟(jì)一體化的必要性,又具有實(shí)行經(jīng)濟(jì)一體化的可能性。美國(guó)認(rèn)為要取得世界經(jīng)濟(jì)的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟(jì)區(qū)域集團(tuán),才能在經(jīng)濟(jì)全球化大潮中立于不敗之地。
    4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國(guó)和地區(qū)的對(duì)外開放經(jīng)濟(jì)政策和經(jīng)濟(jì)迅速發(fā)展為亞太區(qū)域經(jīng)濟(jì)合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟(jì)的發(fā)展,國(guó)際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟(jì)合作創(chuàng)造了條件。歐共體統(tǒng)一市場(chǎng)和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟(jì)合作的方向發(fā)展。亞太經(jīng)合組織的主要活動(dòng),為各成員提供區(qū)域經(jīng)濟(jì),科技,貿(mào)易和發(fā)展等方面多邊合作的機(jī)會(huì),交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗(yàn),促進(jìn)本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運(yùn)作模式均區(qū)別于歐盟和nafta,有自身的特點(diǎn),這些特點(diǎn)適應(yīng)了apec各成員國(guó)經(jīng)濟(jì)發(fā)展的狀況和經(jīng)濟(jì)運(yùn)行模式。
    三、經(jīng)濟(jì)全球化的世界。
    課標(biāo)要求:
    (1)以“布雷頓森林體系”建立為例,認(rèn)識(shí)第二次世界大戰(zhàn)后以美國(guó)為主導(dǎo)的資本主義世界經(jīng)濟(jì)體系的形成。
    (2)了解世界貿(mào)易組織(wto)的由來(lái)和發(fā)展,認(rèn)識(shí)它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用。了解中國(guó)參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識(shí)其影響和作用。
    (3)了解經(jīng)濟(jì)全球化的發(fā)展趨勢(shì),探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
    教學(xué)目標(biāo):
    (1)知識(shí)與能力:了解“布雷頓森林體系”建立的基本史實(shí),分析其影響;簡(jiǎn)述世界貿(mào)易組織(wto)的由來(lái)和發(fā)展,認(rèn)識(shí)它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用;了解中國(guó)參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識(shí)其影響和作用;概述經(jīng)濟(jì)全球化的發(fā)展趨勢(shì),探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
    (2)過(guò)程與方法:閱讀課文和查找中國(guó)加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過(guò)程,圍繞世界貿(mào)易組織建立的必要性并對(duì)中國(guó)加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟(jì)全球化對(duì)本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟(jì)全球化出現(xiàn)的問題?從多角度去分析歷史問題。
    人教版高中必修二數(shù)學(xué)教案篇十一
    本節(jié)課力的合成,是在學(xué)生了解力的基本性質(zhì)和常見幾種力的基礎(chǔ)上,通過(guò)等效替代思想,研究多個(gè)力的合成方法,是對(duì)前幾節(jié)內(nèi)容的深化。
    本節(jié)重點(diǎn)介紹力的合成法則——平行四邊形定則,但實(shí)際這是所有矢量運(yùn)算的共同工具,為學(xué)習(xí)其他矢量的運(yùn)算奠定了基礎(chǔ)。
    更重要的是,力的合成是解決力學(xué)問題的基礎(chǔ),對(duì)今后牛頓運(yùn)動(dòng)定律、平衡問題、動(dòng)量與能量問題的理解和應(yīng)用都會(huì)產(chǎn)生重要影響。
    因此,這節(jié)課承前啟后,在整個(gè)高中物理學(xué)習(xí)中占據(jù)著非常重要的地位。
    二、教學(xué)目標(biāo)定位。
    為了讓學(xué)生充分進(jìn)行實(shí)驗(yàn)探究,體驗(yàn)獲取知識(shí)的過(guò)程,本節(jié)內(nèi)容分兩課時(shí)來(lái)完成,今天我說(shuō)課的內(nèi)容為本節(jié)內(nèi)容的第一課時(shí)。根據(jù)上述教材分析,考慮到學(xué)生的實(shí)際情況,在本節(jié)課的教學(xué)過(guò)程中,我制定了如下教學(xué)目標(biāo):。
    一、知識(shí)與技能。
    理解合力、分力、力的合成的概念理解力的合成本質(zhì)上是從等效的角度進(jìn)行力的替代。
    探究求合力的方法——力的平行四邊形定則,會(huì)用平行四邊形定則求合力。
    二、過(guò)程與方法。
    通過(guò)學(xué)習(xí)合力和分力的概念,了解物理學(xué)常用的方法——等效替代法。
    通過(guò)實(shí)驗(yàn)探究方案的設(shè)計(jì)與實(shí)施,體驗(yàn)科學(xué)探究的過(guò)程。
    三、情感態(tài)度與價(jià)值觀。
    培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生學(xué)習(xí)興趣,形成良好的學(xué)習(xí)方法和習(xí)慣。
    培養(yǎng)認(rèn)真細(xì)致、實(shí)事求是的實(shí)驗(yàn)態(tài)度。
    根據(jù)以上分析確定本節(jié)課的重點(diǎn)與難點(diǎn)如下:
    一、重點(diǎn)。
    合力和分力的概念以及它們的關(guān)系。
    實(shí)驗(yàn)探究力的合成所遵循的法則。
    二、難點(diǎn)。
    平行四邊形定則的理解和運(yùn)用。
    三、重、難點(diǎn)突破方法——教法簡(jiǎn)介。
    本堂課的重、難點(diǎn)為實(shí)驗(yàn)探究力的合成所遵循的法則——平行四邊形定則,為了實(shí)現(xiàn)重難點(diǎn)的突破,讓學(xué)生真正理解平行四邊形定則,就要讓學(xué)生親自體驗(yàn)規(guī)律獲得的過(guò)程。
    因此,本堂課在學(xué)法上采用學(xué)生自主探究的實(shí)驗(yàn)歸納法——通過(guò)重現(xiàn)獲取知識(shí)和方法的思維過(guò)程,讓學(xué)生親自去體驗(yàn)、探究、歸納總結(jié)。體現(xiàn)學(xué)生主體性。
    實(shí)驗(yàn)歸納法的步驟如下。這樣設(shè)計(jì)讓學(xué)生不僅能知其然,更能知其所以然,這也是本堂課突破重點(diǎn)和難點(diǎn)的重要手段。
    本堂課在教法上采用啟發(fā)式教學(xué)——通過(guò)設(shè)置問題,引導(dǎo)啟發(fā)學(xué)生,激發(fā)學(xué)生思維。體現(xiàn)教師主導(dǎo)作用。
    四、教學(xué)過(guò)程設(shè)計(jì)。
    采用六環(huán)節(jié)教學(xué)法,教學(xué)過(guò)程共有六個(gè)步驟。
    教學(xué)過(guò)程第一環(huán)節(jié)、創(chuàng)設(shè)情景導(dǎo)入新課:
    第二環(huán)節(jié)、新課教學(xué):
    展示合力與分力以及力的合成的概念,強(qiáng)調(diào)等效替代法。舉例說(shuō)明等效替代法是一種重要的物理方法。
    第三環(huán)節(jié)、合作探究:
    首先,教師展示實(shí)驗(yàn)儀器,讓學(xué)生思考如何設(shè)計(jì)實(shí)驗(yàn),,如何進(jìn)行實(shí)驗(yàn)?zāi)?學(xué)生面對(duì)器材可能會(huì)覺得無(wú)從下手。再次設(shè)置問題引導(dǎo)學(xué)生思維,讓學(xué)生面對(duì)儀器分組討論以下四個(gè)問題。
    問題1要用動(dòng)畫輔助說(shuō)明。在問題2中,教師要強(qiáng)調(diào)結(jié)點(diǎn)的問題,用動(dòng)畫說(shuō)明。問題3中,直觀簡(jiǎn)潔的描述力必須用力的圖示,用圖片說(shuō)明。問題4讓學(xué)生注意測(cè)力計(jì)的使用,減小實(shí)驗(yàn)誤差。通過(guò)對(duì)這四個(gè)問題的討論,再結(jié)合多媒體動(dòng)畫的展示,使學(xué)生對(duì)探究的步驟清晰明了。
    然后,學(xué)生分組實(shí)驗(yàn),合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實(shí)驗(yàn)完成后請(qǐng)學(xué)生展示實(shí)驗(yàn)結(jié)果,應(yīng)該立即可得出結(jié)論一:比較分力與合力的大小,可得互成角度的兩個(gè)力的合成,不能簡(jiǎn)單地利用代數(shù)方法相加減.
    那合力與分力到底滿足什么關(guān)系呢?
    此時(shí)要引導(dǎo)學(xué)生思考:既然從數(shù)字上找不到關(guān)系,哪可不可以從幾何上找找關(guān)系呢?學(xué)生會(huì)立即猜想出o、a、c、b像是一個(gè)平行四邊形的四個(gè)頂點(diǎn),ob可能是這個(gè)平行四邊形的對(duì)角線.哪么猜想是否正確呢?親自實(shí)踐才有發(fā)言權(quán),學(xué)生動(dòng)手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對(duì)角線與ob是否重合。
    學(xué)生作圖后發(fā)現(xiàn)對(duì)角線與合力很接近。教師說(shuō)明實(shí)驗(yàn)的誤差是不可避免的,科學(xué)家經(jīng)過(guò)很多次的、精細(xì)的實(shí)驗(yàn),最后確認(rèn)對(duì)角線的長(zhǎng)度、方向,跟合力的大小、方向一致,說(shuō)明對(duì)角線就表示f1和f2的合力.由此得到結(jié)論二:力的合成法則——平行四邊形定則。
    進(jìn)入。
    第四環(huán)節(jié):歸納總結(jié)。
    將本文的word文檔下載到電腦,方便收藏和打印。
    人教版高中必修二數(shù)學(xué)教案篇十二
    立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
    二、立足課本,夯實(shí)基礎(chǔ)。
    學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
    三、培養(yǎng)空間想象力。
    為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
    四、“轉(zhuǎn)化”思想的應(yīng)用。
    解立體幾何的問題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
    (1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
    (2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
    (3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
    五、建立數(shù)學(xué)模型。
    新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問題時(shí),所得出的關(guān)于實(shí)際問題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
    從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助??臻g幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周圍的實(shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
    人教版高中必修二數(shù)學(xué)教案篇十三
    本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
    (1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題。
    (2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問題。
    數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
    本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
    教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
    加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
    本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
    《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
    位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
    在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
    學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問題。
    1.1正弦定理和余弦定理(約3課時(shí))
    1.2應(yīng)用舉例(約4課時(shí))
    1.3實(shí)習(xí)作業(yè)(約1課時(shí))
    1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問題的過(guò)程中,一個(gè)問題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見的測(cè)量問題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
    2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問題的解決實(shí)際問題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問題。
    人教版高中必修二數(shù)學(xué)教案篇十四
    2.教學(xué)重點(diǎn)。
    函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性.。
    3.教學(xué)難點(diǎn)。
    函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。
    1.教學(xué)有利因素。
    2.教學(xué)不利因素。
    1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡(jiǎn)單函數(shù)單調(diào)性的方法.。
    為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:
    (一)創(chuàng)設(shè)情境,引入課題。
    問題1:觀察下列函數(shù)圖象,請(qǐng)你說(shuō)說(shuō)這些函數(shù)有什么變化趨勢(shì)?
    設(shè)函數(shù)的定義域?yàn)椋瑓^(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學(xué)生類比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)。
    (二)引導(dǎo)探索,生成概念。
    問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
    (2)函數(shù)在區(qū)間上有何單調(diào)性?
    預(yù)設(shè):學(xué)生會(huì)不置可否,或者憑感覺猜測(cè),可追問判定依據(jù).。
    問題3:(1)如何用數(shù)學(xué)符號(hào)描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
    (2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
    拖動(dòng)“拖動(dòng)點(diǎn)”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
    (3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
    拖動(dòng)“拖動(dòng)點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.。
    (4)已知,若有。
    能保證函數(shù)在區(qū)間上遞增嗎?
    設(shè)計(jì)說(shuō)明:可先請(qǐng)持贊同觀點(diǎn)的同學(xué)說(shuō)明理由,再請(qǐng)持反對(duì)意見的學(xué)生畫出反駁,然后追問:無(wú)數(shù)個(gè)也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問“總不能一個(gè)一個(gè)驗(yàn)證吧?”
    問題4:如何用數(shù)學(xué)語(yǔ)言準(zhǔn)確刻畫函數(shù)在區(qū)間上遞增呢?
    問題5:請(qǐng)你試著用數(shù)學(xué)語(yǔ)言定義函數(shù)在區(qū)間上是遞減的.。
    (三)學(xué)以致用,理解感悟。
    判斷題:你認(rèn)為下列說(shuō)法是否正確,請(qǐng)說(shuō)明理由.(舉例或者畫圖)。
    (1)設(shè)函數(shù)的定義域?yàn)?,若?duì)任意,都有,則在區(qū)間上遞增;
    (2)設(shè)函數(shù)的定義域?yàn)閞,若對(duì)任意,且,都有,則是遞增的;
    (3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。
    例題:判斷并證明函數(shù)的單調(diào)性.。
    人教版高中必修二數(shù)學(xué)教案篇十五
    掌握三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
    教學(xué)重難點(diǎn)。
    利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
    教學(xué)過(guò)程。
    一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
    (精確到0.001).
    米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
    練習(xí):教材p65面3題。
    三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
    2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
    四、作業(yè)《習(xí)案》作業(yè)十四及十五。