2023年高中數(shù)學(xué)冪函數(shù)教案(模板20篇)

字號:

    教案應(yīng)該是教師教學(xué)思想和經(jīng)驗的反映,是教師職業(yè)素養(yǎng)的重要體現(xiàn)。在編寫教案時應(yīng)充分考慮學(xué)生的實際情況和學(xué)習(xí)能力。在制定自己的教案時,可以參考這些范文,做出更加詳細(xì)和精確的教學(xué)設(shè)計。
    高中數(shù)學(xué)冪函數(shù)教案篇一
    教學(xué)任務(wù)分析:
    (1)理解冪函數(shù)的概念,會畫五種常見冪函數(shù)的圖像;
    (2)結(jié)合冪函數(shù)的圖像,理解冪函數(shù)圖像的變化情況和性質(zhì);
    (3)通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
    教學(xué)重點:
    常見冪函數(shù)的的概念、圖像和性質(zhì)。
    教學(xué)難點:
    冪函數(shù)的單調(diào)性及比較兩個冪值的大小。
    教具準(zhǔn)備:
    多媒體課件、投影儀、打印好的作業(yè)。
    教學(xué)情景設(shè)計。
    問題。
    問題2:如果正方形的邊長為x,那么正方形面積y=?
    問題3:如果正方體的棱長為x,那么正方體體積y=。
    問題4:如果正方形場地的面積為x,那么正方形的邊長?y=?
    問題5:如果某人x秒內(nèi)騎車行進(jìn)1千米,那么他騎車的平均速度y=(千米/秒)引導(dǎo)學(xué)生探索發(fā)現(xiàn):
    引導(dǎo)學(xué)生歸納結(jié)論。
    (1)?指數(shù)為常數(shù)。
    1、即(是)。
    2、(不是)。
    3、(不是)。
    定義域。
    值域。
    高中數(shù)學(xué)冪函數(shù)教案篇二
    數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
    二、重視每一個學(xué)生。
    三、做好課外與學(xué)生的溝通。
    四、要多了解學(xué)生。
    你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
    高中數(shù)學(xué)冪函數(shù)教案篇三
    三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
    同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
    中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
    計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
    逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
    萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
    1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
    三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
    利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
    山西鐵路工程建設(shè)監(jiān)理有限公司。
    劉榮申。
    高中數(shù)學(xué)冪函數(shù)教案篇四
    引入課題1.觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
    yx1-11-1yx1-11-1yx1-11-1。
    1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?
    2.畫出下列函數(shù)的圖象,觀察其變化規(guī)律:
    f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.
    yx1-11-1。
    2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.
    1在區(qū)間____________上,f(x)的值隨著x的增大而________.
    2在區(qū)間____________上,f(x)的值隨著x的增大而________.
    高中數(shù)學(xué)冪函數(shù)教案篇五
    教學(xué)目標(biāo):
    通過實例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會用待定系數(shù)法求冪函數(shù)的解析式。
    教學(xué)重難點:
    重點從五個具體冪函數(shù)中認(rèn)識冪函數(shù)的一些特征。
    難點指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。
    教學(xué)方法與手段:
    1、采用師生互動的方式,在教師的引導(dǎo)下,學(xué)生通過思考、交流、討論,理解冪函數(shù)的定義,體驗自主探索、合作交流的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的積極性與主動性。
    2、利用投影儀及計算機(jī)輔助教學(xué)。
    教學(xué)過程:
    函數(shù)的完美追求:對于式子,
    如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);
    如果一定,隨n的變化而變化,我們建立了對數(shù)函數(shù)。
    設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個函數(shù)呢?
    創(chuàng)設(shè)情境。
    請大家看以下問題:
    思考:以上問題中的函數(shù)有什么共同特征?
    引導(dǎo)學(xué)生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項。上述問題中涉及的函數(shù),都是形如的函數(shù)。
    探究新知。
    一、冪函數(shù)的定義。
    一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
    中前面的系數(shù)是1,后面沒有其它項。
    小試牛刀。
    (1),
    思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?
    高中數(shù)學(xué)冪函數(shù)教案篇六
    老師講課認(rèn)真聽講,不會的問題及時標(biāo)記。在課堂上,做一個好學(xué)生,認(rèn)真聽講,對于老師講的問題及時記錄,進(jìn)行相應(yīng)的標(biāo)記,在下課的時候,及時詢問老師,早日解決問題。
    一定要課前預(yù)習(xí)一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對自己的理解有幫助。
    課上要學(xué)會學(xué)習(xí),記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點。
    多做一些比較普通而又常出的問題,來熟悉自己學(xué)的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進(jìn)行做和學(xué),總有一份題目適合自己做,便會更熟悉自己學(xué)的知識。
    學(xué)會總結(jié)本節(jié)課的知識點,重點,做一個學(xué)會學(xué)習(xí)的人。及時總結(jié)所學(xué)的知識點,做一個學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
    建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學(xué)習(xí)到知識,能夠復(fù)習(xí)到自己以前錯過的題。
    與老師經(jīng)常交流學(xué)習(xí)方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學(xué)習(xí),及時的詢問一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個適合自己。
    高中數(shù)學(xué)冪函數(shù)教案篇七
    《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。
    命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強(qiáng)化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。
    《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
    2.多維審視知識結(jié)構(gòu)。
    高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。
    3.把答案蓋住看例題。
    參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
    4.研究每題都考什么。
    數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
    與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
    5.答題少費時多辦事。
    解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數(shù)形結(jié)合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。
    6.錯一次反思一次。
    每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。
    因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
    (1)記下錯誤是什么,最好用紅筆劃出。
    (2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。
    (3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。
    7.分析試卷總結(jié)經(jīng)驗。
    每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。
    (1)遺憾之錯。就是分明會做,反而做錯了的題。
    (2)似非之錯。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。
    (3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
    8.優(yōu)秀是一種習(xí)慣。
    柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
    高中數(shù)學(xué)冪函數(shù)教案篇八
    地位及重要性。
    函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認(rèn)識。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。
    教學(xué)目標(biāo)。
    (1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。
    (2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;。
    (4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時讓學(xué)生體驗數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點看問題。
    教學(xué)重難點。
    重點是對函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解,
    二.說教法。
    根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學(xué)”的.模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動參與以達(dá)到對知識的“發(fā)現(xiàn)”與接受,進(jìn)而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學(xué)生的探索精神。
    三.說學(xué)法。
    在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。
    四.說過程。
    通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
    設(shè)置問題情景。
    [引例]學(xué)校準(zhǔn)備建造一個矩形花壇,面積設(shè)計為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。
    寫出y與x的函數(shù)表達(dá)式;。
    (用多媒體出示問題,并讓學(xué)生思考)。
    高中數(shù)學(xué)冪函數(shù)教案篇九
    熟練掌握三角函數(shù)式的求值。
    教學(xué)重難點。
    熟練掌握三角函數(shù)式的求值。
    教學(xué)過程。
    【知識點精講】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
    注意點:靈活角的變形和公式的變形。
    重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    【例題選講】。
    課堂小結(jié)】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
    注意點:靈活角的變形和公式的變形。
    重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    【作業(yè)布置】。
    p172能力提高5,6,7,8高考預(yù)測。
    高中數(shù)學(xué)冪函數(shù)教案篇十
    教材分析:
    冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學(xué)習(xí)時結(jié)合生活中的具體實例來引出常見的冪函數(shù)?.組織學(xué)生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點掌握?這五個函數(shù)的圖象和性質(zhì)。學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對兩類不同函數(shù)的表達(dá)式進(jìn)行辨析。學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準(zhǔn)備。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進(jìn)行合作探究學(xué)習(xí)。
    課時分配1課時。
    教學(xué)目標(biāo)。
    重點:從五個具體的冪函數(shù)中認(rèn)識的概念和性質(zhì)。
    難點:從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。
    知識點:冪函數(shù)的定義、五個冪函數(shù)圖象特征。
    能力點:通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡單的應(yīng)用。
    自主探究點:通過作圖歸納總結(jié)冪函數(shù)的相關(guān)性質(zhì)。
    考試點:了解冪函數(shù)的概念,
    結(jié)合函數(shù)的圖象了解它們的變化情況。
    易錯易混點:學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆。
    拓展點:通過指數(shù)函數(shù)的圖象性質(zhì)研究冪函數(shù)指數(shù)的變化。
    教具準(zhǔn)備:多媒體輔助教學(xué)。
    課堂模式:導(dǎo)學(xué)案。
    一、引入新課。
    (一)回顧引入。
    【師生互動】師:數(shù)學(xué)的內(nèi)在美常常讓我感動,下面我們共同來欣賞運算的完美性,
    思考:由8、2、3、這四個數(shù),運用數(shù)學(xué)符號可組成哪些等式?
    生:探討,交流。
    師生共同分析:
    師:我們知道對于等式。
    1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。
    2.如果一定,隨著的變化而變化,我們建立了對數(shù)函數(shù)。
    設(shè)想:如果一定,隨著的變化而變化,是不是也可以確定一個函數(shù)呢?
    【設(shè)計說明】使學(xué)生回憶所學(xué)兩個基本初等函數(shù),為所要學(xué)習(xí)的冪函數(shù)作鋪墊。
    (二)觀察下列對象:
    問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,
    問題(2):如果正方形的邊長為,那么正方形的面是=。
    問題3):如果正方體的邊長為,那么正方體的體積是=。
    問題(4):如果正方形場地面積為,那么正方形的邊長=。
    問題(5):如果某人s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度=。
    【師生互動】師:(1)它們的對應(yīng)法則分別是什么?
    (2)以上問題中的函數(shù)有什么共同特征?
    讓學(xué)生獨立思考后交流,引導(dǎo)學(xué)生概括出結(jié)論。
    生:(1)乘以1(2)求平方(3)求立方。
    (4)求算術(shù)平方根(5)求-1次方。
    師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。
    師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。
    二、探究新知。
    組織探究。
    1.冪函數(shù)的定義。
    一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
    如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對數(shù)函數(shù)一樣,都是基本初等函數(shù)。
    【師生互動】師:1.冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析。
    2.研究函數(shù)的圖像。
    (1)(2)(3)。
    (4)(5)。
    生:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所作圖象,體會冪函數(shù)的變化規(guī)律。
    師:引導(dǎo)學(xué)生應(yīng)用函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性。
    師生共同分析:強(qiáng)調(diào)畫圖象易犯的錯誤。
    【設(shè)計意圖】(1)通過具體作圖,可使學(xué)生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學(xué)生數(shù)形結(jié)合的思維能力;(2)符合學(xué)生的認(rèn)知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學(xué)生學(xué)習(xí)的能動性,以學(xué)生為主體,展開課堂教學(xué)。
    【師生互動】師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。
    生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進(jìn)行交流評析,并填表。
    定義域值域奇偶性單調(diào)性定點。
    師生共同分析冪函數(shù)性質(zhì):
    (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);。
    高中數(shù)學(xué)冪函數(shù)教案篇十一
    通過學(xué)生的討論,使學(xué)生更清楚以下事實:
    (1)分解因式與整式的乘法是一種互逆關(guān)系;。
    (2)分解因式的結(jié)果要以積的形式表示;。
    (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
    (4)必須分解到每個多項式不能再分解為止。
    活動5:應(yīng)用新知。
    例題學(xué)習(xí):
    p166例1、例2(略)。
    在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
    讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
    活動6:課堂練習(xí)。
    1.p167練習(xí);。
    2.看誰連得準(zhǔn)。
    x2-y2(x+1)2。
    9-25x2y(x-y)。
    x2+2x+1(3-5x)(3+5x)。
    xy-y2(x+y)(x-y)。
    3.下列哪些變形是因式分解,為什么?
    (1)(a+3)(a-3)=a2-9。
    (2)a2-4=(a+2)(a-2)。
    (3)a2-b2+1=(a+b)(a-b)+1。
    (4)2πr+2πr=2π(r+r)。
    學(xué)生自主完成練習(xí)。
    通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進(jìn)行查缺補(bǔ)漏。
    活動7:課堂小結(jié)。
    從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
    學(xué)生發(fā)言。
    通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
    活動8:課后作業(yè)。
    課本p170習(xí)題的第1、4大題。
    學(xué)生自主完成。
    通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
    板書設(shè)計(需要一直留在黑板上主板書)。
    15.4.1提公因式法例題。
    1.因式分解的定義。
    2.提公因式法。
    高中數(shù)學(xué)冪函數(shù)教案篇十二
    2.通過對抽象符號的認(rèn)識與使用,使學(xué)生在符號表示方面的能力得以提高.。
    難點:重點是在映射的基礎(chǔ)上理解的概念;
    難點是對抽象符號的認(rèn)識與使用.。
    投影儀。
    自學(xué)研究與啟發(fā)討論式.。
    (要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。
    提問1.是嗎?
    (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是,理由是沒有兩個變量,也有的認(rèn)為是,理由是可以可做.)。
    現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。
    提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。
    (板書)2.2。
    一、的概念。
    問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。
    引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
    2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。
    然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。
    此時學(xué)生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。
    教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?
    從映射角度看可以是其中定義域是,值域是.。
    3.的三要素及其作用(板書)。
    例1以下關(guān)系式表示嗎?為什么?
    (1);(2).。
    解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
    (2)由有意義得,解得.定義域為,值域為.。
    由以上兩題可以看出三要素的作用。
    (1)判斷一個關(guān)系是否存在.(板書)。
    例2下列各中,哪一個與是同一個.。
    (1);(2)(3);(4).。
    解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。
    .
    再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
    (4),法則是不同的;
    而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
    (2)判斷兩個是否相同.(板書)。
    4.對符號的理解(板書)。
    例3已知試求(板書)。
    分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進(jìn)行計算.。
    含義1:當(dāng)自變量取3時,對應(yīng)的值即;
    含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。
    計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。
    1.的定義。
    2.對三要素的認(rèn)識。
    3.對符號的認(rèn)識。
    五、
    2.2例1.例3.。
    一.的概念。
    1.定義。
    2.本質(zhì)例2.小結(jié):
    3.三要素的認(rèn)識及作用。
    4.對符號的理解。
    探究活動。
    答案:
    高中數(shù)學(xué)冪函數(shù)教案篇十三
    投影儀
    自學(xué)研究與啟發(fā)討論式.
    一、復(fù)習(xí)與引入
    (要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
    提問1.是函數(shù)嗎?
    (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
    二、新課
    現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
    提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
    (板書)2.2函數(shù)
    一、函數(shù)的概念
    問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
    引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
    2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
    然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
    此時學(xué)生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
    教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
    從映射角度看可以是其中定義域是,值域是.
    3.函數(shù)的三要素及其作用(板書)
    以下關(guān)系式表示函數(shù)嗎?為什么?
    (1);(2).
    解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
    (2)由有意義得,解得.定義域為,值域為.
    由以上兩題可以看出三要素的作用
    (1)判斷一個函數(shù)關(guān)系是否存在.(板書)
    (1);(2) (3);(4).
    解:先認(rèn)清,它是(定義域)到(值域)的映射,其中
    .
    再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
    (4),法則是不同的;
    而(3)定義域是,值域是,法則是乘2減1,與完全相同.
    (2)判斷兩個函數(shù)是否相同.(板書)
    4.對函數(shù)符號的理解(板書)
    已知函數(shù)試求(板書)
    分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進(jìn)行計算.
    含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;
    含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
    計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
    三、小結(jié)
    1.函數(shù)的定義
    2.對函數(shù)三要素的認(rèn)識
    3.對函數(shù)符號的認(rèn)識
    四、作業(yè):略
    五、
    2.2函數(shù)例1.例3.
    一.函數(shù)的概念
    1.定義
    2.本質(zhì)例2.小結(jié):
    3.函數(shù)三要素的認(rèn)識及作用
    4.對函數(shù)符號的理解
    答案:
    高中數(shù)學(xué)冪函數(shù)教案篇十四
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
    3、會對一個具體實例進(jìn)行概括抽象成為數(shù)學(xué)問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。
    2、經(jīng)歷具體實例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實際問題抽象概括為函數(shù)問題。
    1、理解函數(shù)的概念。
    2、能把實際問題抽象概括為函數(shù)問題。
    一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
    『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
    高中數(shù)學(xué)冪函數(shù)教案篇十五
    一、教學(xué)目標(biāo):
    知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實際應(yīng)用函數(shù)的能力。
    過程與方法:通過觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。
    情感態(tài)度與價值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
    二、教學(xué)重點、難點:
    教學(xué)難點:對底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
    三、教學(xué)過程:
    (一)創(chuàng)設(shè)情景。
    學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。
    問題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%。求出這種物質(zhì)的剩留量隨時間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時間變量用x表示,剩留量用y表示。
    學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。
    引導(dǎo)學(xué)生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
    問題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會出現(xiàn)什么情況?
    (1)若a0會有什么問題?
    x1則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會有什么問題?(對于x0,a無意義)。
    (3)若a=1又會怎么樣?(1x無論x取何值,它總是1,對它沒有研究的必要。)。
    師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。
    1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大?。?BR>    設(shè)計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
    (五)課堂小結(jié)。
    (六)布置作業(yè)。
    高中數(shù)學(xué)冪函數(shù)教案篇十六
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
    (1).基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
    (4).個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
    理解并掌握誘導(dǎo)公式.
    正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
    “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.
    數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
    在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.
    “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.
    在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習(xí)鞏固.讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).
    1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
    2.復(fù)習(xí)任意角的三角函數(shù)定義;。
    3.問題:由,你能否知道sin2100的值嗎?引如新課.
    自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法.
    1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
    2100與sin300之間有什么關(guān)系.
    由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
    高中數(shù)學(xué)冪函數(shù)教案篇十七
    3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
    利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
    (1). ;(2). ;(3). .
    喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
    由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
    1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
    2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
    遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
    誘導(dǎo)公式(三)、(四)
    給出本節(jié)課的課題
    三角函數(shù)誘導(dǎo)公式
    標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
    的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
    設(shè)計意圖
    簡便記憶公式.
    求下列三角函數(shù)的值:(1).sin( ); (2). co.
    設(shè)計意圖
    本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的.
    學(xué)生練習(xí)
    化簡: .
    設(shè)計意圖
    重點加強(qiáng)對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
    1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
    2.體會數(shù)形結(jié)合、對稱、化歸的思想.
    3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
    1.課本p-27,第1,2,3小題;
    2.附加課外題 略.
    設(shè)計意圖
    加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
    八.課后反思
    對本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達(dá)到了設(shè)計中所預(yù)想的目標(biāo)。
    然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
    在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
    高中數(shù)學(xué)冪函數(shù)教案篇十八
    (3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.。
    2.通過概念的學(xué)習(xí),使學(xué)生在符號表示,運算等方面的能力有所提高.。
    (1)對記號有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
    (2)在求定義域中注意運算的合理性與簡潔性.。
    3.通過定義由變量觀點向映射觀點的過渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。
    1.教材分析。
    (1)知識結(jié)構(gòu)。
    (2)重點難點分析。
    是的定義和符號的認(rèn)識與使用.。
    2.教法建議。
    高中數(shù)學(xué)冪函數(shù)教案篇十九
    對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
    右圖給出對于不同大小a所表示的函數(shù)圖形:
    可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
    (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
    (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
    (3)函數(shù)總是通過(1,0)這點。
    (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
    高中數(shù)學(xué)冪函數(shù)教案篇二十
    (二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。
    二、教學(xué)目標(biāo)及解析。
    (一)教學(xué)目標(biāo):
    掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
    (二)解析:
    會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
    三、問題診斷分析。
    在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實際情況進(jìn)行知識補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。
    在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因為使用(),有利于()。