一元一次不等式組教案設(shè)計(jì)(精選18篇)

字號(hào):

    編制教案可以幫助教師理清教學(xué)思路,提高教學(xué)效果。教案編寫時(shí)應(yīng)該注重學(xué)生的思維發(fā)展和創(chuàng)新能力的培養(yǎng)。這里為大家推薦了一些值得一讀的教案實(shí)例,希望能夠?qū)Υ蠹业慕虒W(xué)工作有所啟發(fā)。
    一元一次不等式組教案設(shè)計(jì)篇一
    3.理解一元一次不等式組應(yīng)用題的一般解題步驟
    一元一次不等式組的應(yīng)用
    在上課之前,老師請(qǐng)大家來(lái)幫一個(gè)忙,幫老師來(lái)解決一道難題:老師有一個(gè)熟人姓王,他有一個(gè)哥哥和一個(gè)弟弟,哥哥的年齡是20歲,小王的年齡的2倍加上他弟弟年齡的5倍等于97.現(xiàn)在小王要老師猜猜他和他弟弟的年齡各是多少?俗話說(shuō)三個(gè)臭皮匠,可抵一個(gè)諸葛亮,現(xiàn)在我們?nèi)嗤瑢W(xué)可抵得上很多諸葛亮,所以老師相信大家一定有辦法的.
    (一)提出問(wèn)題,引發(fā)討論
    當(dāng)一個(gè)未知數(shù)同時(shí)滿足幾個(gè)不等關(guān)系時(shí),我們就按這些關(guān)系分別列幾個(gè)不等式,這樣就得到不等式組,用不等式組解決實(shí)際問(wèn)題時(shí),其公共解是否一定為實(shí)際問(wèn)題的解呢?請(qǐng)舉例說(shuō)明.
    (二)導(dǎo)入知識(shí),解釋疑難
    1.教材內(nèi)容講解
    2.探究活動(dòng)
    1. 應(yīng)用不等式組解決實(shí)際問(wèn)題的步驟:1.審清題意;2.設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組;3.解不等式組;4.由不等式組的解確立實(shí)際問(wèn)題的解;5.作答.(與列方程組解應(yīng)用題進(jìn)行比較)
    2.雙基練習(xí)
    1.已知方程組 有正整數(shù)解,則k的取值范圍是_________.
    2.若不等式組 無(wú)解,求a的取值范圍.
    3.當(dāng)2(m-3) 時(shí),求關(guān)于x的不等式 x-m的解集.
    某商場(chǎng)為了促銷,開展對(duì)顧客贈(zèng)送禮品活動(dòng),準(zhǔn)備了若干件禮品送給顧客,在一次活動(dòng)中,如果每人送5件,則還余8件,如果每人送7件,則最后一人還不足3件.設(shè)該商場(chǎng)準(zhǔn)備了m件禮品,有x名顧客獲贈(zèng),請(qǐng)回答下列問(wèn)題:
    (1)用含x的代數(shù)式表示m.
    (2)求出該次活動(dòng)中獲贈(zèng)顧客人數(shù)及所準(zhǔn)備的禮品數(shù)
    一元一次不等式組教案設(shè)計(jì)篇二
    尊敬的各位老師:
    對(duì)于本節(jié)課,我將從教什么、怎么教、為什么這么教來(lái)闡述本次說(shuō)課。
    新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過(guò)程等幾個(gè)方面展開我的說(shuō)課。
    一、說(shuō)教材。
    教材是連接教師和學(xué)生的紐帶,在整個(gè)教學(xué)過(guò)程中起著至關(guān)重要的作用,所以,先談?wù)勎覍?duì)教材的理解。
    在本節(jié)課之前學(xué)生已經(jīng)掌握了一元一次方程的相關(guān)知識(shí)和不等式的性質(zhì),所以,本節(jié)課類比一元一次方程的解法,利用不等式的性質(zhì)解一元一次不等式。另外,本節(jié)課為后續(xù)學(xué)習(xí)解一元一次不等式組奠定基礎(chǔ)。
    不等式在日常生產(chǎn)生活中的應(yīng)用很廣泛,它與數(shù)、式、方程、函數(shù)甚至幾何圖形有著密切的聯(lián)系,它幾乎滲透到初中數(shù)學(xué)的每一部分。所以,本節(jié)課在數(shù)學(xué)領(lǐng)域中起著非常重要的地位。
    二、說(shuō)學(xué)情。
    合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所面對(duì)的學(xué)生群體具有以下特點(diǎn)。
    本學(xué)段的學(xué)生逐漸掌握抽象概念和復(fù)雜的概念系統(tǒng),能作科學(xué)定義,抽象邏輯思維逐步占優(yōu)勢(shì)。
    本階段的學(xué)生類比推理能力都有了一定的發(fā)展,并且在生活中已經(jīng)遇到過(guò)很多關(guān)于一元一次方程的具體的事例,所以在生活上面有了很多的經(jīng)驗(yàn)基礎(chǔ)。為本節(jié)課的順利開展做好了充分準(zhǔn)備。
    三、說(shuō)教學(xué)目標(biāo)。
    根據(jù)以上對(duì)教材的.分析以及對(duì)學(xué)情的把握,我制定了如下三維目標(biāo):
    (一)知識(shí)與技能。
    認(rèn)識(shí)一元一次不等式,會(huì)解簡(jiǎn)單的一元一次不等式,類比一元一次方程的步驟,總結(jié)歸納解一元一次不等式的基本步驟。
    (二)過(guò)程與方法。
    通過(guò)對(duì)比解一元一次方程的步驟,學(xué)生自己總結(jié)歸納一元一次不等式步驟的過(guò)程,提高歸納能力,并學(xué)會(huì)類比的學(xué)習(xí)方法。
    (三)情感態(tài)度價(jià)值觀。
    通過(guò)數(shù)學(xué)建模,提高對(duì)數(shù)學(xué)的學(xué)習(xí)興趣。
    四、說(shuō)教學(xué)重難點(diǎn)。
    本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn):
    (一)教學(xué)重點(diǎn)。
    掌握一元一次不等式的概念,會(huì)解一元一次不等式并能夠在數(shù)軸上表示出來(lái)。
    (二)教學(xué)難點(diǎn)。
    一元一次不等式組教案設(shè)計(jì)篇三
    我們這堂課主要有五個(gè)特色:
    1、學(xué)而時(shí)習(xí)之。
    2、新課當(dāng)舊課上。
    3、重視引導(dǎo)學(xué)生再創(chuàng)造,再發(fā)現(xiàn)。
    4、突出學(xué)習(xí)和強(qiáng)度,角度和反思。
    5、創(chuàng)設(shè)情景,讓學(xué)生主動(dòng)積極參與。
    一、學(xué)而時(shí)習(xí)之。
    二、新課當(dāng)舊課上。
    三、重視引導(dǎo)學(xué)生再創(chuàng)造、再發(fā)現(xiàn)。
    b組訓(xùn)練題較a組靈活,適用于學(xué)有余力的學(xué)生。
    第(4)題,學(xué)生要考慮兩種情況;目的是通過(guò)分類討論的思想,培養(yǎng)學(xué)生思維的嚴(yán)密性。
    四、突出學(xué)習(xí)的速度、角度、強(qiáng)度和反思。
    例如:課前訓(xùn)練一和作業(yè)中對(duì)新舊知識(shí)的系統(tǒng)復(fù)習(xí),通過(guò)多次鞏固達(dá)到強(qiáng)化訓(xùn)練的目的。
    另外,我們?cè)O(shè)計(jì)了強(qiáng)化a組題,在學(xué)生完成a組訓(xùn)練題后,可以自由選擇是進(jìn)入強(qiáng)化a組題還是進(jìn)入b組訓(xùn)練題中這部分的設(shè)計(jì)主要是讓學(xué)生養(yǎng)成客觀的自我評(píng)價(jià),和為在a組訓(xùn)練中未能形成基本技能的學(xué)生再次創(chuàng)造一個(gè)條件和空間,務(wù)求使學(xué)生掌握基礎(chǔ)知識(shí),再次有機(jī)會(huì)形成基本技能,充分體現(xiàn)學(xué)習(xí)強(qiáng)度和分層教學(xué)。
    五、創(chuàng)設(shè)情境,讓學(xué)生主動(dòng)積極參與。
    一元一次不等式組教案設(shè)計(jì)篇四
    3.使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣.
    教學(xué)重點(diǎn)和難點(diǎn)。
    課堂教學(xué)過(guò)程設(shè)計(jì)。
    一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題。
    為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題.
    例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
    (首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
    解法1:(4+2)÷(3-1)=3.
    答:某數(shù)為3.
    (其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)。
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
    解之,得x=3.
    答:某數(shù)為3.
    縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.
    我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.
    本節(jié)課,我們就通過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.
    師生共同分析:
    1.本題中給出的已知量和未知量各是什么?
    2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)。
    上述分析過(guò)程可列表如下:
    解:設(shè)原來(lái)有x千克面粉,那么運(yùn)出了15%x千克,由題意,得。
    x-15%x=42500,
    所以x=50000.
    答:原來(lái)有50000千克面粉.
    (還有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)。
    教師應(yīng)指出:
    (2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.
    依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問(wèn)的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);。
    (4)求出所列方程的解;。
    (5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.
    一元一次不等式組教案設(shè)計(jì)篇五
    本節(jié)課的內(nèi)容,是人教版七年級(jí)下冊(cè)第九章第二節(jié)“實(shí)際問(wèn)題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運(yùn)用一元一次方程(或方程組)解決實(shí)際問(wèn)題等知識(shí)的基礎(chǔ)上,利用不等式解決實(shí)際問(wèn)題。這既是對(duì)已學(xué)知識(shí)的運(yùn)用和深化,又為今后在解決實(shí)際問(wèn)題中提供另一種有效的解決途徑。通過(guò)實(shí)際問(wèn)題的探究,讓學(xué)生學(xué)會(huì)列一元一次不等式,解決具有不等關(guān)系的實(shí)際問(wèn)題。經(jīng)歷由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的過(guò)程,掌握利用一元一次不等式解決問(wèn)題的基本過(guò)程。促進(jìn)學(xué)生的數(shù)學(xué)思維意識(shí),從而使學(xué)生樂(lè)于接觸社會(huì)環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動(dòng)中發(fā)揮積極作用。同時(shí)向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問(wèn)題的思想方法。不等式與現(xiàn)實(shí)生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題。
    七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個(gè)別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動(dòng),預(yù)習(xí)工作做得不夠認(rèn)真,同時(shí)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問(wèn)題的能力不強(qiáng),知識(shí)掌握不夠扎實(shí),運(yùn)用不夠靈活。從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來(lái)說(shuō):學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實(shí)際問(wèn)題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進(jìn)行數(shù)學(xué)建模和簡(jiǎn)單的解釋應(yīng)用。雖然初一學(xué)生對(duì)消費(fèi)問(wèn)題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗(yàn),由于本節(jié)問(wèn)題的背景和表達(dá)都比較貼近實(shí)際,其中有些數(shù)量關(guān)系比較隱蔽,可能會(huì)產(chǎn)生一定的障礙。
    一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對(duì)培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,體會(huì)數(shù)學(xué)的價(jià)值都有較大的意義.對(duì)實(shí)際生活中的不等量關(guān)系、數(shù)量大小比較等知識(shí),學(xué)生在小學(xué)階段已經(jīng)有所了解.但用不等式表示,并對(duì)不等式的.相關(guān)性質(zhì)進(jìn)行探究,對(duì)學(xué)生是新的內(nèi)容。這些問(wèn)題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動(dòng),先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果,可極大調(diào)動(dòng)學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實(shí)施教學(xué)時(shí),要根據(jù)課程改革的基本理念和教材特點(diǎn)組織教學(xué).結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過(guò)程。
    知識(shí)目標(biāo):能進(jìn)一步熟練的解一元一次不等式,會(huì)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決簡(jiǎn)單的實(shí)際問(wèn)題。
    能力目標(biāo):通過(guò)觀察、實(shí)踐、討論等活動(dòng),積累利用一元一次不等式解決實(shí)際問(wèn)題的經(jīng)驗(yàn),提高分類考慮、討論問(wèn)題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會(huì)不等式和方程同樣都是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的重要模型。
    情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣;學(xué)會(huì)在解決問(wèn)題時(shí),與其他同學(xué)交流,培養(yǎng)互相合作精神。
    關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實(shí)際中抽象出數(shù)量關(guān)系。注意問(wèn)題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題求解。
    創(chuàng)設(shè)情境,研究新知。
    (出示一個(gè)解不等式的問(wèn)題,為后面新知作鋪墊)。
    一元一次不等式組教案設(shè)計(jì)篇六
    教學(xué)設(shè)計(jì)思想:
    本節(jié)知識(shí)是探究如何用一元一次方程解決實(shí)際問(wèn)題。在前面我們結(jié)合實(shí)際問(wèn)題,討論了如何分析數(shù)量關(guān)系、利用相等關(guān)系列方程以及如何解方程,在此基礎(chǔ)上我們才可以進(jìn)一步探究用一元一次方程解決實(shí)際問(wèn)題。在課堂中教師出示例題,啟發(fā)學(xué)生思考,師生共同探討,學(xué)生找等量關(guān)系,列出方程,教師出示鞏固性練習(xí),學(xué)生解答,達(dá)到鞏固所學(xué)知識(shí)的目的。
    教學(xué)目標(biāo):
    1.知識(shí)與技能。
    利用相等關(guān)系建立數(shù)學(xué)模型列方程;。
    2.過(guò)程與方法。
    會(huì)用方程解決簡(jiǎn)單的實(shí)際問(wèn)題,認(rèn)識(shí)到建立方程模型的重要性;。
    在建立方程解決實(shí)際問(wèn)題時(shí),我們體會(huì)到設(shè)未知數(shù)的意義。
    3.情感、態(tài)度與價(jià)值觀。
    體會(huì)數(shù)學(xué)建模與實(shí)際的相互密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想。
    教學(xué)重點(diǎn):解決相關(guān)問(wèn)題時(shí),利用相等關(guān)系列方程。
    教學(xué)難點(diǎn):解決相關(guān)問(wèn)題時(shí),利用相等關(guān)系列方程。
    重難點(diǎn)突破:關(guān)鍵是弄清問(wèn)題背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系。
    教學(xué)方法:采用直觀分析法、引導(dǎo)發(fā)現(xiàn)法及嘗試指導(dǎo)法充分發(fā)揮學(xué)生的主體作用,使學(xué)生在輕松愉快的氣氛中掌握知識(shí)。
    課時(shí)安排:1課時(shí)。
    教具準(zhǔn)備:投影儀。
    教學(xué)過(guò)程:
    一、創(chuàng)設(shè)情境。
    師:通過(guò)前幾節(jié)課的學(xué)習(xí),同學(xué)們回憶一下,列方程解應(yīng)用題的第一步是什么?
    生:分析題意,設(shè)未知數(shù)。
    師:很好。我們以前學(xué)的應(yīng)用題大多是求一個(gè)未知量,因而設(shè)一個(gè)未知數(shù)我們今天要學(xué)的內(nèi)容需要求兩個(gè)未知量,這又如何解決呢?通過(guò)今天的學(xué)習(xí),這些問(wèn)題將得到很好的答案。
    [教法說(shuō)法]:此節(jié)內(nèi)容與前邊內(nèi)容聯(lián)系不大,所以開門見(jiàn)山直接提出問(wèn)題,同時(shí)也引起學(xué)生的注意和好奇,使學(xué)生帶著問(wèn)題進(jìn)入今天的學(xué)習(xí),激發(fā)了學(xué)生的求知欲。
    一元一次不等式組教案設(shè)計(jì)篇七
    3.3解一元一次方程(二)―――去括號(hào)與去分母(第1課時(shí))教學(xué)目標(biāo):(1)知識(shí)目標(biāo):在具體情境中體會(huì)去括號(hào)的必要性,能運(yùn)用運(yùn)算律去括號(hào)。(2)能力目標(biāo):探索總結(jié)去括號(hào)法則,并能利用法則解決簡(jiǎn)單的問(wèn)題。重點(diǎn):去括號(hào)法則及其運(yùn)用。難點(diǎn):括號(hào)前面是“―”號(hào),去括號(hào)時(shí),應(yīng)如何處理。教學(xué)過(guò)程:(一)創(chuàng)設(shè)情景,導(dǎo)入新課問(wèn)題某工廠加強(qiáng)節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬(wàn)度。這個(gè)工廠去年上半年每月平均用電多少度?(三)典例教學(xué)例1.解方程3x-7(x-1)=3-2(x+3)例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時(shí);從乙碼頭返回甲碼頭逆流行駛,用了2.5小時(shí).已知水流的`速度是3千米/小時(shí),求船在靜水中的平均速度.例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個(gè)或螺母2000個(gè),一個(gè)螺釘要配兩個(gè)螺母.為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?(四)課堂練習(xí)1.(1)4x+3(2x-3)=12-(x+4)(2)2.同步p79自我嘗試(五)課堂小結(jié)去括號(hào)法則(六)作業(yè)p102習(xí)題3.3第2題,同步學(xué)習(xí)p80開放性作業(yè)教后思:
    一元一次不等式組教案設(shè)計(jì)篇八
    問(wèn)題3.兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問(wèn)題:
    (1)何時(shí)哥哥分追上弟弟?
    (2)何時(shí)弟弟跑在哥哥前面?
    (3)何時(shí)哥哥跑在弟弟前面?
    (4)誰(shuí)先跑過(guò)20m?誰(shuí)先跑過(guò)100m?
    你是怎樣求解的?與同伴交流。
    問(wèn)題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時(shí),y1>y2?你是怎樣做的?與同伴交流.
    讓學(xué)生體會(huì)數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。
    精講點(diǎn)撥。
    在共同探究的過(guò)程中加強(qiáng)理解,體會(huì)數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。
    提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
    達(dá)標(biāo)檢測(cè)。
    展示檢測(cè)內(nèi)容。
    積極完成導(dǎo)學(xué)案上的檢測(cè)內(nèi)容,相互點(diǎn)評(píng)。
    反饋學(xué)生學(xué)習(xí)效果。
    知識(shí)與收獲。
    引導(dǎo)學(xué)生歸納探究?jī)?nèi)容。
    學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。
    學(xué)會(huì)歸納與總結(jié)。
    布置作業(yè)。
    教材p51.習(xí)題2.6知識(shí)技能1;問(wèn)題解決2,3.
    板書設(shè)計(jì)。
    一元一次不等式組教案設(shè)計(jì)篇九
    2、如果累計(jì)購(gòu)物超過(guò)50元但不超過(guò)100元,則在乙商場(chǎng)購(gòu)物花費(fèi)小。
    3、如果累計(jì)購(gòu)物超過(guò)100元,又有三種情況:
    (1)什么情況下,在甲商場(chǎng)購(gòu)物花費(fèi)?。?BR>    (2)什么情況下,在乙商場(chǎng)購(gòu)物花費(fèi)???
    (3)什么情況下,在兩家商場(chǎng)購(gòu)物花費(fèi)相同?
    握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。
    這些問(wèn)題能培養(yǎng)學(xué)生思維的深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。
    引導(dǎo)學(xué)生用數(shù)學(xué)眼光去觀察周圍的生活現(xiàn)象,思考能否用數(shù)學(xué)知識(shí)、方法、觀點(diǎn)和思想去。
    一元一次不等式組教案設(shè)計(jì)篇十
    問(wèn)題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問(wèn)題:
    (1)x取何值時(shí),2x-5=0?
    (2)x取哪些值時(shí),2x-50?
    (3)x取哪些值時(shí),2x-50?
    (4)x取哪些值時(shí),2x-53?
    你是怎樣求解的?與同伴交流。
    讓每個(gè)學(xué)生都投入到探究中來(lái)養(yǎng)成自主學(xué)習(xí)習(xí)慣。
    小組合作互學(xué)。
    巡回每個(gè)小組之間,鼓勵(lì)學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問(wèn)題。
    一元一次不等式組教案設(shè)計(jì)篇十一
    教學(xué)目標(biāo):
    (知識(shí)與技能,過(guò)程與方法,情感態(tài)度價(jià)值觀)。
    (一)教學(xué)知識(shí)點(diǎn)。
    2.會(huì)根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較.
    (二)能力訓(xùn)練要求。
    1.通過(guò)一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí).
    2.訓(xùn)練大家能利用數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題的能力.
    (三)情感與價(jià)值觀要求。
    體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決問(wèn)題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用.
    教學(xué)重點(diǎn)。
    一元一次不等式組教案設(shè)計(jì)篇十二
    認(rèn)識(shí)一元一次不等式,會(huì)解簡(jiǎn)單的一元一次不等式;類比一元一次方程的步驟,總結(jié)歸納解一元一次不等式的基本步驟。
    【過(guò)程與方法】。
    通過(guò)對(duì)比解一元一次方程的步驟,學(xué)生自己總結(jié)歸納一元一次不等式步驟的過(guò)程,提高歸納能力,并學(xué)會(huì)類比的學(xué)習(xí)方法。
    【情感態(tài)度與價(jià)值觀】。
    感受數(shù)學(xué)知識(shí)之間的聯(lián)系,提高對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
    二、教學(xué)重難點(diǎn)。
    【重點(diǎn)】。
    掌握一元一次不等式的概念,會(huì)解一元一次不等式并能夠在數(shù)軸上表示出來(lái)。
    【難點(diǎn)】。
    三、教學(xué)過(guò)程。
    (一)引入新課。
    (二)探索新知。
    學(xué)生類比不等式以及一元一次方程的概念,能夠總結(jié)出:含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
    讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-726如何解決的,并提問(wèn)學(xué)生有沒(méi)有更加簡(jiǎn)便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題。
    給出不等式2(1+x)3;。
    強(qiáng)調(diào)每一個(gè)步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向改變。
    歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
    (三)課堂練習(xí)。
    問(wèn)題:解不等式,并在數(shù)軸上表示數(shù)集:5x+154x-1。
    師生活動(dòng):學(xué)生獨(dú)立思考完成,教師可適當(dāng)指導(dǎo),幫助學(xué)生理解不等式中的變形步驟。
    (四)小結(jié)作業(yè)。
    小結(jié)采用發(fā)散性問(wèn)題:你今天有什么收獲?
    一元一次不等式組教案設(shè)計(jì)篇十三
    3.使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣。
    和難點(diǎn)。
    課堂設(shè)計(jì)。
    一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題。
    為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題。
    例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
    (首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
    解法1:(4+2)÷(3-1)=3.
    答:某數(shù)為3.
    (其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)。
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
    解之,得x=3.
    答:某數(shù)為3.
    縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們運(yùn)用一元一次方程解應(yīng)用題的目的之一。
    我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
    本節(jié)課,我們就通過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
    二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟。
    師生共同分析:
    1.本題中給出的已知量和未知量各是什么?
    2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)。
    上述分析過(guò)程可列表如下:
    x-15%x=42500,
    所以x=50000.
    答:原來(lái)有50000千克面粉。
    (還有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)。
    (2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
    依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問(wèn)的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
    (4)求出所列方程的解;
    (5)檢驗(yàn)后明確地、完整地寫出答案。這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
    (仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥。解答過(guò)程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式)。
    解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得。
    3x+9=5x-(5-4),
    解這個(gè)方程:2x=10,
    所以x=5.
    其蘋果數(shù)為3×5+9=24.
    答:第一小組有5名同學(xué),共摘蘋果24個(gè)。
    學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
    (設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)。
    三、課堂練習(xí)。
    2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
    3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
    四、師生共同小結(jié)。
    首先,讓學(xué)生回答如下問(wèn)題:
    1.本節(jié)課了哪些內(nèi)容?
    3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
    依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
    (2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
    五、作業(yè)。
    1.買3千克蘋果,付出10元,找回3角4分。問(wèn)每千克蘋果多少錢?
    2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
    一元一次不等式組教案設(shè)計(jì)篇十四
    一、教學(xué)目標(biāo):
    1、通過(guò)對(duì)多種實(shí)際問(wèn)題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
    2、通過(guò)觀察,歸納的概念。
    3、積累活動(dòng)經(jīng)驗(yàn)。
    二、重點(diǎn)和難點(diǎn)。
    歸納的概念。
    感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
    三、教學(xué)過(guò)程。
    1、課前訓(xùn)練一。
    (1)如果||=9,則=;如果2=9,則=。
    (2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長(zhǎng)度的數(shù)為。
    (3)下列關(guān)于相反數(shù)的說(shuō)法不正確的是()。
    a、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。
    b、互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等。
    c、0的相反數(shù)是0。
    d、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)。
    e、有理數(shù)的相反數(shù)一定比0小。
    (4)乘積為1的兩個(gè)數(shù)互為倒數(shù),如:
    (5)如果,則()。
    a、,互為倒數(shù)b、,互為相反數(shù)c、,都是0d、,至少有一個(gè)為0。
    (6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長(zhǎng)高約為12厘米,問(wèn)大約經(jīng)過(guò)幾周后樹苗長(zhǎng)高到1米?設(shè)大約經(jīng)過(guò)周后樹苗長(zhǎng)高到1米,依題意得方程()。
    a、b、c、d、00。
    2、由課本p149卡通圖畫引入新課。
    3、分組討論p149兩個(gè)練習(xí)。
    4、p150:某長(zhǎng)方形的足球場(chǎng)的周長(zhǎng)為310米,長(zhǎng)與寬的差為25米,求這個(gè)足球場(chǎng)的長(zhǎng)與寬各是多少米?設(shè)這個(gè)足球場(chǎng)的寬為米,那么長(zhǎng)為(+25)米,依題意可列得方程為:()。
    課本的寬為3厘米,長(zhǎng)比寬多4厘米,則課本的面積為平方厘米。
    解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要元,依題意可列得方程:
    6、歸納方程、的概念。
    7、隨堂練習(xí)po151。
    8、達(dá)標(biāo)測(cè)試。
    (1)下列式子中,屬于方程的是()。
    a、b、c、d、
    (2)下列方程中,屬于的是()。
    a、b、c、d、
    解:設(shè)甲隊(duì)勝了場(chǎng),則平了場(chǎng),依題意可列得方程:
    解得=。
    答:甲隊(duì)勝了場(chǎng),平了場(chǎng)。
    (4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為。
    (5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為。
    p151習(xí)題5.1。
    一元一次不等式組教案設(shè)計(jì)篇十五
    設(shè)購(gòu)買x臺(tái)電腦,如果到甲商場(chǎng)購(gòu)買更優(yōu)惠。
    問(wèn)題2:如何解這個(gè)不等式?
    去括號(hào),得。
    去括號(hào),得:6000+4500x-450044800x。
    移項(xiàng)且合并,得:-300x1500。
    不等式兩邊同除以-300,得:x5。
    答:購(gòu)買5臺(tái)以上電腦時(shí),甲商場(chǎng)更優(yōu)惠。
    一元一次不等式組教案設(shè)計(jì)篇十六
    在本節(jié)課的教學(xué)中個(gè)人的優(yōu)點(diǎn):
    1、整體的思路比較清晰:先從實(shí)際生活中遇到的問(wèn)題出發(fā)引出一元一次不等式組的概念(同時(shí)也體現(xiàn)了數(shù)學(xué)是源于生活的),然后通過(guò)練習(xí)進(jìn)行辨析,并讓學(xué)生自己歸納注意點(diǎn)(鞏固概念),再接下去是應(yīng)用新知、鞏固新知、再探新知、鞏固新知、探究活動(dòng)、知識(shí)梳理、布置作業(yè),整個(gè)流程比較流暢、自然。
    2、精心處理教材:我選的例題和練習(xí)剛好囊括了解由兩個(gè)一元一次不等式組成的不等式組,在取各不等式的解的公共部分時(shí)的四種不同情況,以便為后面的歸納小結(jié)做好準(zhǔn)備。
    3、教態(tài)自然、大方、親切。能給學(xué)生以鼓勵(lì),能較好地激發(fā)學(xué)生的學(xué)習(xí)興趣;比如在知識(shí)梳理環(huán)節(jié)高金鳳同學(xué)區(qū)分了解一元一次不等式組其實(shí)和解二元一次方程組是不一樣的,它們是有本質(zhì)的區(qū)別的,我覺(jué)得她非常善于總結(jié)、類比和思考,所以我及時(shí)予以肯定。
    在本節(jié)課的教學(xué)中個(gè)人的缺點(diǎn):
    5、在知識(shí)梳理環(huán)節(jié)有同學(xué)提出疑問(wèn):若出現(xiàn)兩個(gè)一樣的不等式它的公共部分怎么找?若有三個(gè)不等式組成的一元一次不等式組它的解又是怎樣的?能否直接就在數(shù)軸上畫出它的公共部分等問(wèn)題時(shí)有些沒(méi)能及時(shí)給學(xué)生以肯定,有些引導(dǎo)不夠到位。
    一元一次不等式組教案設(shè)計(jì)篇十七
    3、在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣。
    教學(xué)過(guò)程(師生活動(dòng))設(shè)計(jì)理念。
    (多媒體展示商場(chǎng)購(gòu)物情景)通過(guò)買電腦這個(gè)學(xué)生非常熟悉的生活實(shí)例,引起學(xué)生濃厚的學(xué)習(xí)興趣,感受到數(shù)學(xué)來(lái)源于生活,生活中更需要數(shù)學(xué)。
    一元一次不等式組教案設(shè)計(jì)篇十八
    自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來(lái)作答.
    教學(xué)過(guò)程。
    創(chuàng)設(shè)情境,導(dǎo)入課題,展示教學(xué)目標(biāo)。
    2.展示學(xué)習(xí)目標(biāo):
    (3)、理解兩種方法的關(guān)系,會(huì)選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?BR>    積極思考,嘗試回答問(wèn)題,導(dǎo)出本節(jié)課題。
    閱讀學(xué)習(xí)目標(biāo),明確探究方向。
    從生活實(shí)例出發(fā),引起學(xué)生的好奇心,激發(fā)學(xué)生學(xué)習(xí)興趣。
    學(xué)生自主研學(xué)。
    指出探究方向,巡回指導(dǎo)學(xué)生,答疑解惑。