小學(xué)數(shù)學(xué)一元二次方程教案范文(19篇)

字號:

    教案的編寫要結(jié)合學(xué)生的實際情況和學(xué)習(xí)特點,具有針對性和可操作性。怎樣安排教學(xué)內(nèi)容和教學(xué)步驟能更好地提高學(xué)生的學(xué)習(xí)效果?以下是小編為大家整理的一些教案范例,供大家參考。這些教案覆蓋了不同學(xué)科和不同年級的教學(xué)內(nèi)容,旨在幫助教師們更好地了解和掌握教案編寫的技巧和方法。希望這些教案范例能給大家提供一些啟示和借鑒,促進我們的教學(xué)水平不斷提高。希望大家能夠利用好這些教案范例,不斷完善自己的教學(xué)設(shè)計,提升教學(xué)質(zhì)量。
    小學(xué)數(shù)學(xué)一元二次方程教案篇一
    一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
    學(xué)情分析。
    1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時初三學(xué)生觀察、類比、概括、歸納能力也都比較強,不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進一步加強。
    2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
    教學(xué)目標。
    一、知識目標。
    1、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認識.
    3、掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
    二、能力目標。
    1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.
    2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進一步提高學(xué)生分析問題、解決問題的能力.
    四、情感目標。
    1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
    2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
    教學(xué)重點和難點。
    難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”
    小學(xué)數(shù)學(xué)一元二次方程教案篇二
    2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點和難點:
    難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
    2)重點、難點分析。
    是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
    小學(xué)數(shù)學(xué)一元二次方程教案篇三
    (2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
    (2)會用因式分解法解一元二次方程
    【教學(xué)重點】一元二次方程的概念、一元二次方程的一般形式
    【教學(xué)難點】因式分解法解一元二次方程
    【教學(xué)過程】
     (一)創(chuàng)設(shè)情景,引入新課
     由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
     (二)新授
     1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
     2:一元二次方程的一般形式(形如ax+bx+c=0)
     3:講解例子
     4:利用因式分解法解一元二次方程
     5:講解例子
     6:一般步驟
    (三)小結(jié)
    (四)布置作業(yè)
    小學(xué)數(shù)學(xué)一元二次方程教案篇四
    1、教材的地位和作用。
    一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的`意義。
    2、教學(xué)目標及確立目標的依據(jù)。
    九年義務(wù)教育大綱對這部分的要求是:使學(xué)生了解一元二次方程的概念,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標。
    知識目標:使學(xué)生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
    能力目標:通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
    德育目標:培養(yǎng)學(xué)生把感性認識上升到理性認識的辯證唯物主義的觀點。
    3、重點,難點及確定重難點的依據(jù)。
    一元二次方程有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
    二、教材處理。
    在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進行創(chuàng)造性學(xué)習(xí)。
    三、教學(xué)方法和學(xué)法。
    教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。
    四、教學(xué)手段。
    采用投影儀。
    五、教學(xué)程序。
    1、新課導(dǎo)入:
    (1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
    (2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
    課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認識到一元二次方程是來源于客觀需要的)。
    設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)一元二次方程教案篇五
    (2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
    【教學(xué)過程】。
    (一)創(chuàng)設(shè)情景,引入新課。
    由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
    (二)新授。
    1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
    任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。
    3:講解例子。
    5:講解例子。
    6:一般步驟。
    (三)小結(jié)。
    (四)布置作業(yè)。
    小學(xué)數(shù)學(xué)一元二次方程教案篇六
    今天,在教務(wù)處的組織下,我參加了柏老師的九年級數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開課活動。
    這節(jié)課,柏老師運用了“先學(xué)后導(dǎo),分層推進”的教學(xué)模式開展教學(xué)活動。教學(xué)設(shè)計科學(xué)、嚴謹、合理。能對教材內(nèi)容進行取舍,不照本宣科。習(xí)題設(shè)計典型,有梯度。整個教學(xué)過程環(huán)環(huán)相扣,層層推進,最終教學(xué)效果理想。但是我個人認為在具體細節(jié)上還有有待改進的地方:。
    1、知識性錯誤。因式分解是指把一個多項式分解成幾個整式相乘的形式。柏老師說成了分解成單項式相乘的形式。整式既包含單項式也有多項式。
    2、整個教學(xué)過程中,還是沒有把學(xué)習(xí)的主動權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進行自主嘗試。其實,我們從后面的課堂檢測環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強的。那幾個比較難的解方程學(xué)生都能用最簡單的方法求解。
    3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對已經(jīng)學(xué)過的概念記憶不清楚,對每節(jié)課所學(xué)的知識點不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細細推敲來,它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個環(huán)節(jié)教學(xué)到位了,學(xué)生對所學(xué)知識也就是茶壺里煮餃子——心中有數(shù)了。
    4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因為學(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時候教師適時的放手,讓學(xué)生通過自主學(xué)習(xí),掌握知識,從而才能水到渠成的對知識進行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時這么牽強。
    5、教師對教材鉆研不透徹。后面的六個解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來求解的。但是老師在個別輔導(dǎo)時強調(diào)用其他解法。
    小學(xué)數(shù)學(xué)一元二次方程教案篇七
    是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
    教學(xué)目的。
    2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)難點和難點:。
    重點:。
    小學(xué)數(shù)學(xué)一元二次方程教案篇八
    1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
    3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。
    二、教學(xué)重難點。
    重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
    三、教學(xué)過程。
    (一)導(dǎo)入新課。
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)。
    師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
    (下去巡視)。
    (三)小結(jié)作業(yè)。
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。
    四、板書設(shè)計。
    五、教學(xué)反思。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)一元二次方程教案篇九
    2.通過自學(xué)探究掌握裁邊分割問題。
    (閱讀課本p47頁,思考下列問題)。
    1.閱讀探究3并進行填空;
    2.完成p48的思考并掌握裁邊分割問題的特點;
    設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
    由中下層學(xué)生口答書中填空,老師再給予補充。
    思考:如果換一種設(shè)法,是否可以更簡單?
    設(shè)正中央的長方形長為9acm,寬為7acm,依題意得。
    9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)。
    效果檢測時,由同座的同學(xué)給予點評與糾正。
    9.如圖,要設(shè)計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計彩條的寬帶?(討論用多種方法列方程比較)。
    注意點:要善于利用圖形的平移把問題簡單化!
    (只要求設(shè)元、列方程)。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十
    學(xué)習(xí)目標:
    2、進一步培養(yǎng)學(xué)生分析問題、解決問題的能力。
    學(xué)習(xí)重點:
    學(xué)習(xí)難點:
    如何分析題意,找出等量關(guān)系,列方程。
    學(xué)習(xí)過程:
    一、復(fù)習(xí)提問:
    二、探索新知。
    1、情境導(dǎo)入。
    2、合作探究、師生互動。
    教師引導(dǎo)學(xué)生運用方程解決問題:
    三、例題學(xué)習(xí)。
    說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計算簡便且直接得出所求。
    (小組合作交流教師點撥)。
    時間基數(shù)降價降價后價錢。
    第一次600600x600(1―x)。
    第二次600(1―x)600(1―x)x600(1―x)2。
    (由學(xué)生寫出解答過程)。
    四、鞏固練習(xí)。
    五、課堂總結(jié):
    1、善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
    2、注意解方程中的巧算和方程兩個根的取舍問題。
    六、反饋練習(xí):
    a、x+(1+x)x=20%b、(1+x)2=20%。
    c、(1+x)2=1、2d、(1+x%)2=1+20%。
    2、某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十一
    1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
    3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。
    重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
    (一)導(dǎo)入新課。
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)。
    師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
    (下去巡視)。
    (三)小結(jié)作業(yè)。
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。
    xx。
    xx。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十二
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點和難點:
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
    2)重點、難點分析。
    是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十三
    一元二次方程的應(yīng)用是在學(xué)習(xí)了前面的一元二次方程的解法的基礎(chǔ)上,結(jié)合實際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系來列方程,以及如何解答。
    列方程解決實際問題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
    在本章教學(xué)中我注意分散教學(xué)難點,比如說,在學(xué)習(xí)增長率問題時,我先設(shè)計了這樣一組練習(xí):一個車間二月份生產(chǎn)零件500個,三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個?通過分散教學(xué)難點,引導(dǎo)學(xué)生理解題意,從而達到滿意的教學(xué)效果。
    在本章教學(xué)中我還注意對學(xué)生進行學(xué)法的指導(dǎo)。比如說,在做習(xí)題7.12第2題時,有的同學(xué)想象不出圖形,就應(yīng)引導(dǎo)他們畫出示意圖;在比如學(xué)習(xí)最后一個例題時,面對那么多的量,并且是運動中的量,許多學(xué)生無從下手,此時就要引導(dǎo)學(xué)生把量在圖形中先標示出來,在慢慢分析題中的數(shù)量關(guān)系。在分析問題時,要強調(diào)當(dāng)設(shè)完未知數(shù),那它就是已知數(shù),參與量的標示。
    總之,在教學(xué)中通過學(xué)生的自主探究、小組間的合作交流、教師的及時點撥,進一步提高學(xué)生分析問題、解決問題的能力。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十四
    第二步:將左端的二次三項式分解為兩個一次因式的積;。
    第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
    解法二:配方法。
    x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
    即(x-2)^2=1。
    于是x=3或x=1。
    一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
    比如x^2+x-1=0。
    我們可能分解不出它的因式來,不過我們可以采用配方法。
    x^2+x-1=(x+1/2)^2-5/4=0。
    于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
    小練習(xí)。
    1.分解因式:
    (4)(x+1)2-16=________。
    2.方程(2x+1)(x-5)=0的解是_________。
    3.方程2x(x-2)=3(x-2)的解是___________。
    5.已知y=x2+x-6,當(dāng)x=________時,y的值為0;當(dāng)x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
    小學(xué)數(shù)學(xué)一元二次方程教案篇十五
    一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。
    2、教學(xué)目標及確立目標的依據(jù)。
    九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標。
    知識目標:使學(xué)生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
    能力目標:通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
    德育目標:培養(yǎng)學(xué)生把感性認識上升到理性認識的辯證唯物主義的觀點。
    3、重點,難點及確定重難點的依據(jù)。
    “一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
    二、教材處理。
    在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進行創(chuàng)造性學(xué)習(xí)。
    三、教學(xué)方法和學(xué)法。
    教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。
    四、教學(xué)手段。
    采用投影儀。
    五、教學(xué)程序。
    1、新課導(dǎo)入:
    (1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
    (2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
    課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認識到一元二次方程是來源于客觀需要的)。
    設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十六
    據(jù)題意,得。
    整理后,得。
    解這個方程,得。
    由得,由得,
    答:這兩個奇數(shù)是17,19或者-19,-17。
    解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
    據(jù)題意,得。
    整理后,得。
    解這個方程,得。
    當(dāng)時,
    當(dāng)時,。
    答:兩個奇數(shù)分別為17,19;或者-19,-17。
    第12頁。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十七
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點和難點:
    難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
    2)重點、難點分析。
    是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
    教學(xué)目的。
    2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)難點和難點:。
    重點:。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十八
    2.知道的一般形式,會把化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點和難點:
    重點:的概念和它的一般形式。
    難點:對的一般形式的正確理解及其各項系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
    1.了解整式方程和的概念;
    2.知道的一般形式,會把化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)難點和難點:。
    重點:。
    1.的有關(guān)概念。
    2.會把化成一般形式。
    難點:的含義.
    第12頁。
    小學(xué)數(shù)學(xué)一元二次方程教案篇十九
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點和難點:
    難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
    2)重點、難點分析。