教案設計應考慮學生的認知規(guī)律和學習特點,使學生更好地掌握知識。教案中的教學方法應該多樣化,包括講授、示范、探究等不同形式,以滿足學生的不同學習需求。教案范文中的教學活動設計精彩紛呈,能夠激發(fā)學生的學習興趣和動力。
函數的應用教案篇一
(一)教材地位:
本小節(jié)屬于《全日制義務教育數學課程標準實驗稿》中“數與代數”領域,是我們在。
學習了平面直角坐標系和一次函數的基礎上,再一次進入函數領域,通過本小節(jié)的學習,讓學生感受到函數是反映現實生活的一種有效模型,同時,本小節(jié)的學習內容,直接關系到后續(xù)內容的學習,也可以說是后續(xù)內容的基礎。
(二)教學重點:
2、能根據問題中的已知條件確定反比例函數解析式;
3、能判斷一個函數是否為反比例函數及比例系數;
4、培養(yǎng)學生的觀察、比較、概括能力。
(三)教學重學:
2、能根據已知條件確定反比例函數解析式。
(四)教學難點:
2、能根據已知條件確定反比例函數解析式。
二、分析教法與學法:
(一)教法:
(二)學法:
通過觀察、比較、發(fā)現、概括的方法來學習新知識。
三、分析教學過程。
(一)創(chuàng)設情境:教育大全。
1、由于學生所學過的反比例關系,一次函數等概念時間已較長,所以在創(chuàng)設情境時對這些知識加以復習,以換取學生以以有知識的記憶。
2、在情境中,列舉大量實例,讓學生裝根據已知條件,列出一次函數、正比例函數、反比例函數為學生的探險索創(chuàng)造條件。
(二)探索過程。
1、學生的探索能力不是很強,因此在列出的'大量函數中,教師發(fā)揮主導作用,啟發(fā)學生思考。
2、通過一系列的探索,讓學生概括出反比例函數的共同特征,從而給出概念。
3、在學生得出反比例函數后,再進行深化,給出比例系數為負數或分。
(三)小結和作業(yè):
在學生的自我小結中教師加以完善,對反比例函數有一定程度上的掌握。
函數的應用教案篇二
教學目標:在復習指數函數與對數函數的特性之后,通過圖像對比使學生較快的學會不求值比較指數函數與對數函數值的大小及提高對復合型函數的定義域與值域的解題技巧。
難點:指導學生如何根據上述特性解決復合型函數的定義域與值域的問題。
教學方法:多媒體授課。
學法指導:借助列表與圖像法。
教具:多媒體教學設備。
教學過程:
函數的應用教案篇三
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關系,認識到反比例函數與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。
創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關反比例函數的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用反比例函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
函數的應用教案篇四
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關系,認識到反比例函數與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。
創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關反比例函數的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用反比例函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
函數的應用教案篇五
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
教學過程:
一、情景創(chuàng)設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
三、課堂練習。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結。
五、作業(yè)。
30.31、2、3。
函數的應用教案篇六
這節(jié)課我首先讓學生思考了三個列函數關系式的實際問題,接著在學生探究這三個實際問題的基礎上,思考、歸納出二次函數的定義以及探討對二次函數的判斷,最后針對二次函數的定義和能用二次函數表示變量之間關系進行了鞏固應用。本節(jié)課通過豐富的現實背景,使學生感受二次函數的意義,感受數學的廣泛聯(lián)系和應用價值。通過學生的探究性活動(經歷數學化的過程),和學生之間的合作與交流,通過分析實際問題,引出二次函數的概念,使學生感受二次函數與生活的密切聯(lián)系。在新知的鞏固應用環(huán)節(jié),我精心設計了不同題型的問題,很好鞏固應用了本節(jié)的新知,課堂達到了較好的教學效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經驗設計。在每節(jié)課的課前,一定要進行精心的預設。在課堂中,同時要結合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當的時機收回,以保證每節(jié)教學基本任務完成。
將本文的word文檔下載到電腦,方便收藏和打印。
函數的應用教案篇七
知識與技能:
進一步訓練學生的識圖能力,能通過函數圖象獲取信息,解決簡單的實際問題;。
過程與方法。
在函數圖象信息獲取過程中,進一步培養(yǎng)學生的數形結合意識,發(fā)展形象思維;在解決實際問題過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數學應用意識.
情感態(tài)度與價值觀:
在現實問題的解決中,使學生初步認識數學與人類生活的密切聯(lián)系,從而培養(yǎng)學生學習數學的興趣.
教學重點。
教學難點。
從函數圖象中正確讀取信息。
教學過程:
一、情境引入。
一農民帶上若干千克自產的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數與他手中持有的錢數(含備用零錢)的關系,如圖所示,結合圖象回答下列問題.
(1)農民自帶的零錢是多少?
(2)試求降價前y與x之間的關系。
(3)由表達式你能求出降價前每千克的土豆價格是多少?
二、問題解決。
l1反映了某公司產品的銷售收入與銷售量的關系,l2反映了該公司產品的銷售成本與銷售量的關系,根據圖意填空:
函數的應用教案篇八
教學目標:使學生對反比例函數和反比例函數的圖象意義加深理解。
教學程序:
一、新授:
1、實例1:(1)用含s的代數式表示p,p是s的反比例函數嗎?為什么?
答:p=600,p是s的反比例函數。
(2)、當木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標系中,作出相應的函數圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r之間的函數關系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數的表達式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數y=k1x的圖象與反比例函數y=60k的圖象相交于a、b兩點,其中點a的坐標為(3,23)。
(1)分別寫出這兩個函數的表達式;。
(2)你能求出點b的坐標嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習:
p145~1461、2、3、4、5。
作業(yè):p146習題5.41、2。
函數的應用教案篇九
2.滲透數形結合思想,提高學生用函數觀點解決問題的能力。
二、重點、難點。
2.難點:分析實際問題中的數量關系,正確寫出函數解析式。
3.難點的突破方法:
用函數觀點解實際問題,一要搞清題目中的.基本數量關系,將實際問題抽象成數學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數,以便寫出正確的函數關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數的意義、圖象和性質,特別是圖象,要做到數形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。
三、例題的意圖分析。
教材第57頁的例1,數量關系比較簡單,學生根據基本公式很容易寫出函數關系式,此題實際上是利用了反比例函數的定義,同時也是要讓學生學會分析問題的方法。
教材第58頁的例2是一道利用反比例函數的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數學問題的能力,掌握用函數觀點去分析和解決問題的思路。
函數的應用教案篇十
這節(jié)課是在學生掌握了反比例函數的概念及其圖像與性質的基礎之上而學習的,并且上學學習了正比例函數和一次函數,因此學生已經有了一定的知識準備,但是由于學生的知識所限,對于例題中的信息并不了解,這樣容易造成學生在了解上的困難,所以在教學時我選用了學生所熟悉的實例進行教學。使學生從身邊事物入手,真正體會到數學知識來源于生活,有一種親切感,另外對于本節(jié)的問題,文字多,閱讀量大,所以我應用幻燈片的形式展現,效果要好,注意要讓學生經歷實踐、思考、表達與交流的過程,給學生留下充足的時間來活動,不斷引導學生利用數學知識解決實際問題,本節(jié)課效果較好。
函數的應用教案篇十一
1.在人的身體中,利用氧氣,產生二氧化碳的基本單位是:()。
a.肺泡b.血管c.組織d.細胞。
2.吸氣時,人體膈肌和胸腔所處的狀態(tài):()。
a.膈肌收縮,胸腔變小b.膈肌收縮,胸腔擴大。
c.膈肌舒張,胸腔變小d.膈肌舒張,胸腔擴大。
3.空氣到達肺時,與血液進行氣體交換的主要結構是:()。
a.支氣管b.組織細胞c.肺泡d.氣管。
4.肺泡里的氧氣進入血液中,要通過幾層細胞?()。
a.一層b.兩層c.三層d.四層。
課堂練習:
一、選擇正確答案:
1.在盛有新鮮血液的試管中加入少量檸檬酸鈉,靜止一段時間后,上層呈淡黃色半透明的液體()。
a.紅細胞b.血清c.血小板d.血漿。
2.具有吞噬細菌功能的'血細胞是()。
a.血漿b.紅細胞c.血小板d.白細胞。
3.下列含有血紅蛋白的是()。
a.血漿b.紅細胞c.白細胞d.血小板。
4.血液的成分中具有止血作用的是()。
a.紅細胞b.血漿c.白細胞d.血小板。
5.紅細胞之所以呈紅色,是因為()。
a含血紅蛋白b含有紅色素c含鐵d紅細胞膜是紅色。
6.用顯微鏡觀察人血涂片時,視野中數量最多的細胞是()。
a.血漿b.紅細胞c.白細胞d.血小板。
7.化膿的傷口中膿液的主要成分是()。
a死亡的rbcb死亡的wbcc死亡的pltd死亡的細菌。
8.長期在平原生活的人,到西藏的最初幾天里,血液中數量會增多的細胞是()。
a.巨噬細胞b.紅細胞c.白細胞d.血小板。
9.某人經常精神不振,易疲勞,臉色蒼白,驗血后,醫(yī)生診斷為貧血癥,他的依據是:()。
a白細胞過少b血小板過少c血漿過少d紅細胞或血紅蛋白含量少。
二、判斷下列說法是否正確:
1.血漿的功能是運輸氧和二氧化碳。()。
2.成熟的紅細胞有細胞核。()。
3.白細胞有加速凝血和止血的作用。()。
4.血液中的血細胞包括紅細胞、血小板和白細胞。()。
5.血紅蛋白的特性是在氧濃度高的地方和氧結合,在氧濃度低的地方與氧分離。()。
函數的應用教案篇十二
微分方程指的是,聯(lián)系著自變量,未知函數及它的導數的關系式子。
微分方程是高等數學的重要內容之一,是一門與實際聯(lián)系較密切的一個內容。
在自然科學和技術科學領域中,例如化學,生物學,自動控制,電子技術等等,都提出了大量的微分方程問題。
在實際教學過程中應注重實際應用例子或應用背景,使學生對所學微分方程內容有具體地,形象地認識,從而激發(fā)他們強大的學習興趣。
1.1生態(tài)系統(tǒng)中的弱肉強食問題。
在這里考慮兩個種群的系統(tǒng),一種以另一種為食,比如鯊魚(捕食者)與食用魚(被捕食者),這種系統(tǒng)稱為“被食者—捕食者”系統(tǒng)。
volterra提出:記食用魚數量為,鯊魚數量為,因為大海的資源很豐富,可以認為如果,則將以自然生長率增長,即。
但是鯊魚以食用魚為食,致使食用魚的增長率降低,設降低程度與鯊魚數量成正比,于是相對增長率為。
常數,反映了鯊魚掠取食用魚的能力。
如果沒有食用魚,鯊魚無法生存,設鯊魚的自然死亡率為,則。
食用魚為鯊魚提供了食物,致使鯊魚死亡率降低,即食用魚為鯊魚提供了增長的條件。
設增長率與食用魚的數量成正比,于是鯊魚的相對增長率為。
常數0,反映了食用魚對鯊魚的供養(yǎng)能力。
所以最終建立的模型為:
這就是一個非線性的微分方程。
1.2雪球融化問題。
有一個雪球,假設它是一個半徑為r的球體,融化時體積v的變化率與雪球的表面積成正比,比例常數為0,則可建立如下模型:
1.3冷卻(加熱)問題。
牛頓冷卻定律具體表述是,物體的溫度隨時間的變化率跟環(huán)境的的溫差成正比。
記t為物體的溫度,為周圍環(huán)境的溫度,則物體溫度隨時。
2結語。
文中通過舉生態(tài)系統(tǒng)中弱肉強食問題,雪球融化及物理學中冷卻定律問題為例給出了微分方程在實際中的應用。
在講解高等數學微分方程這一章內容時經常舉些應用例子,能引起學生對微分方程的學習興趣,能使學生易于理解和掌握其基本概念及理論,達到事半功倍之效。
參考文獻。
[1]王嘉謀,石林.高等數學[m].北京:高等教育出版社,.
[2]王高雄,周之銘,朱思銘,等.常微分方程[m].2版.北京:科學出版社,.
[3]齊歡.數學建模方法[m].武漢:華中理工大學出版社,.
微分方程在數學建模中的應用【2】。
在許多實際問題中,當直接導出變量之間的函數關系較為困難,但導出包含未知函數的導數或微分的關系式較為容易時,可用建立微分方程模型的方法來研究該問題。
本文主要從交通紅綠燈模型和市場價格模型來論述微分方程在數學建模中的應用。
數學建模是數學方法解決各種實際問題的橋梁,隨著計算機技術的快速發(fā)展,數學的應用日益廣泛,數學建模的作用越來越重要,而且已經應用到各個領域。
用微分方程解決實際問題的關鍵是建立實際問題的數學模型——微分方程。
這首先要根據實際問題所提供的條件,選擇確定模型的變量,再根據有關學科,如物理、化學、生物、經濟等學科理論,找到這些變量遵循的規(guī)律,用微分方程的形式將其表示出來。
一、交通紅綠燈模型。
在十字路口的交通管理中,亮紅燈之前,要亮一段時間的黃燈,這是為了讓那些正行駛在十字路口的人注意,告訴他們紅燈即將亮起,假如你能夠停住,應當馬上剎車,以免沖紅燈違反交通規(guī)則。
這里我們不妨想一下:黃燈應當亮多久才比較合適?
停車線的確定,要確定停車線位置應當考慮到兩點:一是駕駛員看到黃燈并決定停車需要一段反應時間,在這段時間里,駕駛員尚未剎車。
二是駕駛員剎車后,車還需要繼續(xù)行駛一段距離,我們把這段距離稱為剎車距離。
駕駛員的反應時間(實際為平均反應時間)較易得到,可以根據經驗或者統(tǒng)計數據求出,交通部門對駕駛員也有一個統(tǒng)一的要求(在考駕照時都必須經過測試)。
例如,不失一般性,我們可以假設它為1秒,(反應時間的長短并不影響到計算方法)。
停車時,駕駛員踩動剎車踏板產生一種摩擦力,該摩擦力使汽車減速并最終停下。
設汽車質量為m,剎車摩擦系數為f,x(t)為剎車后在t時刻內行駛的距離,更久剎車規(guī)律,可假設剎車制動力為fmg(g為重力加速度)。
由牛頓第二定律,剎車過程中車輛應滿足下列運動方程:
md2xdt2=-fmg。
x(0)=0,dxdtt=0=v0。
(1)。
在方程(1)兩邊同除以并積分一次,并注意到當t=0時dxdt=v0,得到。
dxdt=-fgt+v0。
(2)。
剎車時間t2可這樣求得,當t=t2時,dxdt=0,故。
t2=v0fg。
將(2)再積分一次,得。
x(t)=-12fgt2+v0t。
將t2=v0fg代入,即可求得停車距離為。
x(t2)=1v202fg。
據此可知,停車線到路口的距離應為:
l=v0t1+12v20fg。
等式右邊的第一項為反應時間里駛過的路程,第二項為剎車距離。
黃燈時間的計算,現在我們可以來確定黃燈究竟應當亮多久了。
在黃燈轉為紅燈的這段時間里,應當能保證已經過線的車輛順利地通過街口,記街道的寬度為d(d很容易測得),平均車身長度為,這些車輛應通過的路程最長可達到l+d+l,因而,為保證過線的車輛全部順利通過,黃燈持續(xù)時間至少應當為:
t=l+d+lv0。
二、市場價格調整模型。
對于純粹的市場經濟來說,商品市場價格取決于市場供需之間的關系,市場價格能促使商品的供給與需求相等這樣的價格稱為(靜態(tài))均衡價格。
也就是說,如果不考慮商品價格形成的動態(tài)過程,那么商品的市場價格應能保證市場的供需平衡,但是,實際的市場價格不會恰好等于均衡價格,而且價格也不會是靜態(tài)的,應是隨時間不斷變化的動態(tài)過程。
dpdt=k[d(p)-](k0)。
(3)。
在d(p)和確定情況下,可解出價格與t的函數關系,這就是商品的價格調整模型。
某種商品的價格變化主要服從市場供求關系。
函數的應用教案篇十三
讓學生經歷根據不同的條件,利用待定系數法求二次函數的函數關系式。
:各種隱含條件的挖掘。
:引導發(fā)現法。
(一)診斷補償,情景引入:
(先讓學生復習,然后提問,并做進一步診斷)。
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質:
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設它的函數關系式是。此時只需拋物線上的一個點就能求出拋物線的函數關系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數關系式是。
例2、根據下列條件,分別求出對應的二次函數的關系式。
(1)已知二次函數的圖象經過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據二次函數的圖象經過三個已知點,可設函數關系式為的形式;(2)根據已知拋物線的頂點坐標,可設函數關系式為,再根據拋物線與y軸的交點可求出a的值;(3)根據拋物線與x軸的兩個交點的坐標,可設函數關系式為,再根據拋物線與y軸的交點可求出a的值;(4)根據已知拋物線的頂點坐標(3,-2),可設函數關系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設二此函數的關系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設二此函數的關系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據前面的分析,本題已轉化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據下列條件,分別求出對應的二次函數的關系式。
(1)已知二次函數的圖象經過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經過點(1,2)。
2、二次函數圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經過點(2,10),求此二次函數的關系式。
(五)交流評價,深化知識:
確定二此函數的關系式的一般方法是待定系數法,在選擇把二次函數的關系式設成什么形式時,可根據題目中的條件靈活選擇,以簡單為原則。二次函數的關系式可設如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數的圖象經過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數關系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
函數的應用教案篇十四
近期,我參加了一次關于函數應用的實訓課程,通過實際操作和理論學習,我深刻認識到了函數在編程中的重要性和應用價值,并獲得了許多寶貴的經驗和心得體會。
首先,函數的靈活運用使編程變得高效而優(yōu)雅。在實訓中,我們學習了不同類型的函數,并學會了如何根據需求合理運用它們。無論是封裝復雜操作的大型函數,還是根據特定規(guī)則進行數據處理的小型函數,它們極大地提高了我們的編程效率。通過函數的模塊化設計,我們能夠更加容易地調試代碼和進行功能擴展。在實踐中,我意識到,一個函數的設計應該盡量短小且單一,這樣不僅使其易讀易懂,也方便后續(xù)的維護與修改。
其次,函數應用的巧妙運用使程序更加具有可復用性。在實際的編程過程中,我們經常會遇到相似的問題,而函數的應用能夠避免重復的代碼編寫。通過合理抽象和封裝,我們可以將一段常用的功能代碼寫成一個函數,并在不同的場景下重復利用。在實訓中,我嘗試過將一些公共的功能模塊寫成通用函數,比如文件讀寫、網絡請求等,這樣可以節(jié)約不少時間,并且在后續(xù)的開發(fā)過程中也會變得更加便捷。
再次,函數應用培養(yǎng)了我們的思維能力和邏輯思維。在實訓課程中,我們需要根據需求,設計函數的輸入參數和輸出結果,根據不同的場景用不同的函數組合和調用。這就要求我們具備良好的邏輯思維能力和編程思維。編寫一個函數之前,我會先進行需求分析和邏輯架構的設計,這樣可以在一開始就避免一些不必要的麻煩。在實踐過程中,我意識到函數的好壞不僅取決于代碼的質量,還要考慮其運行效率和可擴展性。因此,我們在編程過程中需要注重思考和反思,以提高自己的編程能力。
最后,實訓過程中的合作與交流讓我領悟到了團隊合作的重要性。在實訓中,我們往往需要與其他同學合作完成一個完整的項目。而函數的應用能夠使項目更好地分工和協(xié)作。每個人負責相應的函數編寫,然后將其整合到一起,最終形成一個完整的項目。通過與他人的合作,我意識到程序員不是一個人孤軍奮戰(zhàn)的,而是需要和他人緊密合作的。在合作過程中,我們不僅可以互相學習和借鑒,還可以共同解決問題,并培養(yǎng)自己的團隊意識和溝通能力。
總結起來,函數應用實訓給了我寶貴的經驗和收獲。我從中深刻體會到了函數在編程中的重要性和應用價值,學會了靈活運用函數提高效率,培養(yǎng)了思維能力和邏輯思維,并懂得了團隊合作的重要性。通過這次實訓,我對函數的應用有了更深入的理解,并且在今后的編程實踐中,我將更加注重函數的合理設計和運用,以提高自己的編程水平和工作效率。
函數的應用教案篇十五
2、結合一次函數的圖像,掌握一次函數及其圖像的簡單性質。
過程與方法目標
1、經歷對一次函數性質的探索過程,增強學生數形結合的意識,培養(yǎng)學生識圖能力;
2、經歷對一次函數性質的探索過程,培養(yǎng)學生的觀察力、語言表達能力。
情感與態(tài)度目標
經歷一次函數及性質的探索過程,在合作與交流活動中發(fā)展學生的合作意識和能力。
本節(jié)通過對一次函數圖像的研究,對一次函數的單調性作了探討;對一次函數的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。
教學重點:結合一次函數的圖像,研究一次函數的簡單性質。
教學難點:一次函數性質的應用。
學生已經對一次函數的圖像有了一定的認識,在此基礎上,結合一次函數的圖像,通過問題的設計,引導學生探討一次函數的簡單性質,學生是較容易掌握的。
(一)做一做
在同一直角坐標系內分別作出一次函數y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數中,隨著x值的增大,y的值分別如何變化?
學生:有的在增大,有的在減小。
學生討論:y=2x+6和y=5x這兩個一次函數在增大;y=2x1和y=x+6在減?。挥绊戇@個變化的是x前面的系數k的符號:當k為正數時,y隨x的增大而增大;當k為負數時,y隨x的增大而減小。
師:當k0時,一次函數的圖象經過哪些象限?
當k0時,一次函數的圖象經過哪些象限?
函數的應用教案篇十六
學生能理解函數的概念,掌握常見的函數(sum,average,max,min等)。學生能夠根據所學函數知識判別計算得到的數據的正確性。
學生能夠使用函數(sum,average,max,min等)計算所給數據的和、平均值、最大最小值。學生通過自主探究學會新函數的使用。并且能夠根據實際工作生活中的需求選擇和正確使用函數,并能夠對計算的數據結果合理利用。
學生自主學習意識得到提高,在任務的完成過程中體會到成功的喜悅,并在具體的任務中感受環(huán)境保護的重要性及艱巨性。
sum函數的插入和使用。
函數的格式、函數參數正確使用以及修改。
任務驅動,觀察分析,通過實踐掌握,發(fā)現問題,協(xié)作學習。
excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。
1、展示投影片,創(chuàng)設數據處理環(huán)境。
2、以環(huán)境污染中的固體廢棄物數據為素材來進行教學。
3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數量狀況》工作表,要求根據已學知識計算各省各類廢棄物的總量。
函數名表示函數的計算關系。
=sum(起始單元格:結束單元格)。
4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?
注意參數的正確性。
1、簡單描述函數:函數是一些預定義了的計算關系,可將參數按特定的順序或結構進行計算。
在公式中計算關系是我們自己定義的,而函數給我們提供了大量的已定義好的計算關系,我們只需要根據不同的處理目的去選擇、提供參數去套用就可以了。
2、使用函數sum計算各廢棄物的全國總計。(強調計算范圍的正確性)。
3、通過介紹average函數學習函數的輸入。
函數的輸入與一般的公式沒有什么不同,用戶可以直接在“=”后鍵入函數及其參數。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數,統(tǒng)計出該表格中比去年同期增長%的平均數。
(參數的格式要嚴格;符號要用英文符號,以避免出錯。)。
有的同學開始瞪眼睛了,不大好用吧?
因為這種方法要求我們對函數的使用比較熟悉,如果我們對需要使用的函數名稱、參數格式等不是非常有把握,則建議使用“插入函數”對話框來輸入函數。
用相同任務演示操作過程。
4、引出max和min函數。
探索任務:利用提示應用max和min函數計算各廢棄物的最大和最小值。
5、引出countif函數。
探索任務:利用countif函數按要求計算并體會函數的不同格式。
1、教師小結比較。
2、根據得到的數據引發(fā)出怎樣的思考。
四、???????。
1、廢棄物數量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。
2、研究任務:運用表格數據,計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數,并對應計算各省處理的廢棄物量和剩余的廢棄物量及全國總數。
1、分析存在問題,表揚練習完成比較好的同學,強調鼓勵大家探究學習的精神。
2、把結果進行記錄,上繳或在課后進行分析比較,寫出一小論文。
1、讓學生體會到固體廢棄物數量的巨大。
2、處理真實數據引發(fā)學生興趣。
通過比較得到兩種方法的優(yōu)劣。
學生的計算結果在現實中的運用,真正體現信息技術課是收集,分析數據,的工具。
通過類比學習,提高學生的自學能力和分析問題能力。
實際數據,引發(fā)思考。
學生應用課堂所學知識。
學生帶著任務離開教室,課程之間整合,學生環(huán)境保護知識得到加強。
觀看投影。
學生用公式法和自動求和兩種方法計算各省廢棄物總量。
回答可用自動求和。
動手操作。
計算各類廢氣物的全國各省平均。
練習。
練習。
用自己計算所得數據對現實進行分析。
應用所學知識。
練習并記錄數據。
函數的應用教案篇十七
1.使學生掌握指數函數的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.
(3)能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象.
2.通過對指數函數的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發(fā)學生學習數學的興趣.使學生善于從現實生活中數學的發(fā)現問題,解決問題.
教材分析。
(1)指數函數是在學生系統(tǒng)學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.
(2)本節(jié)的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數在和時,函數值變化情況的區(qū)分.
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議。
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數函數.
(2)對底數的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
教學重點和難點。
重點是理解指數函數的定義,把握圖象和性質.
難點是認識底數對函數值影響的認識.
教學用具。
投影儀。
教學方法。
啟發(fā)討論研究式。
教學過程。
一.引入新課。
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數-------指數函數.
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區(qū)別,從形式上冪的形式,且自變量均在指數的位置上,那么就把形如這樣的函數稱為指數函數.
1.定義:形如的函數稱為指數函數.(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數范圍內相應的函數值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.
教師引導學生回顧指數范圍,發(fā)現指數可以取有理數.此時教師可指出,其實當指數為無理數時,也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以指數函數的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
(3)關于是否是指數函數的判斷(板書)。
剛才分別認識了指數函數中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是指數函數,請看下面函數是否是指數函數.
(1),(2),(3)。
(4),(5).
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是指數函數,其中(3)可以寫成,也是指數圖象.
最后提醒學生指數函數的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發(fā)現,教師準備明確性質,再由學生回答.
函數。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數也不是偶函數。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數圖象畫圖的依據.(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數不能太少.
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據.連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質.
3.性質.
(1)無論為何值,指數函數都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數,時,為減函數.
(3)時,,時,.
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同.再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數函數,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數,且。
(板書)。
教師最后再強調過程必須寫清三句話:。
(1)構造函數并指明函數的單調區(qū)間及相應的單調性.
(2)自變量的大小比較.
(3)函數值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學生觀察例2中各組數與例1中的區(qū)別,再思考解決的方法.引導學生發(fā)現對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生指數函數的函數值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數的方法:數的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數1或0.
三.鞏固練習。
練習:比較下列各組數的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結。
3.簡單應用。
函數的應用教案篇一
(一)教材地位:
本小節(jié)屬于《全日制義務教育數學課程標準實驗稿》中“數與代數”領域,是我們在。
學習了平面直角坐標系和一次函數的基礎上,再一次進入函數領域,通過本小節(jié)的學習,讓學生感受到函數是反映現實生活的一種有效模型,同時,本小節(jié)的學習內容,直接關系到后續(xù)內容的學習,也可以說是后續(xù)內容的基礎。
(二)教學重點:
2、能根據問題中的已知條件確定反比例函數解析式;
3、能判斷一個函數是否為反比例函數及比例系數;
4、培養(yǎng)學生的觀察、比較、概括能力。
(三)教學重學:
2、能根據已知條件確定反比例函數解析式。
(四)教學難點:
2、能根據已知條件確定反比例函數解析式。
二、分析教法與學法:
(一)教法:
(二)學法:
通過觀察、比較、發(fā)現、概括的方法來學習新知識。
三、分析教學過程。
(一)創(chuàng)設情境:教育大全。
1、由于學生所學過的反比例關系,一次函數等概念時間已較長,所以在創(chuàng)設情境時對這些知識加以復習,以換取學生以以有知識的記憶。
2、在情境中,列舉大量實例,讓學生裝根據已知條件,列出一次函數、正比例函數、反比例函數為學生的探險索創(chuàng)造條件。
(二)探索過程。
1、學生的探索能力不是很強,因此在列出的'大量函數中,教師發(fā)揮主導作用,啟發(fā)學生思考。
2、通過一系列的探索,讓學生概括出反比例函數的共同特征,從而給出概念。
3、在學生得出反比例函數后,再進行深化,給出比例系數為負數或分。
(三)小結和作業(yè):
在學生的自我小結中教師加以完善,對反比例函數有一定程度上的掌握。
函數的應用教案篇二
教學目標:在復習指數函數與對數函數的特性之后,通過圖像對比使學生較快的學會不求值比較指數函數與對數函數值的大小及提高對復合型函數的定義域與值域的解題技巧。
難點:指導學生如何根據上述特性解決復合型函數的定義域與值域的問題。
教學方法:多媒體授課。
學法指導:借助列表與圖像法。
教具:多媒體教學設備。
教學過程:
函數的應用教案篇三
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關系,認識到反比例函數與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。
創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關反比例函數的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用反比例函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
函數的應用教案篇四
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關系,認識到反比例函數與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。
創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關反比例函數的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用反比例函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
函數的應用教案篇五
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
教學過程:
一、情景創(chuàng)設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
三、課堂練習。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結。
五、作業(yè)。
30.31、2、3。
函數的應用教案篇六
這節(jié)課我首先讓學生思考了三個列函數關系式的實際問題,接著在學生探究這三個實際問題的基礎上,思考、歸納出二次函數的定義以及探討對二次函數的判斷,最后針對二次函數的定義和能用二次函數表示變量之間關系進行了鞏固應用。本節(jié)課通過豐富的現實背景,使學生感受二次函數的意義,感受數學的廣泛聯(lián)系和應用價值。通過學生的探究性活動(經歷數學化的過程),和學生之間的合作與交流,通過分析實際問題,引出二次函數的概念,使學生感受二次函數與生活的密切聯(lián)系。在新知的鞏固應用環(huán)節(jié),我精心設計了不同題型的問題,很好鞏固應用了本節(jié)的新知,課堂達到了較好的教學效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經驗設計。在每節(jié)課的課前,一定要進行精心的預設。在課堂中,同時要結合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當的時機收回,以保證每節(jié)教學基本任務完成。
將本文的word文檔下載到電腦,方便收藏和打印。
函數的應用教案篇七
知識與技能:
進一步訓練學生的識圖能力,能通過函數圖象獲取信息,解決簡單的實際問題;。
過程與方法。
在函數圖象信息獲取過程中,進一步培養(yǎng)學生的數形結合意識,發(fā)展形象思維;在解決實際問題過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數學應用意識.
情感態(tài)度與價值觀:
在現實問題的解決中,使學生初步認識數學與人類生活的密切聯(lián)系,從而培養(yǎng)學生學習數學的興趣.
教學重點。
教學難點。
從函數圖象中正確讀取信息。
教學過程:
一、情境引入。
一農民帶上若干千克自產的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數與他手中持有的錢數(含備用零錢)的關系,如圖所示,結合圖象回答下列問題.
(1)農民自帶的零錢是多少?
(2)試求降價前y與x之間的關系。
(3)由表達式你能求出降價前每千克的土豆價格是多少?
二、問題解決。
l1反映了某公司產品的銷售收入與銷售量的關系,l2反映了該公司產品的銷售成本與銷售量的關系,根據圖意填空:
函數的應用教案篇八
教學目標:使學生對反比例函數和反比例函數的圖象意義加深理解。
教學程序:
一、新授:
1、實例1:(1)用含s的代數式表示p,p是s的反比例函數嗎?為什么?
答:p=600,p是s的反比例函數。
(2)、當木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標系中,作出相應的函數圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r之間的函數關系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數的表達式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數y=k1x的圖象與反比例函數y=60k的圖象相交于a、b兩點,其中點a的坐標為(3,23)。
(1)分別寫出這兩個函數的表達式;。
(2)你能求出點b的坐標嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習:
p145~1461、2、3、4、5。
作業(yè):p146習題5.41、2。
函數的應用教案篇九
2.滲透數形結合思想,提高學生用函數觀點解決問題的能力。
二、重點、難點。
2.難點:分析實際問題中的數量關系,正確寫出函數解析式。
3.難點的突破方法:
用函數觀點解實際問題,一要搞清題目中的.基本數量關系,將實際問題抽象成數學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數,以便寫出正確的函數關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數的意義、圖象和性質,特別是圖象,要做到數形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。
三、例題的意圖分析。
教材第57頁的例1,數量關系比較簡單,學生根據基本公式很容易寫出函數關系式,此題實際上是利用了反比例函數的定義,同時也是要讓學生學會分析問題的方法。
教材第58頁的例2是一道利用反比例函數的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數學問題的能力,掌握用函數觀點去分析和解決問題的思路。
函數的應用教案篇十
這節(jié)課是在學生掌握了反比例函數的概念及其圖像與性質的基礎之上而學習的,并且上學學習了正比例函數和一次函數,因此學生已經有了一定的知識準備,但是由于學生的知識所限,對于例題中的信息并不了解,這樣容易造成學生在了解上的困難,所以在教學時我選用了學生所熟悉的實例進行教學。使學生從身邊事物入手,真正體會到數學知識來源于生活,有一種親切感,另外對于本節(jié)的問題,文字多,閱讀量大,所以我應用幻燈片的形式展現,效果要好,注意要讓學生經歷實踐、思考、表達與交流的過程,給學生留下充足的時間來活動,不斷引導學生利用數學知識解決實際問題,本節(jié)課效果較好。
函數的應用教案篇十一
1.在人的身體中,利用氧氣,產生二氧化碳的基本單位是:()。
a.肺泡b.血管c.組織d.細胞。
2.吸氣時,人體膈肌和胸腔所處的狀態(tài):()。
a.膈肌收縮,胸腔變小b.膈肌收縮,胸腔擴大。
c.膈肌舒張,胸腔變小d.膈肌舒張,胸腔擴大。
3.空氣到達肺時,與血液進行氣體交換的主要結構是:()。
a.支氣管b.組織細胞c.肺泡d.氣管。
4.肺泡里的氧氣進入血液中,要通過幾層細胞?()。
a.一層b.兩層c.三層d.四層。
課堂練習:
一、選擇正確答案:
1.在盛有新鮮血液的試管中加入少量檸檬酸鈉,靜止一段時間后,上層呈淡黃色半透明的液體()。
a.紅細胞b.血清c.血小板d.血漿。
2.具有吞噬細菌功能的'血細胞是()。
a.血漿b.紅細胞c.血小板d.白細胞。
3.下列含有血紅蛋白的是()。
a.血漿b.紅細胞c.白細胞d.血小板。
4.血液的成分中具有止血作用的是()。
a.紅細胞b.血漿c.白細胞d.血小板。
5.紅細胞之所以呈紅色,是因為()。
a含血紅蛋白b含有紅色素c含鐵d紅細胞膜是紅色。
6.用顯微鏡觀察人血涂片時,視野中數量最多的細胞是()。
a.血漿b.紅細胞c.白細胞d.血小板。
7.化膿的傷口中膿液的主要成分是()。
a死亡的rbcb死亡的wbcc死亡的pltd死亡的細菌。
8.長期在平原生活的人,到西藏的最初幾天里,血液中數量會增多的細胞是()。
a.巨噬細胞b.紅細胞c.白細胞d.血小板。
9.某人經常精神不振,易疲勞,臉色蒼白,驗血后,醫(yī)生診斷為貧血癥,他的依據是:()。
a白細胞過少b血小板過少c血漿過少d紅細胞或血紅蛋白含量少。
二、判斷下列說法是否正確:
1.血漿的功能是運輸氧和二氧化碳。()。
2.成熟的紅細胞有細胞核。()。
3.白細胞有加速凝血和止血的作用。()。
4.血液中的血細胞包括紅細胞、血小板和白細胞。()。
5.血紅蛋白的特性是在氧濃度高的地方和氧結合,在氧濃度低的地方與氧分離。()。
函數的應用教案篇十二
微分方程指的是,聯(lián)系著自變量,未知函數及它的導數的關系式子。
微分方程是高等數學的重要內容之一,是一門與實際聯(lián)系較密切的一個內容。
在自然科學和技術科學領域中,例如化學,生物學,自動控制,電子技術等等,都提出了大量的微分方程問題。
在實際教學過程中應注重實際應用例子或應用背景,使學生對所學微分方程內容有具體地,形象地認識,從而激發(fā)他們強大的學習興趣。
1.1生態(tài)系統(tǒng)中的弱肉強食問題。
在這里考慮兩個種群的系統(tǒng),一種以另一種為食,比如鯊魚(捕食者)與食用魚(被捕食者),這種系統(tǒng)稱為“被食者—捕食者”系統(tǒng)。
volterra提出:記食用魚數量為,鯊魚數量為,因為大海的資源很豐富,可以認為如果,則將以自然生長率增長,即。
但是鯊魚以食用魚為食,致使食用魚的增長率降低,設降低程度與鯊魚數量成正比,于是相對增長率為。
常數,反映了鯊魚掠取食用魚的能力。
如果沒有食用魚,鯊魚無法生存,設鯊魚的自然死亡率為,則。
食用魚為鯊魚提供了食物,致使鯊魚死亡率降低,即食用魚為鯊魚提供了增長的條件。
設增長率與食用魚的數量成正比,于是鯊魚的相對增長率為。
常數0,反映了食用魚對鯊魚的供養(yǎng)能力。
所以最終建立的模型為:
這就是一個非線性的微分方程。
1.2雪球融化問題。
有一個雪球,假設它是一個半徑為r的球體,融化時體積v的變化率與雪球的表面積成正比,比例常數為0,則可建立如下模型:
1.3冷卻(加熱)問題。
牛頓冷卻定律具體表述是,物體的溫度隨時間的變化率跟環(huán)境的的溫差成正比。
記t為物體的溫度,為周圍環(huán)境的溫度,則物體溫度隨時。
2結語。
文中通過舉生態(tài)系統(tǒng)中弱肉強食問題,雪球融化及物理學中冷卻定律問題為例給出了微分方程在實際中的應用。
在講解高等數學微分方程這一章內容時經常舉些應用例子,能引起學生對微分方程的學習興趣,能使學生易于理解和掌握其基本概念及理論,達到事半功倍之效。
參考文獻。
[1]王嘉謀,石林.高等數學[m].北京:高等教育出版社,.
[2]王高雄,周之銘,朱思銘,等.常微分方程[m].2版.北京:科學出版社,.
[3]齊歡.數學建模方法[m].武漢:華中理工大學出版社,.
微分方程在數學建模中的應用【2】。
在許多實際問題中,當直接導出變量之間的函數關系較為困難,但導出包含未知函數的導數或微分的關系式較為容易時,可用建立微分方程模型的方法來研究該問題。
本文主要從交通紅綠燈模型和市場價格模型來論述微分方程在數學建模中的應用。
數學建模是數學方法解決各種實際問題的橋梁,隨著計算機技術的快速發(fā)展,數學的應用日益廣泛,數學建模的作用越來越重要,而且已經應用到各個領域。
用微分方程解決實際問題的關鍵是建立實際問題的數學模型——微分方程。
這首先要根據實際問題所提供的條件,選擇確定模型的變量,再根據有關學科,如物理、化學、生物、經濟等學科理論,找到這些變量遵循的規(guī)律,用微分方程的形式將其表示出來。
一、交通紅綠燈模型。
在十字路口的交通管理中,亮紅燈之前,要亮一段時間的黃燈,這是為了讓那些正行駛在十字路口的人注意,告訴他們紅燈即將亮起,假如你能夠停住,應當馬上剎車,以免沖紅燈違反交通規(guī)則。
這里我們不妨想一下:黃燈應當亮多久才比較合適?
停車線的確定,要確定停車線位置應當考慮到兩點:一是駕駛員看到黃燈并決定停車需要一段反應時間,在這段時間里,駕駛員尚未剎車。
二是駕駛員剎車后,車還需要繼續(xù)行駛一段距離,我們把這段距離稱為剎車距離。
駕駛員的反應時間(實際為平均反應時間)較易得到,可以根據經驗或者統(tǒng)計數據求出,交通部門對駕駛員也有一個統(tǒng)一的要求(在考駕照時都必須經過測試)。
例如,不失一般性,我們可以假設它為1秒,(反應時間的長短并不影響到計算方法)。
停車時,駕駛員踩動剎車踏板產生一種摩擦力,該摩擦力使汽車減速并最終停下。
設汽車質量為m,剎車摩擦系數為f,x(t)為剎車后在t時刻內行駛的距離,更久剎車規(guī)律,可假設剎車制動力為fmg(g為重力加速度)。
由牛頓第二定律,剎車過程中車輛應滿足下列運動方程:
md2xdt2=-fmg。
x(0)=0,dxdtt=0=v0。
(1)。
在方程(1)兩邊同除以并積分一次,并注意到當t=0時dxdt=v0,得到。
dxdt=-fgt+v0。
(2)。
剎車時間t2可這樣求得,當t=t2時,dxdt=0,故。
t2=v0fg。
將(2)再積分一次,得。
x(t)=-12fgt2+v0t。
將t2=v0fg代入,即可求得停車距離為。
x(t2)=1v202fg。
據此可知,停車線到路口的距離應為:
l=v0t1+12v20fg。
等式右邊的第一項為反應時間里駛過的路程,第二項為剎車距離。
黃燈時間的計算,現在我們可以來確定黃燈究竟應當亮多久了。
在黃燈轉為紅燈的這段時間里,應當能保證已經過線的車輛順利地通過街口,記街道的寬度為d(d很容易測得),平均車身長度為,這些車輛應通過的路程最長可達到l+d+l,因而,為保證過線的車輛全部順利通過,黃燈持續(xù)時間至少應當為:
t=l+d+lv0。
二、市場價格調整模型。
對于純粹的市場經濟來說,商品市場價格取決于市場供需之間的關系,市場價格能促使商品的供給與需求相等這樣的價格稱為(靜態(tài))均衡價格。
也就是說,如果不考慮商品價格形成的動態(tài)過程,那么商品的市場價格應能保證市場的供需平衡,但是,實際的市場價格不會恰好等于均衡價格,而且價格也不會是靜態(tài)的,應是隨時間不斷變化的動態(tài)過程。
dpdt=k[d(p)-](k0)。
(3)。
在d(p)和確定情況下,可解出價格與t的函數關系,這就是商品的價格調整模型。
某種商品的價格變化主要服從市場供求關系。
函數的應用教案篇十三
讓學生經歷根據不同的條件,利用待定系數法求二次函數的函數關系式。
:各種隱含條件的挖掘。
:引導發(fā)現法。
(一)診斷補償,情景引入:
(先讓學生復習,然后提問,并做進一步診斷)。
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質:
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設它的函數關系式是。此時只需拋物線上的一個點就能求出拋物線的函數關系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數關系式是。
例2、根據下列條件,分別求出對應的二次函數的關系式。
(1)已知二次函數的圖象經過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據二次函數的圖象經過三個已知點,可設函數關系式為的形式;(2)根據已知拋物線的頂點坐標,可設函數關系式為,再根據拋物線與y軸的交點可求出a的值;(3)根據拋物線與x軸的兩個交點的坐標,可設函數關系式為,再根據拋物線與y軸的交點可求出a的值;(4)根據已知拋物線的頂點坐標(3,-2),可設函數關系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設二此函數的關系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設二此函數的關系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據前面的分析,本題已轉化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據下列條件,分別求出對應的二次函數的關系式。
(1)已知二次函數的圖象經過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經過點(1,2)。
2、二次函數圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經過點(2,10),求此二次函數的關系式。
(五)交流評價,深化知識:
確定二此函數的關系式的一般方法是待定系數法,在選擇把二次函數的關系式設成什么形式時,可根據題目中的條件靈活選擇,以簡單為原則。二次函數的關系式可設如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數的圖象經過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數關系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
函數的應用教案篇十四
近期,我參加了一次關于函數應用的實訓課程,通過實際操作和理論學習,我深刻認識到了函數在編程中的重要性和應用價值,并獲得了許多寶貴的經驗和心得體會。
首先,函數的靈活運用使編程變得高效而優(yōu)雅。在實訓中,我們學習了不同類型的函數,并學會了如何根據需求合理運用它們。無論是封裝復雜操作的大型函數,還是根據特定規(guī)則進行數據處理的小型函數,它們極大地提高了我們的編程效率。通過函數的模塊化設計,我們能夠更加容易地調試代碼和進行功能擴展。在實踐中,我意識到,一個函數的設計應該盡量短小且單一,這樣不僅使其易讀易懂,也方便后續(xù)的維護與修改。
其次,函數應用的巧妙運用使程序更加具有可復用性。在實際的編程過程中,我們經常會遇到相似的問題,而函數的應用能夠避免重復的代碼編寫。通過合理抽象和封裝,我們可以將一段常用的功能代碼寫成一個函數,并在不同的場景下重復利用。在實訓中,我嘗試過將一些公共的功能模塊寫成通用函數,比如文件讀寫、網絡請求等,這樣可以節(jié)約不少時間,并且在后續(xù)的開發(fā)過程中也會變得更加便捷。
再次,函數應用培養(yǎng)了我們的思維能力和邏輯思維。在實訓課程中,我們需要根據需求,設計函數的輸入參數和輸出結果,根據不同的場景用不同的函數組合和調用。這就要求我們具備良好的邏輯思維能力和編程思維。編寫一個函數之前,我會先進行需求分析和邏輯架構的設計,這樣可以在一開始就避免一些不必要的麻煩。在實踐過程中,我意識到函數的好壞不僅取決于代碼的質量,還要考慮其運行效率和可擴展性。因此,我們在編程過程中需要注重思考和反思,以提高自己的編程能力。
最后,實訓過程中的合作與交流讓我領悟到了團隊合作的重要性。在實訓中,我們往往需要與其他同學合作完成一個完整的項目。而函數的應用能夠使項目更好地分工和協(xié)作。每個人負責相應的函數編寫,然后將其整合到一起,最終形成一個完整的項目。通過與他人的合作,我意識到程序員不是一個人孤軍奮戰(zhàn)的,而是需要和他人緊密合作的。在合作過程中,我們不僅可以互相學習和借鑒,還可以共同解決問題,并培養(yǎng)自己的團隊意識和溝通能力。
總結起來,函數應用實訓給了我寶貴的經驗和收獲。我從中深刻體會到了函數在編程中的重要性和應用價值,學會了靈活運用函數提高效率,培養(yǎng)了思維能力和邏輯思維,并懂得了團隊合作的重要性。通過這次實訓,我對函數的應用有了更深入的理解,并且在今后的編程實踐中,我將更加注重函數的合理設計和運用,以提高自己的編程水平和工作效率。
函數的應用教案篇十五
2、結合一次函數的圖像,掌握一次函數及其圖像的簡單性質。
過程與方法目標
1、經歷對一次函數性質的探索過程,增強學生數形結合的意識,培養(yǎng)學生識圖能力;
2、經歷對一次函數性質的探索過程,培養(yǎng)學生的觀察力、語言表達能力。
情感與態(tài)度目標
經歷一次函數及性質的探索過程,在合作與交流活動中發(fā)展學生的合作意識和能力。
本節(jié)通過對一次函數圖像的研究,對一次函數的單調性作了探討;對一次函數的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。
教學重點:結合一次函數的圖像,研究一次函數的簡單性質。
教學難點:一次函數性質的應用。
學生已經對一次函數的圖像有了一定的認識,在此基礎上,結合一次函數的圖像,通過問題的設計,引導學生探討一次函數的簡單性質,學生是較容易掌握的。
(一)做一做
在同一直角坐標系內分別作出一次函數y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數中,隨著x值的增大,y的值分別如何變化?
學生:有的在增大,有的在減小。
學生討論:y=2x+6和y=5x這兩個一次函數在增大;y=2x1和y=x+6在減?。挥绊戇@個變化的是x前面的系數k的符號:當k為正數時,y隨x的增大而增大;當k為負數時,y隨x的增大而減小。
師:當k0時,一次函數的圖象經過哪些象限?
當k0時,一次函數的圖象經過哪些象限?
函數的應用教案篇十六
學生能理解函數的概念,掌握常見的函數(sum,average,max,min等)。學生能夠根據所學函數知識判別計算得到的數據的正確性。
學生能夠使用函數(sum,average,max,min等)計算所給數據的和、平均值、最大最小值。學生通過自主探究學會新函數的使用。并且能夠根據實際工作生活中的需求選擇和正確使用函數,并能夠對計算的數據結果合理利用。
學生自主學習意識得到提高,在任務的完成過程中體會到成功的喜悅,并在具體的任務中感受環(huán)境保護的重要性及艱巨性。
sum函數的插入和使用。
函數的格式、函數參數正確使用以及修改。
任務驅動,觀察分析,通過實踐掌握,發(fā)現問題,協(xié)作學習。
excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。
1、展示投影片,創(chuàng)設數據處理環(huán)境。
2、以環(huán)境污染中的固體廢棄物數據為素材來進行教學。
3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數量狀況》工作表,要求根據已學知識計算各省各類廢棄物的總量。
函數名表示函數的計算關系。
=sum(起始單元格:結束單元格)。
4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?
注意參數的正確性。
1、簡單描述函數:函數是一些預定義了的計算關系,可將參數按特定的順序或結構進行計算。
在公式中計算關系是我們自己定義的,而函數給我們提供了大量的已定義好的計算關系,我們只需要根據不同的處理目的去選擇、提供參數去套用就可以了。
2、使用函數sum計算各廢棄物的全國總計。(強調計算范圍的正確性)。
3、通過介紹average函數學習函數的輸入。
函數的輸入與一般的公式沒有什么不同,用戶可以直接在“=”后鍵入函數及其參數。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數,統(tǒng)計出該表格中比去年同期增長%的平均數。
(參數的格式要嚴格;符號要用英文符號,以避免出錯。)。
有的同學開始瞪眼睛了,不大好用吧?
因為這種方法要求我們對函數的使用比較熟悉,如果我們對需要使用的函數名稱、參數格式等不是非常有把握,則建議使用“插入函數”對話框來輸入函數。
用相同任務演示操作過程。
4、引出max和min函數。
探索任務:利用提示應用max和min函數計算各廢棄物的最大和最小值。
5、引出countif函數。
探索任務:利用countif函數按要求計算并體會函數的不同格式。
1、教師小結比較。
2、根據得到的數據引發(fā)出怎樣的思考。
四、???????。
1、廢棄物數量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。
2、研究任務:運用表格數據,計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數,并對應計算各省處理的廢棄物量和剩余的廢棄物量及全國總數。
1、分析存在問題,表揚練習完成比較好的同學,強調鼓勵大家探究學習的精神。
2、把結果進行記錄,上繳或在課后進行分析比較,寫出一小論文。
1、讓學生體會到固體廢棄物數量的巨大。
2、處理真實數據引發(fā)學生興趣。
通過比較得到兩種方法的優(yōu)劣。
學生的計算結果在現實中的運用,真正體現信息技術課是收集,分析數據,的工具。
通過類比學習,提高學生的自學能力和分析問題能力。
實際數據,引發(fā)思考。
學生應用課堂所學知識。
學生帶著任務離開教室,課程之間整合,學生環(huán)境保護知識得到加強。
觀看投影。
學生用公式法和自動求和兩種方法計算各省廢棄物總量。
回答可用自動求和。
動手操作。
計算各類廢氣物的全國各省平均。
練習。
練習。
用自己計算所得數據對現實進行分析。
應用所學知識。
練習并記錄數據。
函數的應用教案篇十七
1.使學生掌握指數函數的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.
(3)能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象.
2.通過對指數函數的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發(fā)學生學習數學的興趣.使學生善于從現實生活中數學的發(fā)現問題,解決問題.
教材分析。
(1)指數函數是在學生系統(tǒng)學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.
(2)本節(jié)的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數在和時,函數值變化情況的區(qū)分.
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議。
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數函數.
(2)對底數的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
教學重點和難點。
重點是理解指數函數的定義,把握圖象和性質.
難點是認識底數對函數值影響的認識.
教學用具。
投影儀。
教學方法。
啟發(fā)討論研究式。
教學過程。
一.引入新課。
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數-------指數函數.
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區(qū)別,從形式上冪的形式,且自變量均在指數的位置上,那么就把形如這樣的函數稱為指數函數.
1.定義:形如的函數稱為指數函數.(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數范圍內相應的函數值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.
教師引導學生回顧指數范圍,發(fā)現指數可以取有理數.此時教師可指出,其實當指數為無理數時,也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以指數函數的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
(3)關于是否是指數函數的判斷(板書)。
剛才分別認識了指數函數中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是指數函數,請看下面函數是否是指數函數.
(1),(2),(3)。
(4),(5).
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是指數函數,其中(3)可以寫成,也是指數圖象.
最后提醒學生指數函數的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發(fā)現,教師準備明確性質,再由學生回答.
函數。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數也不是偶函數。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數圖象畫圖的依據.(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數不能太少.
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據.連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質.
3.性質.
(1)無論為何值,指數函數都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數,時,為減函數.
(3)時,,時,.
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同.再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數函數,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數,且。
(板書)。
教師最后再強調過程必須寫清三句話:。
(1)構造函數并指明函數的單調區(qū)間及相應的單調性.
(2)自變量的大小比較.
(3)函數值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學生觀察例2中各組數與例1中的區(qū)別,再思考解決的方法.引導學生發(fā)現對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生指數函數的函數值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數的方法:數的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數1或0.
三.鞏固練習。
練習:比較下列各組數的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結。
3.簡單應用。

