最新初二數(shù)學(xué)教案勾股定理(專業(yè)15篇)

字號:

    教案是教師進行授課和教學(xué)管理的重要依據(jù),也是學(xué)生學(xué)習(xí)的重要參考。要編寫一份較為完美的教案,首先要清楚教學(xué)的目標(biāo)和要求。下面是一些設(shè)計精良的教案,能夠提供教學(xué)活動和案例,為您的備課提供參考。
    初二數(shù)學(xué)教案勾股定理篇一
    學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過程與方法。
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價值觀。
    (1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性。
    教學(xué)重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學(xué)難點:
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學(xué)準備:
    多媒體。
    教學(xué)過程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
    學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
    教材23頁。
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)。
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
    作業(yè):1.課本習(xí)題1.5第1,2,3題.。
    要求:a組(學(xué)優(yōu)生):1、2、3。
    b組(中等生):1、2。
    c組(后三分之一生):1。
    初二數(shù)學(xué)教案勾股定理篇二
    勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
    本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。
    一、知識與技能。
    1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
    2、應(yīng)用勾股定理解決簡單的實際問題。
    3學(xué)會簡單的合情推理與數(shù)學(xué)說理。
    二、過程與方法。
    引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。
    三、情感與態(tài)度目標(biāo)。
    通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
    四、重點與難點。
    一、創(chuàng)設(shè)情景,揭示課題。
    1、教師展示圖片并介紹第一情景。
    以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”
    2、教師展示圖片并介紹第二情景。
    畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問題。
    1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
    3、你能得到什么結(jié)論嗎?
    三、得出命題。
    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
    第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
    因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
    這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
    五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
    勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
    六、歸納總結(jié)。
    2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
    七、討論交流。
    讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
    我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
    初二數(shù)學(xué)教案勾股定理篇三
    本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
    初二數(shù)學(xué)教案勾股定理篇四
    從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。
    從學(xué)生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
    根據(jù)數(shù)學(xué)新課程標(biāo)準以及八年級學(xué)生的認知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
    (二)重點與難點。
    為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。
    初二數(shù)學(xué)教案勾股定理篇五
    1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
    2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推理能力。
    3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
    初二數(shù)學(xué)教案勾股定理篇六
    理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
    【過程與方法】。
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    【情感、態(tài)度與價值觀】。
    體會事物之間的聯(lián)系,感受幾何的魅力。
    【重點】勾股定理的逆定理及其證明。
    【難點】勾股定理的逆定理的證明。
    (一)導(dǎo)入新課。
    復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
    提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
    (二)講解新知。
    請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確。
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    初二數(shù)學(xué)教案勾股定理篇七
    教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進行驗證,感悟其中所蘊涵的思想方法。
    學(xué)法指導(dǎo)為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。
    初二數(shù)學(xué)教案勾股定理篇八
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ).
    二、教學(xué)任務(wù)分析。
    本節(jié)是義務(wù)教育課程標(biāo)準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題.當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.
    本節(jié)課的教學(xué)目標(biāo)是:
    1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
    2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
    3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
    四、教法學(xué)法。
    1.教學(xué)方法。
    引導(dǎo)—探究—歸納。
    本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進行引導(dǎo):
    (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;。
    (2)從學(xué)生活動出發(fā),順勢教學(xué)過程;。
    (3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
    2.課前準備。
    教具:教材、電腦、多媒體課件.
    學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
    五、教學(xué)過程分析。
    本節(jié)課設(shè)計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
    初二數(shù)學(xué)教案勾股定理篇九
    知識與技能:
    1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
    2、了解勾股定理的內(nèi)容。
    3、能利用已知兩邊求直角三角形另一邊的長。
    過程與方法:
    1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維。
    2、在探索活動中,學(xué)會與人合作,并能與他人交流思維的過程和探索的結(jié)果。
    情感與態(tài)度:
    1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛祖國悠久文化的情感,激勵學(xué)生奮發(fā)學(xué)習(xí)。
    2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
    二教學(xué)重、難點。
    重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。
    三、學(xué)情分析。
    學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。
    四、教學(xué)策略。
    本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問題,鼓勵學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程。
    五、教學(xué)過程。
    教學(xué)環(huán)節(jié)。
    教學(xué)內(nèi)容。
    活動和意圖。
    創(chuàng)設(shè)情境導(dǎo)入新課。
    以“航天員在太空中遇到外星人時,用什么語言進行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。
    [設(shè)計意圖]激發(fā)學(xué)生對勾股定理的興趣,從而較自然的引入課題。
    新知探究。
    畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
    (1)同學(xué)們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
    (2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
    通過講述故事來進一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺中進入學(xué)習(xí)的最佳狀態(tài)。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內(nèi)容:
    (1)想一想,怎樣利用小方格計算正方形a、b、c面積?
    (2)怎樣求出正方形面積c?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
    引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
    問題是思維的起點”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
    探究交流歸納。
    拼圖驗證加深理解。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內(nèi)容:
    (1)想一想,怎樣利用小方格計算正方形p、q、r的面積?
    (2)怎樣求出正方形面積r?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
    由以上兩問題可得猜想:
    直角三角形兩直角邊的平方和等于斜邊的平方。
    而猜想要通過證明才能成為定理。
    活動探究:
    (1)讓學(xué)生利用學(xué)具進行拼圖。
    (2)多媒體課件展示拼圖過程及證明過程理解數(shù)學(xué)的嚴密性。
    從特殊的等腰直角三角形過渡到一般的直角三角形。
    滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。
    通過這些實際操作,學(xué)生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。
    利用分組討論,加強合作意識。
    1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
    2、加強數(shù)學(xué)嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合。
    應(yīng)用新知解決問題。
    在應(yīng)用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
    把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認識事物,探索問題,解決實際的能力。
    回顧小結(jié)整體感知。
    在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學(xué)生切身感受到其實數(shù)學(xué)與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。
    學(xué)生通過對學(xué)習(xí)過程的小結(jié),領(lǐng)會其中的數(shù)學(xué)思想方法;通過梳理所學(xué)內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。。
    布置作業(yè)鞏固加深。
    必做題:
    1.完成課本習(xí)題1,2,3題。
    選做題:
    針對學(xué)生認知的差異設(shè)計了有層次的作業(yè)題,既使學(xué)生鞏固知識,形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
    初二數(shù)學(xué)教案勾股定理篇十
    教學(xué)目標(biāo):
    1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
    教學(xué)重點:
    引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學(xué)難點:
    課前準備:
    多媒體ppt,相關(guān)圖片。
    教學(xué)過程:
    (一)情境導(dǎo)入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。
    已知一直角三角形的兩邊,如何求第三邊?
    學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。
    (二)學(xué)習(xí)新課。
    初二數(shù)學(xué)教案勾股定理篇十一
    師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.。
    師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
    生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形.。
    生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.。
    二、講授新課。
    是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
    活動3下面的三組數(shù)分別是一個三角形的三邊長?
    初二數(shù)學(xué)教案勾股定理篇十二
    例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
    (首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
    解法1:(4+2)÷(3-1)=3、
    答:某數(shù)為3、
    (其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
    解法2:設(shè)某數(shù)為x,則有3x-2=x+4、
    解之,得x=3、
    答:某數(shù)為3、
    師生共同分析:
    1、本題中給出的已知量和未知量各是什么?
    2、已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)
    上述分析過程可列表如下:
    解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得
    x-15%x=42 500,
    所以 x=50 000、
    答:原來有 50 000千克面粉、
    (還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
    教師應(yīng)指出:
    (2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿、
    依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
    (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系、(這是關(guān)鍵一步);
    (4)求出所列方程的解;
    (仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥、解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)
    解:設(shè)第一小組有x個學(xué)生,依題意,得
    3x+9=5x-(5-4),
    解這個方程: 2x=10,
    所以 x=5、
    其蘋果數(shù)為 3× 5+9=24、
    答:第一小組有5名同學(xué),共摘蘋果24個、
    學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程、
    (設(shè)第一小組共摘了x個蘋果,則依題意,得 )
    3、某工廠女工人占全廠總?cè)藬?shù)的 35%,男工比女工多 252人,求全廠總?cè)藬?shù)、
    首先,讓學(xué)生回答如下問題:
    1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
    2、列一元一次方程解應(yīng)用題的方法和步驟是什么?
    3、在運用上述方法和步驟時應(yīng)注意什么?
    依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
    (2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶、
    1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
    2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
    初二數(shù)學(xué)教案勾股定理篇十三
    1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
    2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
    3.逐步掌握說理的基本方法。
    1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
    2.鼓勵學(xué)生用多種方法進行說理。
    1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
    2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。
    教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準備,由學(xué)生自我操作。也可由教師演示。
    教學(xué)重點:平行四邊形的判別方法。
    教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。
    初二學(xué)生對平面圖形的認識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
    一、創(chuàng)設(shè)情境,引入新課
    師:請同學(xué)們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
    學(xué)生活動:學(xué)生按小組進行探索。
    初二數(shù)學(xué)教案勾股定理篇十四
    教學(xué)目標(biāo):
    1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
    教學(xué)重點:
    引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學(xué)難點:
    課前準備:
    多媒體ppt,相關(guān)圖片。
    教學(xué)過程:
    (一)情境導(dǎo)入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。
    初二數(shù)學(xué)教案勾股定理篇十五
    勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關(guān)系的證明問題。在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進行求解。