最新小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐拇笕?3篇)

字號(hào):

    總結(jié)是對(duì)自己思考的結(jié)果進(jìn)行整理和表達(dá),是思維的延伸和發(fā)展??偨Y(jié)是一個(gè)反思和思考的過(guò)程,我們要學(xué)會(huì)自己對(duì)自己負(fù)責(zé),不斷完善和提高自己。以下是一些自然景觀的攝影作品,讓我們一起欣賞大自然的美麗和魅力。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    不論是皮亞杰還是奧蘇伯爾在概念學(xué)習(xí)理論方面都認(rèn)為概念教學(xué)的起步是在已有的認(rèn)知結(jié)論的基礎(chǔ)上進(jìn)行的。因此,教學(xué)新概念前,如果能對(duì)學(xué)生認(rèn)知結(jié)構(gòu)中原有的概念適當(dāng)作一些結(jié)構(gòu)上的變化,引入新概念,則有利于促進(jìn)新概念的形成。
    2.類(lèi)比法。
    抓住新舊知識(shí)的本質(zhì)聯(lián)系,有目的、有計(jì)劃地讓學(xué)生將有關(guān)新舊知識(shí)進(jìn)行類(lèi)比,就能很快地得出新舊知識(shí)在某些屬性上的相同(相似)的結(jié)構(gòu)而引進(jìn)概念。
    3.喻理法。
    為正確理解某一概念,以實(shí)例或生活中的趣事、典故作比喻,引出新概念,謂之喻理導(dǎo)入法。
    如,學(xué)“用字母表示數(shù)”時(shí),先出示的兩句話:“阿q和小d在看《w的悲劇》?!?、“我在a市s街上遇見(jiàn)一位朋友?!眴?wèn):這兩個(gè)句子中的字母各表示什么?再出示撲克牌“紅桃a”,要求學(xué)生回答這里的a則表示什么?最后出示等式“0.5×x=3.5”,擦去等號(hào)及3.5,變成“0.5×x”后,問(wèn)兩道式子里的x各表示什么?根據(jù)學(xué)生的回答,教師結(jié)合板書(shū)進(jìn)行小結(jié):字母可以表示人名、地名和數(shù),一個(gè)字母可以表示一個(gè)數(shù),也可以表示任何數(shù)。
    這樣,枯燥的概念變得生動(dòng)、有趣,同學(xué)們?cè)谟芍缘南矏傊羞M(jìn)入了“字母表示數(shù)”概念的學(xué)習(xí)。
    4.置疑法。
    通過(guò)揭示數(shù)學(xué)自身的矛盾來(lái)引入新概念,以突出引進(jìn)新概念的必要性和合理性,調(diào)動(dòng)了解新概念的強(qiáng)烈動(dòng)機(jī)和愿望。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    楊勝。
    畢業(yè)兩年,每學(xué)期都帶兩個(gè)班的數(shù)學(xué)課,一直以來(lái),我就覺(jué)得數(shù)學(xué)有幾大難題,其中就有對(duì)于概念的教學(xué),像老師所提到了現(xiàn)象,在教學(xué)時(shí),學(xué)生對(duì)于概念好像識(shí)記了,掌握了,甚至?xí)沉?,可是到需要運(yùn)用這些概念時(shí),學(xué)生往往不知所措,完全不會(huì)運(yùn)用。
    而數(shù)學(xué)概念是數(shù)學(xué)思維的細(xì)胞,是形成數(shù)學(xué)知識(shí)體系的基本要素,是數(shù)學(xué)基礎(chǔ)知識(shí)的核心,是孩子們學(xué)習(xí)數(shù)學(xué)的堅(jiān)固基石。對(duì)于小學(xué)的孩子來(lái)說(shuō),正確地理解、掌握數(shù)學(xué)概念更是孩子學(xué)好數(shù)學(xué)的前提和保障,有利于學(xué)生在后來(lái)的學(xué)習(xí)中形成完整的、清晰的、系統(tǒng)的數(shù)學(xué)知識(shí)體系。
    下面我就以我所了解的我們班的情況淺談幾點(diǎn):
    第一、存在問(wèn)題。
    1、學(xué)生方面:對(duì)于小學(xué)的孩子來(lái)說(shuō),其抽象思維能力較弱,對(duì)于數(shù)學(xué)語(yǔ)言的理解和表達(dá)有一定的難度,從而使學(xué)生出現(xiàn)死記硬背牢記了數(shù)學(xué)概念,確完全不知該如何應(yīng)用。
    2、教師方面:由于我剛剛畢業(yè),本身對(duì)于小學(xué)數(shù)學(xué)概念就沒(méi)有一個(gè)系統(tǒng)的、清晰的認(rèn)識(shí),只是跟著教材、教參走,結(jié)果在某些問(wèn)題上自己也拿捏不準(zhǔn),自然會(huì)使得孩子們數(shù)學(xué)概念越來(lái)越不確定,越來(lái)越糊涂。
    3、教學(xué)設(shè)備方面:由于學(xué)校處于偏遠(yuǎn)地區(qū),教學(xué)資源特別薄弱,并缺少教學(xué)最需要的多媒體,也沒(méi)有什么教具給我們老師提供,同時(shí)由于課堂教學(xué)在空間、時(shí)間上的限制,使得概念教學(xué)顯得枯燥、乏味,教學(xué)也往往只浮于表面。
    4、來(lái)自概念本身的:數(shù)學(xué)概念是客觀現(xiàn)實(shí)中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中的反映,具有抽象概括性;數(shù)學(xué)概念又是以語(yǔ)言和符號(hào)為中介的,這和我們對(duì)生活的理解是不同的,造成了生活概念和數(shù)學(xué)概念的混淆。比如大部分孩子對(duì)于“角”就僅停留在角的頂點(diǎn)上,并需要依托具體的實(shí)物才能進(jìn)行描述,而數(shù)學(xué)中的“角”則是“角是有公共端點(diǎn)的兩條射線所組成的幾何圖形”,這對(duì)于孩子們來(lái)說(shuō)是費(fèi)勁的。
    第二、解決方法。
    怎樣讓這些枯燥、抽象的概念變得生動(dòng)有趣,使課堂教學(xué)更有效,減輕孩子們的學(xué)習(xí)負(fù)擔(dān),讓概念在孩子們心中得到完美內(nèi)化呢?或許我們可以從以下幾方面入手。
    1、概念的引入講述宜直觀形象。
    針對(duì)小學(xué)孩子的抽象思維能力較弱,對(duì)數(shù)學(xué)語(yǔ)言描述的概念理解較為困難,我們?cè)诮虒W(xué)中應(yīng)該多用形象的描述,創(chuàng)設(shè)有趣的問(wèn)題情境,打些合理的比方等,努力讓孩子們理解所學(xué)概念,可以采用以下一些方式來(lái)進(jìn)行教學(xué)??鋸埖氖謩?shì),豐富的肢體語(yǔ)言,理解運(yùn)算所蘊(yùn)含的意義,區(qū)分概念的差別。
    2、概念的練習(xí)宜生動(dòng)有趣。
    小學(xué)孩子從心理狀態(tài)上來(lái)說(shuō)較難適應(yīng)學(xué)校的教學(xué)生活,在學(xué)習(xí)中總是會(huì)感到疲勞乏味,碰到相對(duì)枯燥的概念教學(xué)時(shí)這種疲憊更是由內(nèi)而外。德國(guó)教育家福祿培爾在其代表作《幼兒園》中認(rèn)為,游戲活動(dòng)是兒童活動(dòng)的特點(diǎn),游戲和語(yǔ)言是兒童生活的組成因素,通過(guò)各種游戲,組織各種有效的活動(dòng),兒童的內(nèi)心活動(dòng)和內(nèi)心生活將會(huì)變?yōu)楠?dú)立的、自主的外部自我表現(xiàn),從而獲得愉快、自由和滿(mǎn)足。將游戲用于教學(xué),將能使兒童由被動(dòng)變?yōu)橹鲃?dòng),積極地汲取知識(shí)。
    游戲、活動(dòng)是孩子們的最?lèi)?ài),讓他們?cè)谟螒蚧顒?dòng)中獲取知識(shí),這樣的知識(shí)必定是美好而快樂(lè)的。有了這樣的感覺(jué),孩子們學(xué)習(xí)數(shù)學(xué)的興趣一定是濃厚的,我們?cè)僮寯?shù)學(xué)的魅力適度展示,讓他們感覺(jué)到學(xué)習(xí)數(shù)學(xué)不但是一件輕松、快樂(lè)的事更是一件有意義的事。我想他們繼續(xù)進(jìn)行探索、學(xué)習(xí)新知的動(dòng)力就來(lái)自于此了。
    四、概念的拓展宜實(shí)在有效。
    美國(guó)實(shí)用主義哲學(xué)家、教育家杜威從他的“活動(dòng)”理論出發(fā),強(qiáng)調(diào)兒童“從做中學(xué)”“從經(jīng)驗(yàn)中學(xué)”,讓孩子們?cè)谥鲃?dòng)作業(yè)中運(yùn)用思想、產(chǎn)生問(wèn)題、促進(jìn)思維和取得經(jīng)驗(yàn)。確實(shí),在一些親力親為的數(shù)學(xué)小實(shí)驗(yàn)中,孩子們表現(xiàn)出了一種自然的主動(dòng)的學(xué)習(xí)情緒。他們以充沛的精力在這些小實(shí)驗(yàn)、小研究中主動(dòng)地討論所發(fā)生的事,想出種種方案去解決問(wèn)題,使智力獲得了充分的應(yīng)用和發(fā)展。在數(shù)學(xué)概念的教學(xué)中,設(shè)計(jì)一些孩子能力所能致的小研究活動(dòng),可以讓孩子對(duì)這些抽象的數(shù)學(xué)概念得到進(jìn)一步體驗(yàn)、內(nèi)化,得到課堂教學(xué)所不能抵達(dá)的效果。
    孩子對(duì)于較大的單位比如說(shuō)“千米”“噸”等,由于其經(jīng)驗(yàn)的限制往往沒(méi)有什么概念。只是,教師這樣說(shuō)了,他也便這樣記了,對(duì)他而言也僅僅只是一個(gè)簡(jiǎn)單的字符而已。僅僅通過(guò)課堂教學(xué),那么“千米”在孩子們的印象中便是“1千米=1000米”是一個(gè)不能用手丈量的長(zhǎng)度;“噸”在孩子們的印象中便是“1噸=1000千克”是一個(gè)拿不動(dòng)的質(zhì)量。至于“1千米”到底有多長(zhǎng),“1噸”到底有多重?孩子們心中并無(wú)底,才使得經(jīng)常會(huì)出現(xiàn):一幢居民樓高約20(千米);一節(jié)火車(chē)車(chē)廂載重量為60(千克)這樣的笑話。如果我們能讓孩子們來(lái)進(jìn)行切身的體驗(yàn)再附以一些小實(shí)驗(yàn),這些問(wèn)題便能迎刃而解了。
    概念是枯燥的、乏味的,但卻是重要的。對(duì)于第一學(xué)段的孩子們我們不能假定他們都非常清楚學(xué)習(xí)數(shù)學(xué)概念的重要性,指望他們能投入足夠的時(shí)間和精力去學(xué)習(xí)數(shù)學(xué)概念,也不能單純地依賴(lài)教師或家長(zhǎng)的“權(quán)威”去迫使孩子們這樣做。那么就需要我們積極地引領(lǐng)他們,使之學(xué)得輕松,學(xué)得扎實(shí),讓他們體會(huì)到數(shù)學(xué)所散發(fā)出的無(wú)窮魅力,讓概念深入心中,為數(shù)學(xué)學(xué)習(xí)服務(wù)。
    我也只是一個(gè)剛剛踏上教師崗位的教師,對(duì)于班級(jí)管理存在的問(wèn)題,對(duì)于教學(xué)當(dāng)中存在的問(wèn)題,太多太多了,希望各位老師能多多指教,在下一定虛心請(qǐng)教。
    2014年10月14日。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    1.有效的引入是概念形成的基礎(chǔ)。
    在我這幾年的小學(xué)數(shù)學(xué)教學(xué)中,我感覺(jué)“利用學(xué)生身邊熟悉的生活例子”或“合適的情境”進(jìn)行引入,能夠讓學(xué)生構(gòu)建抽象的概念。我以《體積與容積》一課來(lái)說(shuō)說(shuō),體積的定義:物體所占空間的大小。如果我們不結(jié)合生活實(shí)際,他們是很難理解這一概念的。
    我是從烏鴉喝水的故事激起學(xué)生的興趣,然后通過(guò)設(shè)置問(wèn)題“烏鴉為什么能夠喝到瓶中的水?”引出“石頭占了水的空間”;再問(wèn)學(xué)生“在我們身邊,哪些事物也占了空間?”通過(guò)學(xué)生思考意識(shí)“書(shū)包占了教室的空間”“鉛筆占了筆盒空間”等物體都是占了空間的。最后,我用一個(gè)魔方和可愛(ài)的小公仔進(jìn)行比較“誰(shuí)占空間比較大?”讓學(xué)生感受物體不僅僅占了空間,而且占的空間是有大有小的。
    通過(guò)這些生活中的實(shí)物,再加上鮮活的例子。學(xué)生就能夠通過(guò)表象特征去抽象出共同的特征,形成概念。學(xué)生認(rèn)知概念后,還要及時(shí)強(qiáng)化,讓他們?cè)谛〗M內(nèi)或同桌間,通過(guò)拿物體讓對(duì)方說(shuō)出”什么是它的體積”。
    2.切實(shí)地概括是概念形成的前提。
    (1)把一張紙平均分成4份,取其中的1份,用1/4表示;。
    (2)把4個(gè)蘋(píng)果平均分成4份,取其中的3份,用3/4表示;。
    (3)把全部蝴蝶平均分成5組,取其中的3組,用3/5表示;。
    我們把一張紙,4個(gè)蘋(píng)果,或5組蝴蝶都可以看成一個(gè)整體,即單位“1”。綜上所述,把一個(gè)整體平均分成若干份,取其中的一份或幾份,可以用分?jǐn)?shù)表示。
    數(shù)學(xué)概念是“抽象之上的抽象”,它強(qiáng)大的系統(tǒng)性需要我們?cè)诮虒W(xué)時(shí)結(jié)合孩子的年齡特征,采取合適的教學(xué)策略開(kāi)展教學(xué)活動(dòng),注重概念的現(xiàn)實(shí)意義和數(shù)學(xué)意義,從而提高教學(xué)質(zhì)量。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    針對(duì)第一學(xué)段孩子的抽象思維能力較弱,對(duì)數(shù)學(xué)語(yǔ)言描述的概念理解較為困難,我們?cè)诮虒W(xué)中應(yīng)該多用形象的描述,創(chuàng)設(shè)有趣的問(wèn)題情境,打些合理的比方等,努力讓孩子們理解所學(xué)概念,可以采用以下一些方式來(lái)進(jìn)行教學(xué)。
    夸張的手勢(shì),豐富的肢體語(yǔ)言,理解運(yùn)算所蘊(yùn)含的意義,區(qū)分概念的差別。在讓一年級(jí)的孩子認(rèn)識(shí)加減法的時(shí)候,我舉起雙手像音樂(lè)指揮家一樣,左邊一部分,右邊一部分,兩部分合在一起就用加號(hào),加號(hào)就是橫一部分,豎一部分組起來(lái)的,減法則反過(guò)來(lái)展示。孩子們看得有趣,記得形象,不但記住了加減號(hào)還明白了加減號(hào)的用法。在教二年級(jí)孩子感受厘米和米時(shí),我讓孩子們學(xué)會(huì)用手勢(shì)來(lái)表示1厘米和1米,使得孩子們?cè)诠烙?jì)具體物體的長(zhǎng)度時(shí)有據(jù)可依。形象生動(dòng)的講解,讓孩子們自然接受數(shù)學(xué)符號(hào)。教師的語(yǔ)言講解也要力求符合學(xué)生實(shí)際,特別是第一次描述時(shí),教師一定要斟字酌句地用孩子能理解的語(yǔ)言盡可能用數(shù)學(xué)語(yǔ)言簡(jiǎn)潔地描述。因?yàn)閷?duì)于第一次接觸新概念的孩子們來(lái)說(shuō),第一印象是最為深刻的。當(dāng)然在適當(dāng)?shù)臅r(shí)候我們也可以選擇讓孩子們根據(jù)自己的理解來(lái)說(shuō)一說(shuō)來(lái)試著對(duì)概念進(jìn)行解釋?zhuān)环矫嫱g人的解釋會(huì)讓孩子們概念的理解更為容易;另一方面也可以鍛煉一下孩子的數(shù)學(xué)語(yǔ)言表達(dá)能力。我們要記?。汉⒆觽兊臄?shù)學(xué)概念應(yīng)該是逐級(jí)遞進(jìn)、螺旋上升的(當(dāng)然要避免不必要的重復(fù)),以符合學(xué)生的數(shù)學(xué)認(rèn)知規(guī)律。很多時(shí)候第一學(xué)段的孩子對(duì)于部分?jǐn)?shù)學(xué)概念,只要能意會(huì)不必強(qiáng)求定要學(xué)會(huì)言傳。
    二、概念的學(xué)習(xí)宜多感官參與。
    心理學(xué)家皮亞杰指出:“活動(dòng)是認(rèn)識(shí)的基礎(chǔ),智慧從動(dòng)作開(kāi)始?!睍?shū)上的數(shù)學(xué)概念是平面的,現(xiàn)實(shí)卻是豐富多彩的,照本宣科,簡(jiǎn)單學(xué)習(xí)自然無(wú)法讓這些數(shù)學(xué)概念成為孩子們數(shù)學(xué)知識(shí)的堅(jiān)固基石。如果我們能夠讓孩子們的多種感官參與學(xué)習(xí),讓平面的書(shū)本知識(shí)變得多維、立體,讓孩子們的感覺(jué)和思維同步,相信能取得很好的教學(xué)效果。
    教學(xué)《認(rèn)識(shí)鐘表》時(shí),鑒于時(shí)間是一個(gè)非常抽象的概念,時(shí)間單位具有抽象性,時(shí)間進(jìn)率具有復(fù)雜性,所以在教學(xué)時(shí)我以學(xué)生已有生活經(jīng)驗(yàn)為基礎(chǔ),幫助學(xué)生通過(guò)具體感知,調(diào)動(dòng)孩子的多種感官參與學(xué)習(xí),在積累感性認(rèn)識(shí)的基礎(chǔ)上,建立時(shí)間觀念,安排了以下一些教學(xué)環(huán)節(jié)。1.動(dòng)耳聽(tīng)故事,調(diào)動(dòng)情感引入。講了一個(gè)發(fā)生在孩子們身邊的故事:豆豆由于不會(huì)看時(shí)間,結(jié)果錯(cuò)過(guò)了最?lèi)?ài)看的動(dòng)畫(huà)片。2.動(dòng)眼看鐘面,聽(tīng)介紹,初步了解鐘面,形成“時(shí)、分”概念。動(dòng)畫(huà)是孩子們的最?lèi)?ài),讓鐘表爺爺來(lái)介紹鐘面、時(shí)針、分針,生動(dòng)有趣的講解,讓孩子們的心立刻專(zhuān)注地進(jìn)行于課堂上。3.動(dòng)嘴說(shuō)時(shí)間,喜好分明。4.動(dòng)手撥時(shí)間。5.動(dòng)腦畫(huà)時(shí)間(此時(shí)在前幾項(xiàng)練習(xí)的基礎(chǔ)上增加了一定難度,如出示一些沒(méi)有數(shù)字的鐘面,只有12、3、6、9四點(diǎn)的鐘面,讓孩子們對(duì)時(shí)針、分針的位置進(jìn)行估計(jì))。
    通過(guò)這些活動(dòng),使孩子們口、手、耳、腦并用,自主地鉆入到數(shù)學(xué)知識(shí)的探究中去,讓時(shí)間從孩子們的生活中伶伶俐俐地變成數(shù)學(xué)知識(shí),形成了數(shù)學(xué)概念。同時(shí)也讓學(xué)生充分展示自己的思維過(guò)程,展現(xiàn)自己的認(rèn)識(shí)個(gè)性,從而使課堂始終處于一種輕松、活躍的狀態(tài)。
    另外,教師在教學(xué)的過(guò)程中也應(yīng)該對(duì)所教概念的知識(shí)生長(zhǎng)點(diǎn),今后的發(fā)展(落腳點(diǎn))有一個(gè)全面、系統(tǒng)的認(rèn)識(shí),才能使得所教概念不再那么單薄,變得厚重起來(lái)。孩子對(duì)概念的來(lái)龍去脈有一個(gè)更清晰完整的了解,理解起來(lái)也就變得輕松。
    三、概念的練習(xí)宜生動(dòng)有趣。
    第一學(xué)段初期的孩子從心理狀態(tài)上來(lái)說(shuō)較難適應(yīng)學(xué)校的教學(xué)生活,在學(xué)習(xí)中總是會(huì)感到疲勞乏味,碰到相對(duì)枯燥的概念教學(xué)時(shí)這種疲憊更是由內(nèi)而外。德國(guó)教育家福祿培爾在其代表作《幼兒園》中認(rèn)為,游戲活動(dòng)是兒童活動(dòng)的特點(diǎn),游戲和語(yǔ)言是兒童生活的組成因素,通過(guò)各種游戲,組織各種有效的活動(dòng),兒童的內(nèi)心活動(dòng)和內(nèi)心生活將會(huì)變?yōu)楠?dú)立的、自主的外部自我表現(xiàn),從而獲得愉快、自由和滿(mǎn)足。將游戲用于教學(xué),將能使兒童由被動(dòng)變?yōu)橹鲃?dòng),積極地汲取知識(shí)。
    游戲、活動(dòng)是孩子們的最?lèi)?ài),讓他們?cè)谟螒蚧顒?dòng)中獲取知識(shí),這樣的知識(shí)必定是美好而快樂(lè)的。有了這樣的感覺(jué),孩子們學(xué)習(xí)數(shù)學(xué)的興趣一定是濃厚的,我們?cè)僮寯?shù)學(xué)的魅力適度展示,讓他們感覺(jué)到學(xué)習(xí)數(shù)學(xué)不但是一件輕松、快樂(lè)的事更是一件有意義的事。我想他們繼續(xù)進(jìn)行探索、學(xué)習(xí)新知的動(dòng)力就來(lái)自于此了。
    四、概念的拓展宜實(shí)在有效。
    美國(guó)實(shí)用主義哲學(xué)家、教育家杜威從他的“活動(dòng)”理論出發(fā),強(qiáng)調(diào)兒童“從做中學(xué)”“從經(jīng)驗(yàn)中學(xué)”,讓孩子們?cè)谥鲃?dòng)作業(yè)中運(yùn)用思想、產(chǎn)生問(wèn)題、促進(jìn)思維和取得經(jīng)驗(yàn)。確實(shí),在一些親力親為的數(shù)學(xué)小實(shí)驗(yàn)中,孩子們表現(xiàn)出了一種自然的主動(dòng)的學(xué)習(xí)情緒。他們以充沛的精力在這些小實(shí)驗(yàn)、小研究中主動(dòng)地討論所發(fā)生的事,想出種種方案去解決問(wèn)題,使智力獲得了充分的應(yīng)用和發(fā)展。在數(shù)學(xué)概念的教學(xué)中,設(shè)計(jì)一些孩子能力所能致的小研究活動(dòng),可以讓孩子對(duì)這些抽象的數(shù)學(xué)概念得到進(jìn)一步體驗(yàn)、內(nèi)化,得到課堂教學(xué)所不能抵達(dá)的效果。
    孩子對(duì)于較大的單位比如說(shuō)“千米”“噸”等,由于其經(jīng)驗(yàn)的限制往往沒(méi)有什么概念。只是,教師這樣說(shuō)了,他也便這樣記了,對(duì)他而言也僅僅只是一個(gè)簡(jiǎn)單的字符而已。僅僅通過(guò)課堂教學(xué),那么“千米”在孩子們的印象中便是“1千米=1000米”是一個(gè)不能用手丈量的長(zhǎng)度;“噸”在孩子們的印象中便是“1噸=1000千克”是一個(gè)拿不動(dòng)的質(zhì)量。至于“1千米”到底有多長(zhǎng),“1噸”到底有多重?孩子們心中并無(wú)底,才使得經(jīng)常會(huì)出現(xiàn):一幢居民樓高約20(千米);一節(jié)火車(chē)車(chē)廂載重量為60(千克)這樣的笑話。如果我們能讓孩子們來(lái)進(jìn)行切身的體驗(yàn)再附以一些小實(shí)驗(yàn),這些問(wèn)題便能迎刃而解了。
    概念是枯燥的、乏味的,但卻是重要的。對(duì)于第一學(xué)段的孩子們我們不能假定他們都非常清楚學(xué)習(xí)數(shù)學(xué)概念的重要性,指望他們能投入足夠的時(shí)間和精力去學(xué)習(xí)數(shù)學(xué)概念,也不能單純地依賴(lài)教師或家長(zhǎng)的“權(quán)威”去迫使孩子們這樣做。那么就需要我們積極地引領(lǐng)他們,使之學(xué)得輕松,學(xué)得扎實(shí),讓他們體會(huì)到數(shù)學(xué)所散發(fā)出的無(wú)窮魅力,讓概念深入心中,為數(shù)學(xué)學(xué)習(xí)服務(wù)。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    概念是數(shù)學(xué)知識(shí)的基礎(chǔ),是數(shù)學(xué)思想與方法的載體,所以概念教學(xué)尤為重要?在概念教學(xué)中,教師既要啟發(fā)學(xué)生對(duì)所研究的對(duì)象進(jìn)行分析、綜合、抽象,還要講清概念的形成過(guò)程,闡明其必要性和合理性。
    數(shù)學(xué)科學(xué)嚴(yán)謹(jǐn)?shù)耐评硇裕瑳Q定了搞好概念教學(xué)是傳授知識(shí)的首要條件?由于概念不清,表現(xiàn)出思路閉塞,邏輯紊亂,在學(xué)生中屢見(jiàn)不鮮?因此,搞好概念教學(xué)是實(shí)現(xiàn)知識(shí)傳授和能力培養(yǎng)的重要環(huán)節(jié),是提高教學(xué)質(zhì)量的一個(gè)重要方面。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    在小學(xué)如何確定或選擇應(yīng)教的數(shù)學(xué)概念,是一個(gè)復(fù)雜的問(wèn)題。根據(jù)我們的經(jīng)驗(yàn),在選定數(shù)學(xué)概念時(shí)既要考慮到需要,又要考慮到學(xué)生的接受能力。
    (一)選擇數(shù)學(xué)概念時(shí)應(yīng)適應(yīng)各方面的需要。
    1.社會(huì)的需要:主要是指選擇日常生活、生產(chǎn)和工作中有廣泛應(yīng)用的數(shù)學(xué)概念。絕大部分的數(shù)、量和形的概念是具有廣泛應(yīng)用的。但是社會(huì)的需要不是一成不變的,而是常常變化的。因此小學(xué)的數(shù)學(xué)概念也應(yīng)隨著社會(huì)的發(fā)展適當(dāng)有所變化。例如,1991年我國(guó)采用法定計(jì)量單位后,原來(lái)采用的市制計(jì)量單位就不再教學(xué)了。
    2.進(jìn)一步學(xué)習(xí)的需要:有些數(shù)學(xué)概念在實(shí)際中并不是廣泛應(yīng)用的,但是對(duì)于進(jìn)一步學(xué)習(xí)是重要的。例如質(zhì)數(shù)、合數(shù)、分解質(zhì)因數(shù)、最大公約數(shù)和最小公倍數(shù)等,不僅是學(xué)習(xí)分?jǐn)?shù)的必要基礎(chǔ),而且是學(xué)習(xí)代數(shù)的重要基礎(chǔ),必須使學(xué)生掌握,并把它們作為小學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí)。
    3.發(fā)展的需要:這里主要是指有利于發(fā)展兒童的身心的需要。例如,引入簡(jiǎn)易方程及其解法,不僅有助于學(xué)生靈活的解題能力,減少解題的困難程度,而且有助于發(fā)展學(xué)生抽象思維的能力。在我國(guó)的小學(xué)數(shù)學(xué)中,教學(xué)方程產(chǎn)生了很好的效果。小學(xué)生不僅能用方程解兩三步的問(wèn)題,而且能根據(jù)問(wèn)題的具體情況選擇適當(dāng)?shù)慕獯鸱椒?。這里舉一個(gè)例子。
    要求五年級(jí)的一個(gè)實(shí)驗(yàn)班的38名學(xué)生(年齡10.5―11.5歲)解下面兩道題:
    學(xué)生能用兩種方法解:算術(shù)解法和方程解法。用每種方法解題的正確率都是91.7%。下面是兩個(gè)學(xué)生的解法。
    一個(gè)中等生的解法:
    一個(gè)下等生的解法:
    多少米?
    這道題是比較難的,學(xué)生沒(méi)有遇到過(guò)。結(jié)果很有趣。58.3%的學(xué)生用方程解,41.7%的學(xué)生用算術(shù)方法解。而用方程解的正確率比用算術(shù)方法解的高22%。
    下面是兩個(gè)學(xué)生的解法。
    一個(gè)優(yōu)等生用算術(shù)方法解:
    一個(gè)中等生用方程解:
    解:設(shè)買(mǎi)來(lái)藍(lán)布x米。
    (二)選擇數(shù)學(xué)概念時(shí)還應(yīng)考慮學(xué)生的接受能力。小學(xué)生的思維特點(diǎn)是從具體形象思維向抽象邏輯思維過(guò)渡。一般地說(shuō),數(shù)學(xué)概念具有不同程度的抽象水平。在確定教學(xué)某一概念的必要性的前提下還應(yīng)考慮其抽象水平是否適合學(xué)生的思維水平。為此,根據(jù)不同的情況可以采取以下幾種不同的措施:
    1.學(xué)生容易理解的一些概念,可以采取定義的方式出現(xiàn)。例如,在四五年級(jí)教學(xué)四則運(yùn)算的概念時(shí),可以教給四則運(yùn)算的定義,使學(xué)生深刻理解四則運(yùn)算的意義以及運(yùn)算間的關(guān)系。而且使學(xué)生能區(qū)分在分?jǐn)?shù)范圍內(nèi)運(yùn)算的意義是否比在整數(shù)范圍內(nèi)有了擴(kuò)展,以便他們能在實(shí)際計(jì)算中正確地加以應(yīng)用。此外,通過(guò)概念的定義的教學(xué)還可以使學(xué)生的邏輯思維得到發(fā)展,并為中學(xué)的進(jìn)一步學(xué)習(xí)打下較好的基礎(chǔ)。
    2.當(dāng)有些概念以定義的方式出現(xiàn)時(shí),學(xué)生不好理解,可以采取描述它們的基本特征的方式出現(xiàn)。例如,在高年級(jí)講圓的認(rèn)識(shí)時(shí),采取揭示圓的基本特征的方式比較好:(1)它是由曲線圍成的平面圖形;(2)它有一個(gè)中心,從中心到圓上的所有各點(diǎn)的距離都相等。這樣學(xué)生既獲得了概念的直觀的表象,又獲得了其基本特征,從而為中學(xué)進(jìn)一步提高概念的抽象水平做較好的準(zhǔn)備。
    3.當(dāng)有些概念不易描述其基本特征時(shí),可以采取舉例說(shuō)明其含義或基本特征的方法。例如,在教學(xué)“量”這概念時(shí),可以說(shuō)明長(zhǎng)度、重量、時(shí)間、面積等都是量。對(duì)“平面”這個(gè)概念可以通過(guò)某些物體的平展的表面給以直觀的說(shuō)明。
    數(shù)學(xué)概念的編排,在一定程度上可以看作是各年級(jí)對(duì)數(shù)學(xué)概念的選擇和出現(xiàn)順序。數(shù)學(xué)概念的合理編排不僅有助于學(xué)生很好地掌握,而且便于學(xué)生掌握運(yùn)算、解答應(yīng)用題以及其他內(nèi)容。根據(jù)教學(xué)論和我們的實(shí)踐經(jīng)驗(yàn),數(shù)學(xué)概念的編排應(yīng)當(dāng)符合下述原則:既適當(dāng)考慮數(shù)學(xué)概念的邏輯系統(tǒng)性又適當(dāng)考慮學(xué)生認(rèn)知的年齡特點(diǎn)。為了貫徹這一原則,必須考慮以下幾點(diǎn)。
    (一)采取圓周排列:這一點(diǎn)不僅反映人類(lèi)的認(rèn)知過(guò)程,而且。
    符合兒童的認(rèn)知特點(diǎn)。如眾所周知的,自然數(shù)的認(rèn)識(shí)范圍要逐漸地?cái)U(kuò)大,“分?jǐn)?shù)”概念的意義也要逐步的予以完善。
    (二)注意概念之間的關(guān)系:例如,小數(shù)的初步認(rèn)識(shí)宜于放在分?jǐn)?shù)的初步認(rèn)識(shí)之后,以便于學(xué)生理解小數(shù)可以看作分母是10、100、1000……的分?jǐn)?shù)的特殊形式。把比的認(rèn)識(shí)放在分?jǐn)?shù)除法之后教學(xué),會(huì)有助于學(xué)生理解比和分?jǐn)?shù)的聯(lián)系。
    (三)概念的抽象水平要符合學(xué)生的接受能力:例如,在低年級(jí)教學(xué)減法的含義,是通過(guò)操作和觀察使學(xué)生理解從一個(gè)數(shù)里去掉一部分求剩下的部分是多少。而在高年級(jí)教學(xué)時(shí),宜于通過(guò)實(shí)際例子給出減法的定義。在低年級(jí)教學(xué)平行四邊形時(shí),只要說(shuō)明其邊和角的特征而不教平行線的認(rèn)識(shí)。但在高年級(jí)就宜于先介紹平行線,再給出平行四邊形的定義。
    (四)注意數(shù)學(xué)概念與其他學(xué)科的配合:數(shù)學(xué)作為一個(gè)工具與其他學(xué)科有較多的聯(lián)系。有些數(shù)學(xué)概念,如計(jì)量單位、比例尺等在學(xué)習(xí)語(yǔ)文和常識(shí)中常用到,在學(xué)生能夠接受的情況下可以提早教學(xué)。
    小學(xué)生的數(shù)學(xué)概念的形成是一個(gè)復(fù)雜的過(guò)程。特別是一些較難的數(shù)學(xué)概念,教學(xué)時(shí)需要一個(gè)深入細(xì)致的工作的長(zhǎng)過(guò)程。根據(jù)數(shù)學(xué)的特點(diǎn)和兒童的認(rèn)知特點(diǎn),教學(xué)時(shí)要注意以下幾點(diǎn)。
    (一)遵循兒童的認(rèn)知規(guī)律,引導(dǎo)學(xué)生抽象、概括出所學(xué)概念的本質(zhì)特征。例如,在低年級(jí)教學(xué)“乘法”這個(gè)概念時(shí),可以引導(dǎo)學(xué)生擺幾組圓形,每組的圓形同樣多,并讓學(xué)生先用加法再用乘法計(jì)算圓形的總數(shù)。通過(guò)比較引導(dǎo)學(xué)生總結(jié)出乘法是求幾個(gè)相同加數(shù)和的簡(jiǎn)便算法。教學(xué)長(zhǎng)方形時(shí),先引導(dǎo)學(xué)生測(cè)量它的邊和角,然后抽象、概括出長(zhǎng)方形的特征。這樣教學(xué)有助于學(xué)生形成所學(xué)的概念并發(fā)展他們的邏輯思維。
    (二)注意正確地理解所學(xué)的概念。教學(xué)經(jīng)驗(yàn)表明,學(xué)生對(duì)某一概念的理解常常顯示出不同的水平,盡管他們都參加同樣的活動(dòng)如操作、比較、抽象和概括等。有些學(xué)生甚至可能完全沒(méi)有理解概念的本質(zhì)特征。這就需要檢查所有的學(xué)生是否理解所學(xué)的概念。檢查的方法是多樣的,其中之一是把概念具體化。例如,給出一個(gè)乘法算式,如3×4,讓學(xué)生擺出圓形來(lái)說(shuō)明它表示每組有幾個(gè)圓形,有幾組。另一種方法是給出所學(xué)概念的幾個(gè)變式,讓學(xué)生來(lái)識(shí)別。例如,下圖中有幾個(gè)長(zhǎng)方形擺放的方向不同,讓學(xué)生把長(zhǎng)方形挑選出來(lái)。
    此外,還可以讓學(xué)生舉實(shí)例說(shuō)明某一概念的意義,如舉例說(shuō)明分?jǐn)?shù)、正比例的意義。
    (三)掌握概念間的聯(lián)系和區(qū)別。比較所學(xué)的概念并弄清它們的區(qū)別,可以使學(xué)生深刻地理解這些概念,并消除彼此間的混淆。例如,應(yīng)使學(xué)生能夠區(qū)分質(zhì)數(shù)與互質(zhì)數(shù),長(zhǎng)方形的周長(zhǎng)和面積,正比例和反比例等。在教過(guò)有聯(lián)系的概念之后,可以讓學(xué)生把它們系統(tǒng)地加以整理,以說(shuō)明它們之間的關(guān)系。例如,四邊形、正方形、長(zhǎng)方形、平行四邊形和梯形可以通過(guò)下圖加以系統(tǒng)整理,以說(shuō)明它們的關(guān)系。
    通過(guò)概念的系統(tǒng)整理使學(xué)生在頭腦中對(duì)這些概念形成良好的認(rèn)知結(jié)構(gòu)。
    (四)重視概念的應(yīng)用。學(xué)習(xí)概念的應(yīng)用有助于學(xué)生進(jìn)一步加。
    深理解所學(xué)的概念,把數(shù)學(xué)知識(shí)同實(shí)際聯(lián)系起來(lái),并且發(fā)展學(xué)生的邏輯思維。例如,學(xué)過(guò)長(zhǎng)方體以后,可以讓學(xué)生找出周?chē)h(huán)境中哪些物體的形狀是長(zhǎng)方體。學(xué)過(guò)質(zhì)數(shù)概念以后可以讓學(xué)生找出能整除60的質(zhì)數(shù)。
    我們的實(shí)驗(yàn)表明,由于采取了上述的措施,學(xué)生對(duì)概念的理解的正確率有較明顯的提高。下面是19xx年進(jìn)行的一次測(cè)驗(yàn)中有關(guān)學(xué)生掌握數(shù)學(xué)概念的測(cè)試結(jié)果。
    注:1.兩個(gè)實(shí)驗(yàn)班都是五年級(jí),年齡是11―12歲。一個(gè)對(duì)照班是五年制五年級(jí),另一個(gè)是六年制六年級(jí)。
    2.1991年用同一測(cè)驗(yàn)測(cè)試全國(guó)約200個(gè)實(shí)驗(yàn)班,也得到較好的結(jié)果。
    上面的測(cè)試結(jié)果表明,實(shí)驗(yàn)班學(xué)生學(xué)習(xí)數(shù)學(xué)概念的成績(jī),在認(rèn)數(shù)、幾何圖形,特別是在學(xué)習(xí)倒數(shù)、比例和扇形方面都優(yōu)于對(duì)照班的學(xué)生。最后一項(xiàng)測(cè)試結(jié)果還表明,實(shí)驗(yàn)班學(xué)生在發(fā)展空間觀念和作圖能力方面優(yōu)于對(duì)照班學(xué)生。
    四結(jié)論。
    在小學(xué)加強(qiáng)數(shù)學(xué)概念的教學(xué)對(duì)于提高學(xué)生的數(shù)學(xué)概念的認(rèn)知水平具有重要的意義。
    在小學(xué)如何確定教學(xué)的`數(shù)學(xué)概念是一個(gè)重要的復(fù)雜的問(wèn)題。在選定概念時(shí),既要很好地考慮需要,又要很好地考慮學(xué)生的接受能力。
    合理地安排數(shù)學(xué)概念對(duì)于學(xué)生掌握他們有很大幫助。在編排概念時(shí),既要充分考慮所教概念的邏輯系統(tǒng)性,又要照顧到不同年齡的學(xué)生的認(rèn)知特點(diǎn)。
    教學(xué)的策略對(duì)于形成學(xué)生的數(shù)學(xué)概念起著重要的作用。在教學(xué)概念時(shí)教師應(yīng)當(dāng)遵循兒童的認(rèn)知規(guī)律和激發(fā)學(xué)生思考的原則,并且注意使學(xué)生正確理解概念的義,掌握概念間的聯(lián)系和區(qū)別,并在實(shí)際中應(yīng)用所學(xué)的概念。
    (本文是1992年向第七屆國(guó)際數(shù)學(xué)教育會(huì)議提交的論文,曾在大會(huì)第一研討組上宣讀。)。
    將本文的word文檔下載到電腦,方便收藏和打印。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    數(shù)學(xué)概念是學(xué)生接觸與學(xué)習(xí)每一個(gè)新知識(shí)點(diǎn)必先學(xué)習(xí)的東西,它對(duì)于學(xué)生的整個(gè)數(shù)學(xué)科目的學(xué)習(xí)來(lái)說(shuō)是基石一般的存在,因此學(xué)生從小學(xué)數(shù)學(xué)概念起必須打好學(xué)習(xí)的基礎(chǔ),讓學(xué)生在清晰的了解各種概念的基礎(chǔ)上,幫助他們學(xué)習(xí)最基本的數(shù)學(xué)知識(shí),只有這樣才能讓數(shù)學(xué)學(xué)習(xí)的路越走越平整、越走越寬敞。
    1、從數(shù)學(xué)概念的涵義與構(gòu)成方面來(lái)看。首先是涵義方面,從教學(xué)的角度來(lái)看,數(shù)學(xué)概念指的是在客觀現(xiàn)實(shí)中數(shù)量關(guān)系與空間形式二者的本質(zhì)屬性在人們腦中所形成的反應(yīng),其表現(xiàn)為數(shù)學(xué)用語(yǔ)中的一些專(zhuān)用名詞、符號(hào)或術(shù)語(yǔ)等,比方說(shuō)是“周長(zhǎng)”、“體積”。其次是概念的構(gòu)成方面,一般來(lái)說(shuō)數(shù)學(xué)概念是可以分成兩個(gè)組成部分,一個(gè)是內(nèi)涵,另一個(gè)是外延。概念的內(nèi)涵其實(shí)指的就是這個(gè)概念所反映出來(lái)的所有對(duì)象的一個(gè)共同本質(zhì)屬性總和。比方說(shuō)是三角形的概念,它的內(nèi)涵所指的就是其本質(zhì)屬性中“三條線段”與“圍成”的總和。而概念的外延指的就相對(duì)會(huì)比較廣泛,它指的是此概念所囊括的一切對(duì)象總和。以四邊形的概念為例,它就包括了正方形、長(zhǎng)方形、梯形等所有很多對(duì)象。
    2、小數(shù)學(xué)概念的特點(diǎn)。小學(xué)時(shí)期數(shù)學(xué)概念的特點(diǎn)其他可以從三個(gè)方面來(lái)進(jìn)行簡(jiǎn)單的歸納:第一個(gè)就是其呈現(xiàn)形式上的特點(diǎn)。由于小學(xué)數(shù)學(xué)是一個(gè)引導(dǎo)學(xué)生入門(mén)的時(shí)期,因此它的概念在呈現(xiàn)方式上也會(huì)顯得更為多樣化,像是最初采用圖畫(huà)的方式,再到后來(lái)的描述方式,最后還有定義式等等。第二個(gè)特點(diǎn)就是直觀性較強(qiáng)。一般來(lái)說(shuō)數(shù)學(xué)概念最為突出的特點(diǎn)就是其抽象性與概括性,但我們?cè)谶M(jìn)行小學(xué)階段數(shù)學(xué)教學(xué)時(shí),就會(huì)發(fā)現(xiàn)小學(xué)數(shù)學(xué)概念通常都會(huì)定義得比較直觀,比較形象具體,基本都是以小學(xué)生的接受能力與理解能力為起點(diǎn)來(lái)進(jìn)行設(shè)計(jì)的。第三個(gè)特點(diǎn)是教學(xué)階段性較強(qiáng)。小學(xué)時(shí)期的教學(xué)會(huì)受到很多客觀原因的局限,從而導(dǎo)致教師在進(jìn)行數(shù)學(xué)教學(xué)時(shí),所講解的數(shù)學(xué)知識(shí)也會(huì)存在極強(qiáng)的階段性。比方說(shuō)在低年級(jí)時(shí),孩子們的理解能力與認(rèn)識(shí)能力還尚未發(fā)展到一定的水平,因此對(duì)于很多抽象性的知識(shí)很難理解,因此教師在講解時(shí)就只能通過(guò)分階段逐步滲透的`辦法來(lái)解決問(wèn)題。
    開(kāi)展概念教學(xué)可以從多種形式與內(nèi)容入手,既要梳理各種概念之間的聯(lián)系與區(qū)別,又要形成統(tǒng)一的系統(tǒng)概念體系,可以從以下幾個(gè)方面進(jìn)行:
    1、采用不同呈現(xiàn)形式開(kāi)展小學(xué)數(shù)學(xué)概念教學(xué)。概念教學(xué)的形式眾多,可以從圖畫(huà)式教學(xué)入手,教師在采用這種方式進(jìn)行教學(xué)時(shí),一定要注意引導(dǎo)學(xué)生自主的去發(fā)掘圖畫(huà)中所蘊(yùn)含的真正涵義,從而達(dá)到揭示概念本質(zhì)的效果,從而讓學(xué)生對(duì)概念有個(gè)更清晰的認(rèn)識(shí)。以梯形概念教學(xué)為例,教師在開(kāi)展教學(xué)工作時(shí),應(yīng)該要就所展示出來(lái)的圖畫(huà)適時(shí)的引導(dǎo)學(xué)生去探索并揭示出梯形的本質(zhì)特征,并且最終實(shí)現(xiàn)將表象圖畫(huà)轉(zhuǎn)換成抽象數(shù)學(xué)語(yǔ)言的目的。其次是描述式,其實(shí)采用這種呈現(xiàn)形式的概念一般都是“字”與“形”相結(jié)合的,比方說(shuō)是小數(shù)的概念、直線的概念,在概念描述中直接就把其本身的圖形或默示所標(biāo)示出來(lái)了,教師在進(jìn)行教學(xué)時(shí)只需要把“形”所表達(dá)的意思與孩子們傳達(dá)清楚再結(jié)合“字”就能使他們快速掌握這個(gè)知識(shí)點(diǎn)。還有就是定義式,這種方法一般適于一些高年級(jí)的學(xué)生,相對(duì)而言它的概括性以及抽象性都會(huì)強(qiáng)很多,因此教師在教學(xué)時(shí)可以適時(shí)的采用一些直觀的教學(xué)工具或舉例講解等辦法,將抽象的知識(shí)轉(zhuǎn)化成具體形象的事物,讓學(xué)生們快速理解與掌握。
    2、從概念間的區(qū)別與聯(lián)系入手,讓學(xué)生形成數(shù)學(xué)概念系統(tǒng)。首先是同一概念在教學(xué)時(shí)的聯(lián)系與區(qū)別。因?yàn)樾W(xué)數(shù)學(xué)在很多時(shí)候,雖然是同一個(gè)概念,但是在不同的時(shí)期所要求的教學(xué)程度是大不相同的,因此對(duì)于概念的講解程度也會(huì)有所區(qū)別。以分?jǐn)?shù)的教學(xué)為例,在三年級(jí)時(shí)我們的教學(xué)要求只是停留在讓孩子們認(rèn)識(shí)分?jǐn)?shù)的程度,而在五年級(jí)時(shí),我們就必須向他們解釋分?jǐn)?shù)的真實(shí)意義與性質(zhì)。再比方說(shuō)是方程這一概念,在剛開(kāi)始學(xué)習(xí)的時(shí)候,我們只要求學(xué)生有一個(gè)基礎(chǔ)的了解與滲透,而到高年級(jí)后就會(huì)要求他們對(duì)方程給與一個(gè)明確的定義。其次是不同概念之間也存在著聯(lián)系。雖然有些概念它們是大不相同的,但是在某些程度上也是存在著一定的聯(lián)系,因?yàn)閿?shù)學(xué)的概念并不是孤立的,它們是相輔相成的。教師在進(jìn)行日常教學(xué)時(shí)應(yīng)該有意識(shí)的引導(dǎo)學(xué)生去探索與明確這些數(shù)學(xué)概念之間所存在的聯(lián)系,為他們更好的構(gòu)建概念系統(tǒng)打下結(jié)實(shí)的基礎(chǔ)。
    三、結(jié)束語(yǔ)。
    總之,教師在開(kāi)展小學(xué)數(shù)學(xué)概念教學(xué)時(shí)必須以學(xué)生實(shí)際情況為根據(jù),采用最為合適的方法進(jìn)行概念教學(xué),因?yàn)橹挥袕男〈蚝没A(chǔ),才能實(shí)現(xiàn)數(shù)學(xué)概念教學(xué)的目標(biāo)。
    參考文獻(xiàn)。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    針對(duì)小學(xué)生的年齡特點(diǎn)和對(duì)概念掌握的物點(diǎn)來(lái)看,在概念教學(xué)中要采用一定的教學(xué)策略,以下就略談我在這方面的點(diǎn)滴體會(huì)。
    一、從學(xué)生的生活經(jīng)驗(yàn)引入概念。
    生活中有許多地方用到了數(shù)學(xué),通過(guò)實(shí)物、教具、學(xué)具讓學(xué)生觀察、演示或操作來(lái)闡明概念,可以收到良好的效果。如讓學(xué)生只用一把直尺畫(huà)一個(gè)圓,這對(duì)學(xué)生來(lái)說(shuō)是一個(gè)考驗(yàn)。用圓規(guī)學(xué)生都能畫(huà)圓,用一根線固定于一點(diǎn)也能畫(huà)一個(gè)圓,那么為什么要求學(xué)生用一把直尺來(lái)畫(huà)圓呢?這就是滲透圓的定義,雖然在小學(xué)階段很多數(shù)學(xué)概念是描述性的,但也要盡可能的讓學(xué)生的后繼學(xué)習(xí)更有利于知識(shí)建構(gòu)。通過(guò)這樣的操作,會(huì)在學(xué)生頭腦中留下這樣的表象:圓就是所有到定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的軌跡。哪怕學(xué)生無(wú)法用語(yǔ)言來(lái)表述,但是頭腦中有了這樣的表象對(duì)后繼知識(shí)的學(xué)習(xí)是相當(dāng)有利的。
    二、以舊概念的復(fù)習(xí)引入新概念。
    一個(gè)概念并不是孤立的,它總是處在一定的概念系統(tǒng)中,處在與其它概念的相互聯(lián)系中,學(xué)生的學(xué)習(xí)都是通過(guò)概念同化習(xí)得新概念的。學(xué)習(xí)復(fù)雜概念之前,先學(xué)習(xí)更一般更簡(jiǎn)單的概念(即上位概念),以這個(gè)上位概念作為新概念的的先行組織者,聯(lián)系學(xué)生已學(xué)過(guò)的有關(guān)概念來(lái)闡明新概念的是教學(xué)的重要方法之一。如利用整除的概念闡明約數(shù)與倍數(shù)的概念。在公約數(shù)與公倍數(shù)的概念中,再添上“最大”、“最小”的限制,而得出最大公約數(shù)和最小公倍數(shù)的概念。
    實(shí)踐表明,用先前的一個(gè)概念推導(dǎo)出新的概念,這樣的既能使學(xué)生較好地理解新的概念,又能使知識(shí)結(jié)構(gòu)形成的更完善,學(xué)生掌握得更牢固,更重要的是幫助學(xué)生樹(shù)立起聯(lián)系的思維方法,形成邏輯思維能力。
    三、抓住本質(zhì),講清概念。
    要使學(xué)生理解和掌握概念,關(guān)鍵在于揭示概念的本質(zhì)特征,也就是反映事物的根本屬性及其主要表現(xiàn),是該事物區(qū)別于其他事物或該概念區(qū)別于其他概念的根本之處。有些老師常埋怨學(xué)生知識(shí)學(xué)得死,不會(huì)靈活運(yùn)用,究其原因就是學(xué)生沒(méi)有很好地把握概念的本質(zhì)。如有些學(xué)生對(duì)平行四邊形的認(rèn)識(shí)必須是端端正正,成水平型的,當(dāng)變換位置后就和他們理解平行四邊形的`概念相抵觸了,分析造成這種情況的原因和教師提供事例的方式有關(guān),呈現(xiàn)給學(xué)生的都是這樣固定不變的平行四邊形,就使學(xué)生不易區(qū)別平行四邊形的本質(zhì)屬性與非本質(zhì)屬性,而把非本質(zhì)的屬性也納入到概念的內(nèi)涵中去。
    因此教師要在講清概念時(shí)要十分準(zhǔn)確地講清概念的含義。有些性質(zhì)、法則和公式中包含著的某些基礎(chǔ)概念,辦中一個(gè)詞,但它所表示的含義也是極其明確的,在教學(xué)中要特別注意把這些含義準(zhǔn)確而清晰地表達(dá)出來(lái)。抓住關(guān)鍵講解概念,就能使學(xué)生明確新概念的本質(zhì)屬性及它的意義。如在教學(xué)分?jǐn)?shù)意義時(shí)就要強(qiáng)調(diào)“平均分”。
    教師還要恰當(dāng)?shù)刂v清概念的運(yùn)用范圍。如2是質(zhì)數(shù)但不能說(shuō)它是一個(gè)質(zhì)因數(shù),只能說(shuō)它是某個(gè)合數(shù)的質(zhì)因數(shù)。又如在用字母表示數(shù)時(shí),爸爸的年齡用a表示,小明的年齡用a—28表示,這里a并不能表示任意一個(gè)數(shù),而是有一定的范圍的。
    四、分析比較,區(qū)別異同。
    有些概念表面看起來(lái)有類(lèi)似之處,實(shí)際上似是而非,能過(guò)對(duì)比本質(zhì)屬性,使學(xué)生弄清它們之間的聯(lián)系和區(qū)別,可以加深對(duì)概念的理解。如質(zhì)數(shù)與質(zhì)因數(shù)、互質(zhì)數(shù)、數(shù)位與位數(shù)、整除與除盡等概念十分相似和相近,教學(xué)時(shí)要通過(guò)各種情況的反復(fù)比較,指明它們之間的聯(lián)系與區(qū)別,幫助學(xué)生掌握概念實(shí)質(zhì)。又如在教學(xué)小數(shù)的性質(zhì)——“在小數(shù)的末尾添上零或者去掉零,小數(shù)的大小不變,”這里“小數(shù)的末尾”就不能說(shuō)成是“小數(shù)點(diǎn)后面”,也不能說(shuō)成是“小數(shù)部分”?!澳┪病边@個(gè)概念是“最后”的意思。
    在運(yùn)用對(duì)比法教學(xué)時(shí),采有變式也是一種很好的方法,能過(guò)變式教學(xué)可以使學(xué)生排除概念中非本質(zhì)特征,學(xué)生能抓住本質(zhì)特征,才能增強(qiáng)運(yùn)用概念的靈活性。如在出示幾何圖形時(shí)位置要變化,不要讓其“經(jīng)典式出場(chǎng)”。
    當(dāng)然在使用比較的方法進(jìn)行教學(xué)時(shí),必須在這個(gè)概念已經(jīng)建立得比較清楚、牢固的基礎(chǔ)上,再引入其他相關(guān)概念進(jìn)行比較。否則,不僅不會(huì)加深學(xué)生對(duì)概念的理解,反而容易產(chǎn)生混淆現(xiàn)象。
    五、啟發(fā)思維,歸納概括。
    有的學(xué)生邏輯思維能力差,習(xí)慣于死記硬背,做習(xí)題時(shí),只能依樣畫(huà)葫蘆,遇到問(wèn)題的條件或形式稍有變化,就束手無(wú)策,因此在概念教學(xué)中要注意發(fā)展學(xué)生的智力,培養(yǎng)學(xué)生自己去獲得知識(shí)的能力。如在教學(xué)梯形的認(rèn)識(shí)時(shí),可以將平行四邊形與梯形放在一起,通過(guò)讓學(xué)生分類(lèi)的方法來(lái)體會(huì)到梯形就是只有一組對(duì)邊平行的四邊形。學(xué)生經(jīng)歷了這樣的探索過(guò)程,形成了清晰的概念并提高了解決問(wèn)題的能力。
    六、前后聯(lián)系,因“時(shí)”施教。
    教學(xué)具有很強(qiáng)的抽象性與系統(tǒng)性。有些概念之間的聯(lián)系起來(lái)十分緊密,后者以前者為基礎(chǔ),從已有的概念引出新概念。有些概念隨著知識(shí)的逐步積累,認(rèn)識(shí)的逐步深入,而趨向于完善。所以,小學(xué)數(shù)學(xué)系教材按照兒童的認(rèn)識(shí)規(guī)律和教學(xué)的內(nèi)在聯(lián)系,把教學(xué)內(nèi)容劃分為幾個(gè)階段,每個(gè)階段有每個(gè)階段的不同要求,有每個(gè)階段各自的重點(diǎn),這就決定了概念教學(xué)的階段性。
    如對(duì)圓的認(rèn)識(shí),一年級(jí)學(xué)生就接觸過(guò)了,只要在幾具圖形中能找到圓就行了;到六年級(jí)再認(rèn)識(shí)就更深一步了,了解圓的各部分名稱(chēng)和它們之間的關(guān)系,并進(jìn)行求圓的周長(zhǎng)與面積的計(jì)算教學(xué);到中學(xué)階段還要學(xué)圓的有關(guān)知識(shí),這時(shí)候?qū)Φ膱A的定義是:圓是所有到定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的軌跡。又如商不變性質(zhì)、分?jǐn)?shù)的基本性質(zhì)、比的基本性質(zhì)這三個(gè)基本性質(zhì),形式不一樣,但本質(zhì)屬性是相通的。如果不注意前階段的教學(xué)內(nèi)容和要求,講后階段的內(nèi)容時(shí),就不能把新舊知識(shí)有機(jī)地銜接起來(lái),融會(huì)貫通;如果不了解后階段的教學(xué)內(nèi)容要求,講前面的概念就不可能講到恰在此時(shí)當(dāng)好處,也容易把概念講死。
    七、溫故知新,形成系統(tǒng)。
    概念形成后,學(xué)生要真正地掌握,這不是一朝一夕之功,需要多次反復(fù),通過(guò)各種不同形式的練習(xí),不斷地鞏固與深化,逐步形成系統(tǒng)。由于概念化互相聯(lián)系著的,當(dāng)學(xué)生掌握了一定數(shù)量的概念后,教師應(yīng)該向?qū)W生進(jìn)一步提示概念之間的聯(lián)系,以幫助學(xué)生有條理地、系統(tǒng)地掌握這些概念。如學(xué)過(guò)分?jǐn)?shù)后,可指出小數(shù)說(shuō)是十進(jìn)分?jǐn)?shù),把小學(xué)數(shù)概念納入到分?jǐn)?shù)概念中。一般在講完一章一節(jié)的內(nèi)容后注意及時(shí)引導(dǎo)學(xué)生對(duì)知識(shí)內(nèi)容進(jìn)行小結(jié)和概念歸類(lèi),小結(jié)歸類(lèi)時(shí)需高度概括,簡(jiǎn)明扼要,條理清楚便于對(duì)比和記憶,使之牢固掌握,逐步形成概念系統(tǒng)。
    以上所說(shuō)的是教師在進(jìn)行概念教學(xué)時(shí)的一般策略,一家之言,必有偏頗,還望大家批評(píng)指正。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    概念是對(duì)感性材料的綜合,是對(duì)事物內(nèi)在本質(zhì)的反映??v觀數(shù)學(xué)的發(fā)展過(guò)程,一切數(shù)學(xué)公式、法則、規(guī)律的得出都離不開(kāi)概念。在小學(xué)里,數(shù)學(xué)概念包括:數(shù)的概念、運(yùn)算的概念、數(shù)的整除性概念,量的計(jì)量概念、幾何形體的概念、比和比例的概念、式的概念、應(yīng)用題的概念、統(tǒng)計(jì)。的概念等,共約500多個(gè)。這些概念支撐了十二冊(cè)教科書(shū)中所涉及的數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、實(shí)踐與應(yīng)用等四個(gè)領(lǐng)域的龐大的數(shù)學(xué)體系,不僅是數(shù)學(xué)基礎(chǔ)知識(shí)的重要組成部分,也是發(fā)展思維、培養(yǎng)數(shù)學(xué)能力的基礎(chǔ)。但是,當(dāng)前的概念學(xué)習(xí)還存在著一些問(wèn)題,如重計(jì)算,輕內(nèi)涵;重結(jié)論,輕過(guò)程;重課本,輕實(shí)踐等,這些問(wèn)題是如何產(chǎn)生的?通過(guò)聽(tīng)課、訪談、填寫(xiě)調(diào)查問(wèn)卷等形式,我找到了答案。我認(rèn)為產(chǎn)生的本質(zhì)原因是缺失了對(duì)數(shù)學(xué)作為一門(mén)科學(xué)的學(xué)術(shù)關(guān)照。因此,讓數(shù)學(xué)概念學(xué)習(xí)棲居在學(xué)術(shù)的土壤里是一個(gè)值得重視和研究的課題。筆者結(jié)合教學(xué)實(shí)踐談三點(diǎn)想法:
    一、從日常數(shù)學(xué)與學(xué)術(shù)數(shù)學(xué)的連接點(diǎn)切入。
    闊的背景,有著不得不產(chǎn)生的理由,并且附著著人類(lèi)進(jìn)步和數(shù)學(xué)發(fā)展過(guò)程中積淀的最閃亮的思想火花。因此,在概念教學(xué)中我們一定要深入地研究概念產(chǎn)生的背景,并且分析學(xué)術(shù)數(shù)學(xué)與日常數(shù)學(xué)的區(qū)別,從而從本質(zhì)上理解概念的內(nèi)涵。
    二、概念解讀能深入也能淺出。
    研究表明,兒童學(xué)習(xí)概念一般依據(jù)感知——表象——概念——運(yùn)用的程序,也就是說(shuō)概念的有意義學(xué)習(xí)建立在豐富直觀的感知基礎(chǔ)上。為此,不管教師對(duì)概念的解讀有多深入,多學(xué)術(shù)化,在課堂上,我們還是必須通過(guò)演示、操作等方式,為學(xué)生提供充分的感知體驗(yàn)。
    三、從舊知的錨樁處起航。
    數(shù)學(xué)學(xué)科是一門(mén)邏輯性很強(qiáng)的學(xué)科,這就決定了數(shù)學(xué)概念相互間的聯(lián)系非常密切,很多概念的學(xué)習(xí)就是概念的同化過(guò)程,尤其是運(yùn)算概念。小數(shù)、分?jǐn)?shù)的四則運(yùn)算的意義、法則甚至運(yùn)算定律都類(lèi)同于整數(shù)四則運(yùn)算,對(duì)這類(lèi)概念的教學(xué),就要從舊知與新知的連接點(diǎn)入手。
    我讀了張奠宙、鄭毓信等數(shù)學(xué)教育專(zhuān)家的新著,指出了數(shù)學(xué)教育應(yīng)防止去數(shù)學(xué)化,而應(yīng)努力營(yíng)建以數(shù)學(xué)為核心的教育。張奠宙先生說(shuō):數(shù)學(xué)教育,自然是以‘?dāng)?shù)學(xué)’內(nèi)容為核心。數(shù)學(xué)課堂教學(xué)的優(yōu)劣,自然應(yīng)該以學(xué)生能否學(xué)好‘?dāng)?shù)學(xué)’為依據(jù);數(shù)學(xué)教育啊,可否更多地關(guān)注‘?dāng)?shù)學(xué)’的特性!
    受個(gè)人專(zhuān)業(yè)成長(zhǎng)經(jīng)歷的影響,這些年,我對(duì)數(shù)學(xué)課堂的研究和探索集中于數(shù)學(xué)文化與數(shù)學(xué)思維上,總想著我的教育能使孩子們的數(shù)學(xué)素養(yǎng)得以有效地提高。一路行來(lái)一路思,而今先生精辟、深遂的論斷讓我眼前更亮。是呀,數(shù)學(xué)教育一定是數(shù)學(xué)與教育學(xué)雙重價(jià)值視野關(guān)照的,如果缺失了對(duì)數(shù)學(xué)本質(zhì)的關(guān)照,那么即便是再漂亮的課也只能略遜風(fēng)騷。以上,我以概念學(xué)習(xí)為例,談了我對(duì)數(shù)學(xué)課堂基于數(shù)學(xué)學(xué)術(shù)視野的實(shí)踐與渴望,其實(shí)需要數(shù)學(xué)學(xué)術(shù)視野關(guān)照的又豈止是概念學(xué)習(xí),因此,本文也只當(dāng)是拋磚引玉,希望引起大家的思考。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    在小學(xué)如何確定或選擇應(yīng)教的數(shù)學(xué)概念,是一個(gè)復(fù)雜的問(wèn)題。根據(jù)我們的經(jīng)驗(yàn),在選定數(shù)學(xué)概念時(shí)既要考慮到需要,又要考慮到學(xué)生的接受能力。
    (一)選擇數(shù)學(xué)概念時(shí)應(yīng)適應(yīng)各方面的需要。
    1.社會(huì)的需要:主要是指選擇日常生活、生產(chǎn)和工作中有廣泛應(yīng)用的數(shù)學(xué)概念。絕大部分的數(shù)、量和形的概念是具有廣泛應(yīng)用的。但是社會(huì)的需要不是一成不變的,而是常常變化的。因此小學(xué)的數(shù)學(xué)概念也應(yīng)隨著社會(huì)的發(fā)展適當(dāng)有所變化。例如,1991年我國(guó)采用法定計(jì)量單位后,原來(lái)采用的市制計(jì)量單位就不再教學(xué)了。
    2.進(jìn)一步學(xué)習(xí)的需要:有些數(shù)學(xué)概念在實(shí)際中并不是廣泛應(yīng)用的,但是對(duì)于進(jìn)一步學(xué)習(xí)是重要的。例如質(zhì)數(shù)、合數(shù)、分解質(zhì)因數(shù)、最大公約數(shù)和最小公倍數(shù)等,不僅是學(xué)習(xí)分?jǐn)?shù)的必要基礎(chǔ),而且是學(xué)習(xí)代數(shù)的重要基礎(chǔ),必須使學(xué)生掌握,并把它們作為小學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí)。
    3.發(fā)展的需要:這里主要是指有利于發(fā)展兒童的身心的需要。例如,引入簡(jiǎn)易方程及其解法,不僅有助于學(xué)生靈活的解題能力,減少解題的困難程度,而且有助于發(fā)展學(xué)生抽象思維的能力。在我國(guó)的小學(xué)數(shù)學(xué)中,教學(xué)方程產(chǎn)生了很好的效果。小學(xué)生不僅能用方程解兩三步的問(wèn)題,而且能根據(jù)問(wèn)題的具體情況選擇適當(dāng)?shù)慕獯鸱椒?。這里舉一個(gè)例子。
    要求五年級(jí)的一個(gè)實(shí)驗(yàn)班的38名學(xué)生(年齡10.5―11.5歲)解下面兩道題:
    學(xué)生能用兩種方法解:算術(shù)解法和方程解法。用每種方法解題的正確率都是91.7%。下面是兩個(gè)學(xué)生的解法。
    一個(gè)中等生的解法:
    一個(gè)下等生的解法:
    多少米?
    這道題是比較難的,學(xué)生沒(méi)有遇到過(guò)。結(jié)果很有趣。58.3%的學(xué)生用方程解,41.7%的學(xué)生用算術(shù)方法解。而用方程解的正確率比用算術(shù)方法解的高22%。
    下面是兩個(gè)學(xué)生的解法。
    一個(gè)優(yōu)等生用算術(shù)方法解:
    一個(gè)中等生用方程解:
    解:設(shè)買(mǎi)來(lái)藍(lán)布x米。
    (二)選擇數(shù)學(xué)概念時(shí)還應(yīng)考慮學(xué)生的接受能力。小學(xué)生的思維特點(diǎn)是從具體形象思維向抽象邏輯思維過(guò)渡。一般地說(shuō),數(shù)學(xué)概念具有不同程度的抽象水平。在確定教學(xué)某一概念的必要性的前提下還應(yīng)考慮其抽象水平是否適合學(xué)生的思維水平。為此,根據(jù)不同的情況可以采取以下幾種不同的措施:
    1.學(xué)生容易理解的一些概念,可以采取定義的方式出現(xiàn)。例如,在四五年級(jí)教學(xué)四則運(yùn)算的概念時(shí),可以教給四則運(yùn)算的定義,使學(xué)生深刻理解四則運(yùn)算的意義以及運(yùn)算間的關(guān)系。而且使學(xué)生能區(qū)分在分?jǐn)?shù)范圍內(nèi)運(yùn)算的意義是否比在整數(shù)范圍內(nèi)有了擴(kuò)展,以便他們能在實(shí)際計(jì)算中正確地加以應(yīng)用。此外,通過(guò)概念的定義的教學(xué)還可以使學(xué)生的邏輯思維得到發(fā)展,并為中學(xué)的進(jìn)一步學(xué)習(xí)打下較好的基礎(chǔ)。
    2.當(dāng)有些概念以定義的方式出現(xiàn)時(shí),學(xué)生不好理解,可以采取描述它們的基本特征的方式出現(xiàn)。例如,在高年級(jí)講圓的認(rèn)識(shí)時(shí),采取揭示圓的基本特征的方式比較好:(1)它是由曲線圍成的平面圖形;(2)它有一個(gè)中心,從中心到圓上的所有各點(diǎn)的距離都相等。這樣學(xué)生既獲得了概念的直觀的表象,又獲得了其基本特征,從而為中學(xué)進(jìn)一步提高概念的抽象水平做較好的準(zhǔn)備。
    3.當(dāng)有些概念不易描述其基本特征時(shí),可以采取舉例說(shuō)明其含義或基本特征的方法。例如,在教學(xué)“量”這概念時(shí),可以說(shuō)明長(zhǎng)度、重量、時(shí)間、面積等都是量。對(duì)“平面”這個(gè)概念可以通過(guò)某些物體的平展的表面給以直觀的說(shuō)明。
    數(shù)學(xué)概念的編排,在一定程度上可以看作是各年級(jí)對(duì)數(shù)學(xué)概念的選擇和出現(xiàn)順序。數(shù)學(xué)概念的合理編排不僅有助于學(xué)生很好地掌握,而且便于學(xué)生掌握運(yùn)算、解答應(yīng)用題以及其他內(nèi)容。根據(jù)教學(xué)論和我們的實(shí)踐經(jīng)驗(yàn),數(shù)學(xué)概念的編排應(yīng)當(dāng)符合下述原則:既適當(dāng)考慮數(shù)學(xué)概念的邏輯系統(tǒng)性又適當(dāng)考慮學(xué)生認(rèn)知的年齡特點(diǎn)。為了貫徹這一原則,必須考慮以下幾點(diǎn)。
    (一)采取圓周排列:這一點(diǎn)不僅反映人類(lèi)的認(rèn)知過(guò)程,而且。
    符合兒童的認(rèn)知特點(diǎn)。如眾所周知的,自然數(shù)的認(rèn)識(shí)范圍要逐漸地?cái)U(kuò)大,“分?jǐn)?shù)”概念的意義也要逐步的予以完善。
    (二)注意概念之間的關(guān)系:例如,小數(shù)的初步認(rèn)識(shí)宜于放在分?jǐn)?shù)的初步認(rèn)識(shí)之后,以便于學(xué)生理解小數(shù)可以看作分母是10、100、1000……的分?jǐn)?shù)的特殊形式。把比的認(rèn)識(shí)放在分?jǐn)?shù)除法之后教學(xué),會(huì)有助于學(xué)生理解比和分?jǐn)?shù)的聯(lián)系。
    (三)概念的抽象水平要符合學(xué)生的接受能力:例如,在低年級(jí)教學(xué)減法的含義,是通過(guò)操作和觀察使學(xué)生理解從一個(gè)數(shù)里去掉一部分求剩下的部分是多少。而在高年級(jí)教學(xué)時(shí),宜于通過(guò)實(shí)際例子給出減法的定義。在低年級(jí)教學(xué)平行四邊形時(shí),只要說(shuō)明其邊和角的特征而不教平行線的認(rèn)識(shí)。但在高年級(jí)就宜于先介紹平行線,再給出平行四邊形的定義。
    (四)注意數(shù)學(xué)概念與其他學(xué)科的配合:數(shù)學(xué)作為一個(gè)工具與其他學(xué)科有較多的聯(lián)系。有些數(shù)學(xué)概念,如計(jì)量單位、比例尺等在學(xué)習(xí)語(yǔ)文和常識(shí)中常用到,在學(xué)生能夠接受的情況下可以提早教學(xué)。
    小學(xué)生的數(shù)學(xué)概念的形成是一個(gè)復(fù)雜的過(guò)程。特別是一些較難的數(shù)學(xué)概念,教學(xué)時(shí)需要一個(gè)深入細(xì)致的工作的長(zhǎng)過(guò)程。根據(jù)數(shù)學(xué)的特點(diǎn)和兒童的認(rèn)知特點(diǎn),教學(xué)時(shí)要注意以下幾點(diǎn)。
    (一)遵循兒童的認(rèn)知規(guī)律,引導(dǎo)學(xué)生抽象、概括出所學(xué)概念的本質(zhì)特征。例如,在低年級(jí)教學(xué)“乘法”這個(gè)概念時(shí),可以引導(dǎo)學(xué)生擺幾組圓形,每組的圓形同樣多,并讓學(xué)生先用加法再用乘法計(jì)算圓形的總數(shù)。通過(guò)比較引導(dǎo)學(xué)生總結(jié)出乘法是求幾個(gè)相同加數(shù)和的簡(jiǎn)便算法。教學(xué)長(zhǎng)方形時(shí),先引導(dǎo)學(xué)生測(cè)量它的邊和角,然后抽象、概括出長(zhǎng)方形的特征。這樣教學(xué)有助于學(xué)生形成所學(xué)的概念并發(fā)展他們的邏輯思維。
    (二)注意正確地理解所學(xué)的概念。教學(xué)經(jīng)驗(yàn)表明,學(xué)生對(duì)某一概念的理解常常顯示出不同的水平,盡管他們都參加同樣的活動(dòng)如操作、比較、抽象和概括等。有些學(xué)生甚至可能完全沒(méi)有理解概念的本質(zhì)特征。這就需要檢查所有的學(xué)生是否理解所學(xué)的概念。檢查的方法是多樣的,其中之一是把概念具體化。例如,給出一個(gè)乘法算式,如3×4,讓學(xué)生擺出圓形來(lái)說(shuō)明它表示每組有幾個(gè)圓形,有幾組。另一種方法是給出所學(xué)概念的幾個(gè)變式,讓學(xué)生來(lái)識(shí)別。例如,下圖中有幾個(gè)長(zhǎng)方形擺放的方向不同,讓學(xué)生把長(zhǎng)方形挑選出來(lái)。
    此外,還可以讓學(xué)生舉實(shí)例說(shuō)明某一概念的意義,如舉例說(shuō)明分?jǐn)?shù)、正比例的意義。
    (三)掌握概念間的聯(lián)系和區(qū)別。比較所學(xué)的概念并弄清它們的區(qū)別,可以使學(xué)生深刻地理解這些概念,并消除彼此間的混淆。例如,應(yīng)使學(xué)生能夠區(qū)分質(zhì)數(shù)與互質(zhì)數(shù),長(zhǎng)方形的周長(zhǎng)和面積,正比例和反比例等。在教過(guò)有聯(lián)系的概念之后,可以讓學(xué)生把它們系統(tǒng)地加以整理,以說(shuō)明它們之間的關(guān)系。例如,四邊形、正方形、長(zhǎng)方形、平行四邊形和梯形可以通過(guò)下圖加以系統(tǒng)整理,以說(shuō)明它們的關(guān)系。
    通過(guò)概念的系統(tǒng)整理使學(xué)生在頭腦中對(duì)這些概念形成良好的認(rèn)知結(jié)構(gòu)。
    (四)重視概念的應(yīng)用。學(xué)習(xí)概念的應(yīng)用有助于學(xué)生進(jìn)一步加。
    深理解所學(xué)的概念,把數(shù)學(xué)知識(shí)同實(shí)際聯(lián)系起來(lái),并且發(fā)展學(xué)生的邏輯思維。例如,學(xué)過(guò)長(zhǎng)方體以后,可以讓學(xué)生找出周?chē)h(huán)境中哪些物體的形狀是長(zhǎng)方體。學(xué)過(guò)質(zhì)數(shù)概念以后可以讓學(xué)生找出能整除60的質(zhì)數(shù)。
    我們的實(shí)驗(yàn)表明,由于采取了上述的措施,學(xué)生對(duì)概念的理解的正確率有較明顯的提高。下面是19xx年進(jìn)行的一次測(cè)驗(yàn)中有關(guān)學(xué)生掌握數(shù)學(xué)概念的測(cè)試結(jié)果。
    注:1.兩個(gè)實(shí)驗(yàn)班都是五年級(jí),年齡是11―12歲。一個(gè)對(duì)照班是五年制五年級(jí),另一個(gè)是六年制六年級(jí)。
    2.1991年用同一測(cè)驗(yàn)測(cè)試全國(guó)約200個(gè)實(shí)驗(yàn)班,也得到較好的結(jié)果。
    上面的測(cè)試結(jié)果表明,實(shí)驗(yàn)班學(xué)生學(xué)習(xí)數(shù)學(xué)概念的成績(jī),在認(rèn)數(shù)、幾何圖形,特別是在學(xué)習(xí)倒數(shù)、比例和扇形方面都優(yōu)于對(duì)照班的學(xué)生。最后一項(xiàng)測(cè)試結(jié)果還表明,實(shí)驗(yàn)班學(xué)生在發(fā)展空間觀念和作圖能力方面優(yōu)于對(duì)照班學(xué)生。
    四結(jié)論。
    在小學(xué)加強(qiáng)數(shù)學(xué)概念的教學(xué)對(duì)于提高學(xué)生的數(shù)學(xué)概念的認(rèn)知水平具有重要的意義。
    在小學(xué)如何確定教學(xué)的`數(shù)學(xué)概念是一個(gè)重要的復(fù)雜的問(wèn)題。在選定概念時(shí),既要很好地考慮需要,又要很好地考慮學(xué)生的接受能力。
    合理地安排數(shù)學(xué)概念對(duì)于學(xué)生掌握他們有很大幫助。在編排概念時(shí),既要充分考慮所教概念的邏輯系統(tǒng)性,又要照顧到不同年齡的學(xué)生的認(rèn)知特點(diǎn)。
    教學(xué)的策略對(duì)于形成學(xué)生的數(shù)學(xué)概念起著重要的作用。在教學(xué)概念時(shí)教師應(yīng)當(dāng)遵循兒童的認(rèn)知規(guī)律和激發(fā)學(xué)生思考的原則,并且注意使學(xué)生正確理解概念的義,掌握概念間的聯(lián)系和區(qū)別,并在實(shí)際中應(yīng)用所學(xué)的概念。
    (本文是1992年向第七屆國(guó)際數(shù)學(xué)教育會(huì)議提交的論文,曾在大會(huì)第一研討組上宣讀。)。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    數(shù)學(xué)概念是數(shù)學(xué)知識(shí)結(jié)構(gòu)中非常核心的內(nèi)容。學(xué)生對(duì)數(shù)學(xué)概念的理解與掌握是否準(zhǔn)確、清晰和完整,將直接影響到各種數(shù)學(xué)公式的學(xué)習(xí)和數(shù)學(xué)問(wèn)題的解決。因此,數(shù)學(xué)教師上好概念課是非常重要的。本文將結(jié)合具體的教學(xué)案例談?wù)勅绾斡行нM(jìn)行概念教學(xué)。
    一、創(chuàng)設(shè)情景,誘發(fā)需要,激起學(xué)習(xí)概念的欲望。數(shù)學(xué)概念的學(xué)習(xí)往往是比較抽象、枯燥的。如果在學(xué)習(xí)中能充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,常常能收到事半功倍之效。例如在教學(xué)“平均分”的認(rèn)識(shí)時(shí),我們創(chuàng)設(shè)了學(xué)生喜聞樂(lè)見(jiàn)的春游前分發(fā)物品的情景,問(wèn)學(xué)生怎樣分才公平?同時(shí)對(duì)教材進(jìn)行了必要的補(bǔ)充,提供給學(xué)生的物品既有可以分完的,也有分不完的。由于情景富于吸引力,學(xué)生躍躍欲試,在嘗試用學(xué)具操作的過(guò)程中體悟到每份要分得同樣多“才公平”.通過(guò)觀察、操作、歸納、分析,學(xué)生對(duì)平均分的理解呼之欲出,這時(shí)老師再適時(shí)引入“平均分”就水到渠成了。同時(shí),在分一分中客觀存在的“分不完,有剩余”的現(xiàn)象又為學(xué)生的后續(xù)學(xué)習(xí)有余數(shù)的除法做了鋪墊。與此同時(shí),在分的過(guò)程之中,教師有意識(shí)地將學(xué)生每次分的結(jié)果通過(guò)列表集中在一起,借助觀察表中的`數(shù)量關(guān)系,學(xué)生很容易就發(fā)現(xiàn)當(dāng)剛好分完的時(shí)候,可以用學(xué)過(guò)的求幾個(gè)幾的方法算出分的總量,這又自然溝通了乘法與除法之間的數(shù)量關(guān)系。而對(duì)于分不完有剩余的情況,學(xué)生也很自然想到要把不能繼續(xù)再分的部分(即余數(shù))加進(jìn)去才可以算出原來(lái)的總量。
    可見(jiàn),恰當(dāng)?shù)慕虒W(xué)情境既可以調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性又可以幫助突破教學(xué)重難點(diǎn)。又如在教學(xué)百分?jǐn)?shù)時(shí),教師并沒(méi)有直接出示百分?jǐn)?shù)的概念,而是創(chuàng)設(shè)了媽媽去商店選購(gòu)羊毛衣的生活情境,詢(xún)問(wèn)學(xué)生“一件羊毛衣上標(biāo)著100%的純羊毛,另一件標(biāo)著87%的純羊毛,你建議媽媽買(mǎi)哪件?為什么?”借助這種源于生活的討論,學(xué)生通常會(huì)感到趣味盎然,在不知不覺(jué)中學(xué)會(huì)了概念。
    反之,不是源于學(xué)生認(rèn)知需要的學(xué)習(xí),教學(xué)效果就大打折扣了。如關(guān)于“倍”的認(rèn)識(shí),有老師先擺了2朵紅花,然后又?jǐn)[了3個(gè)2朵藍(lán)花,然后告訴學(xué)生這時(shí)藍(lán)花是紅花的3倍。學(xué)生沒(méi)有認(rèn)識(shí)“倍”的內(nèi)在需要,而是硬生生地被告知這就是“倍”,這種毫無(wú)感情色彩的概念教學(xué),實(shí)踐證明學(xué)生會(huì)在后續(xù)的相關(guān)練習(xí)中經(jīng)常出錯(cuò)。
    二、創(chuàng)設(shè)多種情景,利用豐富的認(rèn)知材料,在充分動(dòng)手操作中感悟概念的本質(zhì)特征。
    總所周知,小學(xué)生的思維特征是形象直觀思維為主,抽象概括能力還比較有限,而低中段的學(xué)生尤為突出,這對(duì)概念的學(xué)習(xí)無(wú)疑是一種制約。因此教師在概念教學(xué)中應(yīng)盡可能地創(chuàng)設(shè)多種情景,讓學(xué)生在充分的動(dòng)手操作中感悟概念。如前面所說(shuō)的平均分的認(rèn)識(shí),我們不但根據(jù)教材讓學(xué)生用學(xué)具分一些很直觀的東西,同時(shí)我們還考慮到學(xué)生比較欠缺的一些生活中可能會(huì)接觸的與平均分相關(guān)的生活情景,如“每瓶水2元,12元可以買(mǎi)幾瓶水?”“15位同學(xué)坐船,每3人做一只小船,需要幾只小船?”“每天吃6粒藥丸,1瓶30粒的藥可以吃幾天?”在分一分中感悟這也是平均分的現(xiàn)象;由于在倍的初步認(rèn)識(shí)中我們有意識(shí)的拓寬平均分的生活情景,學(xué)生對(duì)平均分的認(rèn)識(shí)就不在局限于“分蘋(píng)果”這樣顯而易見(jiàn)的情景,在后續(xù)的問(wèn)題解決中難度自然降低。
    三、在形成概念之后再回到具體化。
    學(xué)習(xí)數(shù)學(xué)概念是為了解決數(shù)學(xué)問(wèn)題。概念的形成是將具體事物抽象概括的過(guò)程,在形成概念之后,要把這些本質(zhì)屬性推廣到同類(lèi)的事物中,這樣才有助于學(xué)生加深對(duì)概念的理解和利用。如平均分的學(xué)習(xí)并沒(méi)有在學(xué)生二年級(jí)時(shí)認(rèn)識(shí)了平均分的概念以后就結(jié)束了,到了三年級(jí)學(xué)習(xí)除數(shù)是一位數(shù)的除法時(shí),教師應(yīng)幫助學(xué)生在解決問(wèn)題的過(guò)程中進(jìn)一步鞏固對(duì)除法意義的認(rèn)識(shí)。
    總和言之,我們認(rèn)為在數(shù)學(xué)概念的教學(xué)中,教師應(yīng)根據(jù)學(xué)生的認(rèn)知規(guī)律充分調(diào)動(dòng)學(xué)生的積極性,利用各種變式材料,幫助學(xué)生掌握概念的內(nèi)涵與外延,并學(xué)以致用,利用對(duì)概念的理解解決相應(yīng)的數(shù)學(xué)問(wèn)題,從而真正掌握數(shù)學(xué)概念。
    參考文獻(xiàn)。
    1、怎樣讓低年級(jí)學(xué)生理解概念,金雪根,徐麗莉《中小學(xué)數(shù)學(xué)小學(xué)版》底1、2期。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    數(shù)學(xué)概念主要由內(nèi)涵和外延組成,外延即指概念額全體,而內(nèi)涵則指概念的本質(zhì)特征。要想把握好數(shù)學(xué)概念,其核心就在于要準(zhǔn)確理解其內(nèi)涵與外延。例如,對(duì)于平行四邊形這一概念而言,對(duì)邊平行且相等類(lèi)似的屬性綜合則屬于其內(nèi)涵,而正方形、菱形等則屬于它的外延對(duì)象。數(shù)學(xué)概念教學(xué)作為數(shù)學(xué)教學(xué)重要的組成部分,是進(jìn)行數(shù)學(xué)學(xué)習(xí)的核心,其根本任務(wù)就在于準(zhǔn)確揭示出概念的內(nèi)涵與外延。實(shí)施數(shù)學(xué)概念教學(xué)需要依據(jù)一定的指導(dǎo)思想,它融合了哲學(xué)、數(shù)學(xué)以及心理學(xué)三者的理論。同時(shí)實(shí)施數(shù)學(xué)概念教學(xué)還應(yīng)當(dāng)遵循一定的教學(xué)原則,例如:動(dòng)力性原則、過(guò)程性原則、層次性原則等。
    小學(xué)數(shù)學(xué)概念教學(xué)例談?wù)撐钠?/strong>
    怎樣讓這些枯燥、抽象的概念變得生動(dòng)有趣,使課堂教學(xué)更有效,減輕孩子們的學(xué)習(xí)負(fù)擔(dān),讓概念在孩子們心中得到完美內(nèi)化呢?或許我們可以從以下幾方面入手。
    一、概念的引入講述宜直觀形象。
    針對(duì)第一學(xué)段孩子的抽象思維能力較弱,對(duì)數(shù)學(xué)語(yǔ)言描述的概念理解較為困難,我們?cè)诮虒W(xué)中應(yīng)該多用形象的描述,創(chuàng)設(shè)有趣的問(wèn)題情境,打些合理的比方等,努力讓孩子們理解所學(xué)概念,可以采用以下一些方式來(lái)進(jìn)行教學(xué)。
    有據(jù)可依。形象生動(dòng)的講解,讓孩子們自然接受數(shù)學(xué)符號(hào)。教師的語(yǔ)言講解也要力求符合學(xué)生實(shí)際,特別是第一次描述時(shí),教師一定要斟字酌句地用孩子能理解的語(yǔ)言盡可能用數(shù)學(xué)語(yǔ)言簡(jiǎn)潔地描述。因?yàn)閷?duì)于第一次接觸新概念的孩子們來(lái)說(shuō),第一印象是最為深刻的。當(dāng)然在適當(dāng)?shù)臅r(shí)候我們也可以選擇讓孩子們根據(jù)自己的理解來(lái)說(shuō)一說(shuō)來(lái)試著對(duì)概念進(jìn)行解釋?zhuān)环矫嫱g人的解釋會(huì)讓孩子們概念的理解更為容易;另一方面也可以鍛煉一下孩子的數(shù)學(xué)語(yǔ)言表達(dá)能力。我們要記?。汉⒆觽兊臄?shù)學(xué)概念應(yīng)該是逐級(jí)遞進(jìn)、螺旋上升的(當(dāng)然要避免不必要的重復(fù)),以符合學(xué)生的數(shù)學(xué)認(rèn)知規(guī)律。很多時(shí)候第一學(xué)段的孩子對(duì)于部分?jǐn)?shù)學(xué)概念,只要能意會(huì)不必強(qiáng)求定要學(xué)會(huì)言傳。
    二、概念的學(xué)習(xí)宜多感官參與。
    心理學(xué)家皮亞杰指出:“活動(dòng)是認(rèn)識(shí)的基礎(chǔ),智慧從動(dòng)作開(kāi)始。”書(shū)上的數(shù)學(xué)概念是平面的,現(xiàn)實(shí)卻是豐富多彩的,照本宣科,簡(jiǎn)單學(xué)習(xí)自然無(wú)法讓這些數(shù)學(xué)概念成為孩子們數(shù)學(xué)知識(shí)的堅(jiān)固基石。如果我們能夠讓孩子們的多種感官參與學(xué)習(xí),讓平面的書(shū)本知識(shí)變得多維、立體,讓孩子們的感覺(jué)和思維同步,相信能取得很好的教學(xué)效果。
    教學(xué)《認(rèn)識(shí)鐘表》時(shí),鑒于時(shí)間是一個(gè)非常抽象的概念,時(shí)間單位具有抽象性,時(shí)間進(jìn)率具有復(fù)雜性,所以在教學(xué)時(shí)我以學(xué)生已有生活經(jīng)驗(yàn)為基礎(chǔ),幫助學(xué)生通過(guò)具體感知,調(diào)動(dòng)孩子的多種感官參與學(xué)習(xí),在積累感性認(rèn)識(shí)的基礎(chǔ)上,建立時(shí)間觀念,安排了以下一些教學(xué)環(huán)節(jié)。1.動(dòng)耳聽(tīng)故事,調(diào)動(dòng)情感引入。講了一個(gè)發(fā)生在孩子們身邊的故事:豆豆由于不會(huì)看時(shí)間,結(jié)果錯(cuò)過(guò)了最?lèi)?ài)看的動(dòng)畫(huà)片。2.動(dòng)眼看鐘面,聽(tīng)介紹,初步了解鐘面,形成“時(shí)、分”概念。動(dòng)畫(huà)是孩子們的最?lèi)?ài),讓鐘表爺爺來(lái)介紹鐘面、時(shí)針、分針,生動(dòng)有趣的講解,讓孩子們的心立刻專(zhuān)注地進(jìn)行于課堂上。3.動(dòng)嘴說(shuō)時(shí)間,喜好分明。4.動(dòng)手撥時(shí)間。5.動(dòng)腦畫(huà)時(shí)間(此時(shí)在前幾項(xiàng)練習(xí)的基礎(chǔ)上增加了一定難度,如出示一些沒(méi)有數(shù)字的鐘面,只有12、3、6、9四點(diǎn)的鐘面,讓孩子們對(duì)時(shí)針、分針的位置進(jìn)行估計(jì))。
    通過(guò)這些活動(dòng),使孩子們口、手、耳、腦并用,自主地鉆入到數(shù)學(xué)知識(shí)的探究中去,讓時(shí)間從孩子們的生活中伶伶俐俐地變成數(shù)學(xué)知識(shí),形成了數(shù)學(xué)概念。同時(shí)也讓學(xué)生充分展示自己的思維過(guò)程,展現(xiàn)自己的認(rèn)識(shí)個(gè)性,從而使課堂始終處于一種輕松、活躍的狀態(tài)。
    另外,教師在教學(xué)的過(guò)程中也應(yīng)該對(duì)所教概念的知識(shí)生長(zhǎng)點(diǎn),今后的發(fā)展(落腳點(diǎn))有一個(gè)全面、系統(tǒng)的認(rèn)識(shí),才能使得所教概念不再那么單薄,變得厚重起來(lái)。孩子對(duì)概念的來(lái)龍去脈有一個(gè)更清晰完整的了解,理解起來(lái)也就變得輕松。
    三、概念的練習(xí)宜生動(dòng)有趣。
    第一學(xué)段初期的孩子從心理狀態(tài)上來(lái)說(shuō)較難適應(yīng)學(xué)校的教學(xué)生活,在學(xué)習(xí)中總是會(huì)感到疲勞乏味,碰到相對(duì)枯燥的概念教學(xué)時(shí)這種疲憊更是由內(nèi)而外。德國(guó)教育家福祿培爾在其代表作《幼兒園》中認(rèn)為,游戲活動(dòng)是兒童活動(dòng)的特點(diǎn),游戲和語(yǔ)言是兒童生活的組成因素,通過(guò)各種游戲,組織各種有效的活動(dòng),兒童的內(nèi)心活動(dòng)和內(nèi)心生活將會(huì)變?yōu)楠?dú)立的、自主的外部自我表現(xiàn),從而獲得愉快、自由和滿(mǎn)足。將游戲用于教學(xué),將能使兒童由被動(dòng)變?yōu)橹鲃?dòng),積極地汲取知識(shí)。
    游戲、活動(dòng)是孩子們的最?lèi)?ài),讓他們?cè)谟螒蚧顒?dòng)中獲取知識(shí),這樣的知識(shí)必定是美好而快樂(lè)的。有了這樣的感覺(jué),孩子們學(xué)習(xí)數(shù)學(xué)的興趣一定是濃厚的,我們?cè)僮寯?shù)學(xué)的魅力適度展示,讓他們感覺(jué)到學(xué)習(xí)數(shù)學(xué)不但是一件輕松、快樂(lè)的事更是一件有意義的事。我想他們繼續(xù)進(jìn)行探索、學(xué)習(xí)新知的動(dòng)力就來(lái)自于此了。
    四、概念的拓展宜實(shí)在有效。
    美國(guó)實(shí)用主義哲學(xué)家、教育家杜威從他的“活動(dòng)”理論出發(fā),強(qiáng)調(diào)兒童“從做中學(xué)”“從經(jīng)驗(yàn)中學(xué)”,讓孩子們?cè)谥鲃?dòng)作業(yè)中運(yùn)用思想、產(chǎn)生問(wèn)題、促進(jìn)思維和取得經(jīng)驗(yàn)。確實(shí),在一些親力親為的數(shù)學(xué)小實(shí)驗(yàn)中,孩子們表現(xiàn)出了一種自然的主動(dòng)的學(xué)習(xí)情緒。他們以充沛的精力在這些小實(shí)驗(yàn)、小研究中主動(dòng)地討論所發(fā)生的事,想出種種方案去解決問(wèn)題,使智力獲得了充分的應(yīng)用和發(fā)展。在數(shù)學(xué)概念的教學(xué)中,設(shè)計(jì)一些孩子能力所能致的小研究活動(dòng),可以讓孩子對(duì)這些抽象的數(shù)學(xué)概念得到進(jìn)一步體驗(yàn)、內(nèi)化,得到課堂教學(xué)所不能抵達(dá)的效果。
    孩子對(duì)于較大的單位比如說(shuō)“千米”“噸”等,由于其經(jīng)驗(yàn)的限制往往沒(méi)有什么概念。只是,教師這樣說(shuō)了,他也便這樣記了,對(duì)他而言也僅僅只是一個(gè)簡(jiǎn)單的字符而已。僅僅通過(guò)課堂教學(xué),那么“千米”在孩子們的印象中便是“1千米=1000米”是一個(gè)不能用手丈量的長(zhǎng)度;“噸”在孩子們的印象中便是“1噸=1000千克”是一個(gè)拿不動(dòng)的質(zhì)量。至于“1千米”到底有多長(zhǎng),“1噸”到底有多重?孩子們心中并無(wú)底,才使得經(jīng)常會(huì)出現(xiàn):一幢居民樓高約20(千米);一節(jié)火車(chē)車(chē)廂載重量為60(千克)這樣的笑話。如果我們能讓孩子們來(lái)進(jìn)行切身的體驗(yàn)再附以一些小實(shí)驗(yàn),這些問(wèn)題便能迎刃而解了。
    概念是枯燥的、乏味的,但卻是重要的。對(duì)于第一學(xué)段的孩子們我們不能假定他們都非常清楚學(xué)習(xí)數(shù)學(xué)概念的重要性,指望他們能投入足夠的時(shí)間和精力去學(xué)習(xí)數(shù)學(xué)概念,也不能單純地依賴(lài)教師或家長(zhǎng)的“權(quán)威”去迫使孩子們這樣做。那么就需要我們積極地引領(lǐng)他們,使之學(xué)得輕松,學(xué)得扎實(shí),讓他們體會(huì)到數(shù)學(xué)所散發(fā)出的無(wú)窮魅力,讓概念深入心中,為數(shù)學(xué)學(xué)習(xí)服務(wù)。