教案的編寫需要根據(jù)教材內(nèi)容和學生特點進行靈活調(diào)整。編寫教案要注意在教學過程中注重啟發(fā)學生的思維,提高學生的學習能力。以下是一些經(jīng)驗豐富的教師分享的教案示范,供大家學習和借鑒。
因數(shù)與倍數(shù)五年級數(shù)學教案篇一
尊敬的各位領導、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
一、說教材:
《因數(shù)和倍數(shù)》是小學人教版課程標準實驗教材五年級下冊第二單元的內(nèi)容,也是小學階段“數(shù)與代數(shù)”部分最重要的知識之一。《因數(shù)和倍數(shù)》的學習,是在初步認識自然數(shù)的基礎上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
根據(jù)教材所處的地位和前后關系,確定了以下目標:
知識技能目標:
掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
情感,價值目標:培養(yǎng)學生合作、觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心和求知欲。
教學重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
二、學情分析:
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調(diào)動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數(shù)學中的奧妙。
三、教法與學法指導。
當今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學生為本”課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質(zhì)打下一定的基礎。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設計。
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
四,教學過程。
1、揭示主題。
老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。
2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
教師出示前置性作業(yè),小組內(nèi)交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現(xiàn)了教師的主導作用和學生的主體地位。使學生在交流中培養(yǎng)了合作學習的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。
一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學生在已有的經(jīng)驗基礎上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權交給學生,教師通過引導,使學生加深理解,化解難點。
4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。
5、引導學生置疑,集體交流,化解疑問。
便于學生對本課所學知識更好的消化理解。
三、練習。
練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現(xiàn)了課堂教學的有效性。
因數(shù)與倍數(shù)五年級數(shù)學教案篇二
人教版小學數(shù)學五年級下冊第17、18頁。
1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個數(shù)是不是2、5的倍數(shù)。
2.我知道什么是奇數(shù)和偶數(shù)。
了解2、5的倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
能正確地求出符合要求的數(shù)。
收集電影票。
一、導入新課。
二、檢查獨學。
1.互動,檢查獨學部分第1、2題完成情況。
2.質(zhì)疑探討。
三、合作探究。
(一)2、5的倍數(shù)的特征。
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規(guī)律。
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發(fā)現(xiàn)了:
(二)奇數(shù)和偶數(shù)。
1.自主閱讀教材。根據(jù)自學內(nèi)容,我知道:
根據(jù)是否是2的倍數(shù),可把自然數(shù)分為和兩類。是2的倍數(shù)的數(shù)叫做,不是2的倍數(shù)的數(shù)叫做。
2.組內(nèi)交流,并討論:0是不是2的倍數(shù)?為什么?
3.匯報總結。
4.我能說出身邊的奇數(shù)和偶數(shù)。
5.做一做(第17頁)。
因數(shù)與倍數(shù)五年級數(shù)學教案篇三
認識因數(shù)和倍數(shù)(教材第5頁內(nèi)容,以及第7頁練習二的第1題)。
1.從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2.培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3.培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
因數(shù)與倍數(shù)五年級數(shù)學教案篇四
《因數(shù)和倍數(shù)》是人教版小學數(shù)學五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領會意圖,做到用教材教。
我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關系明確的看到因數(shù)倍數(shù)這種相互依存的關系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導??磥盱`活的運用教材,深放領會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設計已經(jīng)能夠體現(xiàn)學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學例1再學例2的方式更容易讓學生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導更有效!
因數(shù)與倍數(shù)五年級數(shù)學教案篇五
人教版小學數(shù)學五年級下冊第23、24頁。
1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質(zhì)疑探討。
3.試試身手:第23頁做一做。
三、合作探究
1.小組合作,利用課本24頁的表格,用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
我的想法________________________________
4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
5.獨立思考:
(1)是不是所有的質(zhì)數(shù)都是奇數(shù)?(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內(nèi)交流。
因數(shù)與倍數(shù)五年級數(shù)學教案篇六
教學內(nèi)容:
教材分析:
本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。
教學目標:
2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經(jīng)驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行?。A設)。
嘗試題:14的因數(shù)有哪幾個?
(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動??偨Y方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結。
師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
因數(shù)與倍數(shù)五年級數(shù)學教案篇七
人教版小學數(shù)學五年級下冊教材第12—13頁。
1.我能理解因數(shù)與倍數(shù)的含義。
2.我會有序地思考,掌握了找一個數(shù)的因數(shù)的方法。
3.我知道一個數(shù)的因數(shù)的個數(shù)是有限的。
理解因數(shù)和倍數(shù)的含義,掌握求一個數(shù)的因數(shù)的方法。
能熟練地找一個數(shù)的因數(shù)。
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質(zhì)疑探討。
三、合作探究
1.小組討論:乘法算式中的因數(shù)和這里講的因數(shù)一樣嗎?
(1)我的想法:________________________________
(2)小組代表交流、匯報。
(3)自讀課本第12頁下面的一段話。
2.自學課本第13頁例1。思考:
(1)18的因數(shù)有________、________、________、________、________、________,共 有________個。
(2)18的最小因數(shù)是________,最大因數(shù)是________。它的因數(shù)的個數(shù)是________的。
(3)也可以這樣表示: 18的因數(shù)
3.組內(nèi)交流并討論:怎樣找最快,而且不容易遺漏?
我的想法:________________________________
4.小組代表匯報,總結。
5.試試身手(第13頁“做一做”)。
因數(shù)與倍數(shù)五年級數(shù)學教案篇八
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數(shù)學與生活的聯(lián)系。
一、基本訓練。
1、我們已經(jīng)掌握了找兩個數(shù)的.公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數(shù)和最小公倍數(shù)練習)。
2、填空。
5的倍數(shù)有:()。
7的倍數(shù)有:()。
5和7的公倍數(shù)有:()。
5和7的最小公倍數(shù)是:()。
3、完成練習四第5題。
(1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
每題中的兩個數(shù)有什么特征呢?(倍數(shù)關系)可以得出什么結論?
(4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。
在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
4、完成練習四第6題。
你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?
交流,匯報。
說說你是怎么想的?
二、提高訓練。
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))
三、課堂小結。
通過練習,同學們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節(jié)課的收獲。
因數(shù)與倍數(shù)五年級數(shù)學教案篇九
認識自然數(shù)和整數(shù),倍數(shù)和因數(shù)。
1、結合具體情境,認識自然數(shù)和整數(shù),聯(lián)系乘法認識倍數(shù)和因數(shù)。初步探索找一個數(shù)的倍數(shù)的方法,能在1——100的自然數(shù)中,找出10以內(nèi)某數(shù)的所有倍數(shù)。
2、學生經(jīng)歷探索認識倍數(shù)和因數(shù)的含義,能對生活中有關的數(shù)字作出合理的解釋。在教師幫助下,初步學會選擇有用的信息進行簡單地歸納與類比,發(fā)展合情推理能力。
3、在老師、同學的幫助下,對身邊與數(shù)學有關的某些事物有好奇心,參與數(shù)學活動,體驗數(shù)學與日常生活密切聯(lián)系。
探究倍數(shù)和因數(shù)。
倍數(shù)和因數(shù)的關系的理解。
一、結合“水果店”情境圖,認識自然數(shù)和整數(shù)。
1、談話引入。
2、出示水果店情境圖。
(1)學生活動:找一找。仔細觀察圖中有哪些數(shù)?我能找到幾個?全班進行交流。
(2)教師提示:還有要補充的嗎?(目的是讓學生找出圖中隱含的數(shù)字,比如0,1/2等。
(3)學生活動:分一分。你能把它們分分類嗎?學生單獨活動,教師幫助有困難的學生。全班再進行交流。交流時讓學生說出分類的標準和分類的結果。教師要適當?shù)剡M行引導,為下面教學自然數(shù)和整數(shù)做準備。
(4)根據(jù)學生的分類情況,加上教師的適當引導,揭示什么樣的數(shù)是自然數(shù),什么樣的數(shù)是整數(shù)?并讓學生舉出例子來進一步說明和鞏固。
二、利用整數(shù)乘法認識倍數(shù)和因數(shù)。
1、解決:買5千克梨需要多少錢?
5×4=20(元)。
2、利用算式說明倍數(shù)和因數(shù)的含義。
(1)說明含義。20是4和5的倍數(shù);4和5是20的因數(shù)(需進一步使學生明確,20是4的倍數(shù)也是5的倍數(shù);4是20的因數(shù),5也是20的因數(shù))關于倍數(shù)和因數(shù)這種相互依存的關系,學生第一次接觸,教師要讓學生多說一說,并通過一定的例證進一步說明。
(2)舉例說明。舉出一個乘法算式,說出其中的因數(shù)和倍數(shù)關系。
(3)練習:說一說。第3頁“說一說”先自己試說,同桌之間交流后,再進行全班交流。
3、說明研究倍數(shù)和因數(shù)的范圍。教師根據(jù)課堂生成,相機給出“只在自然數(shù)(零除外)的范圍內(nèi)研究倍數(shù)和因數(shù)”這個規(guī)定。
三、練習鞏固,加深理解。
1、第3頁:找一找。學生獨立理解題意后,先自己找出7的倍數(shù),小組內(nèi)交流自己找的方法。全班交流時讓學生在比較后得出用乘法算式的方法來找一個數(shù)的倍數(shù)比較方便快捷。同時使學生領悟到:這個數(shù)是7的倍數(shù),那么7同時也是這個數(shù)的因數(shù)。通過試一試:你還能找出7的其它倍數(shù)嗎?使學生體會到一個數(shù)的倍數(shù)是無限的。
2、同桌練習:你寫我說。在學生弄懂題目意思后,再開展活動。活動后讓中后生進行全班交流。
3、比一比:看誰找的快。
(1)自己找,比比誰找的快。要求作出各自的符號。
(2)組織交流,比比誰的方法好,比比誰找的對。
(3)歸納。說說哪幾個數(shù)既是4的倍數(shù),又是6的倍數(shù)。為學習公倍數(shù)作準備。
4、獨立練習。寫出100以內(nèi)全部6的倍數(shù)。交流時,體會怎樣做到不重復,不遺漏,進一步明確方法。
5、討論:根據(jù)除法算式如何說倍數(shù)和因數(shù)。例如:15÷3=5.
四、全課小結。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇В瑫r,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
教材中首先引導學生理解數(shù)與數(shù)之間的關系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學倍數(shù)和因數(shù)的意義。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學生“看著算式你還能想到什么?”很多學生已經(jīng)領會12也是4的倍數(shù),指名說后,再強化一下讓學生連起來說說誰是誰的倍數(shù)。接著教學“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學生很容易聯(lián)想到“4也是12的因數(shù)”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關系之后,接著練一練讓學生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數(shù)和因數(shù)的意義。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學生建立相應的數(shù)學模型。
探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學生按除法通過自主探究找出24的所有因數(shù),接著組織學生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學4的倍數(shù)時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導學生建構完整的倍數(shù)的數(shù)學模型呢?我遵循學生的認知規(guī)律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學生的腦海中得以完善、合理建構。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構了數(shù)學模型。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十一
4、培養(yǎng)學生的觀察能力。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的.你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
三、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習二1~4題。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十二
教學目標:
1、同學掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、同學能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)同學的觀察能力。
教學過程:
一、引入新課。
1、出示主題圖,讓同學各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);。
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?同學寫算式。
師:誰來出一個算式考考全班同學?
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
同學嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的.時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的自身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓同學完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它自身,沒有最大的倍數(shù))。
三、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習二1~4題。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十三
認識因數(shù)和倍數(shù)(教材第5頁內(nèi)容,以及第7頁練習二的第1題)。
【教學目標】。
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
【重點難點】。
【復習導入】。
1、教師用課件出示口算題。
10÷5=16÷2=。
12÷3=100÷25=。
220÷4=18×4=。
25×4=24×3=。
150×4=20×86=。
學生口算。
2、導入:在乘法算式中,兩個因數(shù)相乘,得到的結果叫做它們的積。乘法算式表示的是一種相乘的關系,在除法算式中,兩個數(shù)相除,得到的結果叫做它們的商。除法算式表示的是一種相除的關系,在整數(shù)乘法和除法中還有另一種關系,這就是我們這一節(jié)課要學習探討的內(nèi)容。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十四
因數(shù)和倍數(shù)是小學數(shù)學中非常基礎而重要的概念。因數(shù)指的是一個數(shù)能夠被另一個數(shù)整除,而倍數(shù)則是指一個數(shù)是另一個數(shù)的整數(shù)倍。在五年級數(shù)學學習中,我們已經(jīng)開始了深入的了解和研究因數(shù)和倍數(shù)。
第二段:因數(shù)的學習和理解。
在學習中,我們首先了解了因數(shù)的定義和性質(zhì),學會了如何求一個數(shù)的因數(shù),還進行了練習,從中歸納如下規(guī)律:一個數(shù)的因數(shù)的個數(shù)有限,且其中一半是小于它的數(shù)的因數(shù),一半是大于它的數(shù)的因數(shù)。同時還學會了不同的因數(shù)化式,例如質(zhì)因數(shù)分解、因數(shù)分解、公因式、最大公因數(shù)等。
第三段:倍數(shù)的學習和理解。
接著,我們深入學習了倍數(shù)的概念和運算,學會了求一個數(shù)的倍數(shù)以及找到兩個數(shù)的公倍數(shù)。我們對倍數(shù)的認識進行了系統(tǒng)的了解,掌握了描繪倍數(shù)之間關系的工具,例如最小公倍數(shù)。在這一過程中,我們學會了用圖示或等式描述倍數(shù),以及如何尋找它們的特定模式。
在學習中,我們還積極地了解了因數(shù)和倍數(shù)之間的聯(lián)系,發(fā)現(xiàn)了它們之間不可忽視的同一性和區(qū)別。因數(shù)和倍數(shù)是緊密相關的,它們彼此間有著重要的聯(lián)系。通過分析它們的聯(lián)系,我們發(fā)現(xiàn):我們首先找到數(shù)列的公共因數(shù)或它們的最大公因數(shù),這樣,我們就能夠快速找到任意一組數(shù)的公共倍數(shù)。
第五段:對因數(shù)和倍數(shù)的學習的感想。
搞完這門課程,我深刻認識到因數(shù)和倍數(shù)的重要性,它們可以方便地解決許多數(shù)學問題,并且在實際生活中也非常實用。這門課程也鍛煉了我們的思考能力、計算能力以及分析問題的能力。同時,我也意識到了在學習過程中,做好課前預習是非常重要的。因為難點在前,問題在前,把課前預習做好了,課堂上遇到的也會輕松很多。做好好課前預習,掌握課堂重點,能夠讓我的學習更加高效,提高了學習效率。
總之,學習因數(shù)和倍數(shù)是我們五年級必修的數(shù)學課程,它對我們的日常生活中的數(shù)學運算有重要的幫助。深入學習和理解因數(shù)和倍數(shù),是我們扎實掌握小學數(shù)學的重要體現(xiàn)。我們需要在實踐中繼續(xù)加深對因數(shù)和倍數(shù)的認識,優(yōu)化學習方法,提高學習效率。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十五
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎。
本課的教學重點是求一個數(shù)的因數(shù),在學生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關系的基礎上,對學生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學例題“找出18的因數(shù)”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結合自己對因數(shù)概念的理解,找到解決問題的`方法(培養(yǎng)學生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。
在這個學習活動環(huán)節(jié)中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。特別是用除法找因數(shù)的學生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。
在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導學生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學情(絕大多數(shù)學生能夠運用所學知識,找到求因數(shù)的方法),如教師一開始就引導學生:想幾和幾相乘,勢必會造成先入為主,妨礙學生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構新知是提高學生學習能力的有效途徑,讓學生獨立思考、自主探索、促思(促進學生思維發(fā)展)、提能(提高學習能力)是我的教學策略主要內(nèi)容。
至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學生的學習潛力是巨大的,教師是學生學習的引領者,因此教師的觀念和行為決定了學生的學習方式和結果,所以我認為教師要專研教材,充分利用教材,根據(jù)學生的實際情況,創(chuàng)造性地使用教材,為學生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學生學習的主體地位。
學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十六
《因數(shù)和倍數(shù)》這一內(nèi)容,學生初次接觸。在導入中我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。讓學生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。
放手讓每個同學找出36的所有因數(shù),學生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。
在最后的環(huán)節(jié)中我設計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。
這堂課我還存在許多不足,我的教學理念很清楚,課堂上學生是主體教師只是合作者。但在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十七
聽了一節(jié)數(shù)學課——《倍數(shù)與因數(shù)》,真的是感受頗深,受益匪淺,讓我充分領略了課堂教學的無窮藝術魅力?,F(xiàn)就這次學習談一談自己的點滴體會。
一、收獲。
1、出去聽課比在學校閉門造車受益要快要多,來得更直接。
2、真實——課堂教學應該追求的境界。
3、情境——創(chuàng)設貼近生活的教學情境是課堂教學有效的手段。
教學情境的設置應注重來自于生活,并不是每一節(jié)課都要設置與生活緊密結合的情境,而是盡量貼近于生活,這樣學生學習起來便于思考操作,同時也能在生活中加以應用。特別是像我們學校的學生更要注重與生活實際的結合,因為我們的目標就是要讓學生通過學習掌握解決生活中出現(xiàn)的一些問題的手段方法,掌握技能。所以情境的創(chuàng)設需要我在生活中教學中多觀察,多思考,多操作。
4、三維目標的整合——課堂教學的更高要求。
教育理念的轉(zhuǎn)變正在發(fā)生巨大的變化,本節(jié)課中的“三維目標”要求教師在教學中盡量做到這三個目標的整合,而且是“品之有味,尋之無跡”,如在這節(jié)數(shù)學課的教學中,她通過教學讓學生體會到了,不同的事物從不同的角度去看去評定都會有不同的結果和答案,那么做人就是這樣我們不應該以一種標準去看待我們周邊的人、事,我們要從多角度去思考一個問題,所以這節(jié)課就是在這樣的看似在作練習的過程中,讓學生通過學習知識,提高了學生分析判斷事物的能力,同時也教會學生如何做人。做到了“三維目標的整合”。
5、亮點——讓課堂教學生輝的裝飾品。
能讓聽者有暢所欲言的欲望的課就是一節(jié)好課,能夠讓聽者回去就可借鑒操作的也是一節(jié)好課,我覺得一節(jié)好課并非是很完美的,哪怕只有一個亮點,能夠引起大家共鳴,我覺得都是好課,其實這位老師的課并不是像我想象中的那么好,而且在我們學校應用起來未必就很實用,但是在他練習的設計中,他采用了層層遞進、小組合作,并讓學生進行質(zhì)疑,我感到了教學的效果非常好,這就是一個亮點,使這節(jié)課生輝。
6、教師素質(zhì)之高,學生習慣之好。是我們該思考如何去做。
二、自我反思。
總之,觀摩了這位老師的課,聆聽了教研室教學質(zhì)量分析,我充分認識到每一次外出學習對于我都是一種反思和激勵,讓我在欣賞別人精彩的同時發(fā)現(xiàn)了自己的很多不足,在以后的教學中,一定要嚴格要求自己:做到課前認真解讀教材,根據(jù)學生的實際情況設計出合理的教學流程;課后認真反思,堅持寫好教學后記;多看書學習,多做筆記,不斷提高自己教學業(yè)務水平。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十八
《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。
2、由偶數(shù)都是2的倍數(shù),復習2的`倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關系,加深了學生對倍數(shù)與因數(shù)相互依存關系的理解和認識。
3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復習什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
將本文的word文檔下載到電腦,方便收藏和打印。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十九
倍數(shù)和因數(shù)一課是蘇教版數(shù)學第八冊中的內(nèi)容。這一內(nèi)容是在學生已經(jīng)分階段認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù),較為系統(tǒng)地掌握了十進制記數(shù)法,同時也基本完成了整數(shù)四則運算基礎上進行的教學,主要是要使學生初步認識倍數(shù)和因數(shù)的意義,學會在1-100的自然數(shù)中找10以內(nèi)某個數(shù)的所有倍數(shù)和100以內(nèi)某個數(shù)的所有因數(shù)的方法。這是學生進一步學習公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算的基礎,對以后的學習起著重要的作用。
1、知識與技能目標:使學生結合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法,并能找一個數(shù)的倍數(shù)和因數(shù)。
2、過程與方法目標:引導學生自主探究找一個數(shù)倍數(shù)和因數(shù)的方法,體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
3、情感與態(tài)度目標:在學習活動中激發(fā)學生學習數(shù)學的興趣和自信心。
4、重點:理解因數(shù)和倍數(shù)的含義,知道它們呢的關系是相互依存的。
5、難點:探索并掌握求一個數(shù)的倍數(shù)和因數(shù)的方法。
(一)認識倍數(shù)和因數(shù)。
認識倍數(shù)和因數(shù)時,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,引導學生在操作中得到乘積相同的不同乘法算式,并進一步引出倍數(shù)和因數(shù)的概念。倍數(shù)和因數(shù)是指兩個數(shù)之間的關系,不能單獨說某數(shù)倍數(shù)或因數(shù),這一點學生往往搞不清,為了使學生明白倍數(shù)和因數(shù)是一種相互依存的關系,我舉了生活中的兄弟關系,母女關系的例子幫助學生理解,讓學生感受到數(shù)學與生活的聯(lián)系,同時也讓學生明白,用數(shù)學知識解決生活問題是學習數(shù)學的真正目的。
(二)探索求一個數(shù)的倍數(shù)的方法。
從例1中得出:12是3的倍數(shù),又把學生舉的一個3的倍數(shù)的例子有目的地寫在黑板上結合起來看,引導學生說出3的倍數(shù)還有哪些。學生在舉例子時說出來的數(shù)是無序的,這時教師引導學生思考怎樣才能按從小到大的順序有條理地找出3的倍數(shù),促使學生去關注思想方法,并在學生討論交流中感受有序的思想方法。
在學生掌握方法的基礎上,采用比賽的形式要求學生有序地寫出2、5的倍數(shù),然后在整體觀察2、3、5倍數(shù)的基礎上通過學生討論,一個數(shù)倍數(shù)的特點。培養(yǎng)了學生觀察、比較、歸納概念的能力。
(三)探索求一個數(shù)的因數(shù)的方法。
從例中看出4、3、6、2、12、1都是12的因數(shù),那我們可以怎樣找一個數(shù)的因數(shù)呢?先讓學生獨自找36的因數(shù),再指名幾個學生說說是怎么找的,通過幾位學生找的方法的比較得出較合理的方法。接著又找了15、16的因數(shù),歸納出一個數(shù)因數(shù)的特點。
(四)全課小結。
(五)鞏固練習。
為了提高學生學習興趣,鞏固所學知識,我又補充了兩個練習:
1、判斷題目的是強化學生對基礎知識的掌握。
2、出示幾張數(shù)字卡片。從中選擇只有倍數(shù)和因數(shù)關系,比誰選擇得多。
因數(shù)與倍數(shù)五年級數(shù)學教案篇二十
一.填空題。
1.都是自然數(shù),如果,的最大公約數(shù)是(),最小公倍數(shù)是()。
2.甲,乙,甲和乙的最大公約數(shù)是()×()=(),甲和乙的最小公倍數(shù)是()×()×()×()=()。
3.所有自然數(shù)的公約數(shù)為()。
4.如果m和n是互質(zhì)數(shù),那么它們的最大公約數(shù)是(),最小公倍數(shù)是()。
5.在4、9、10和16這四個數(shù)中,()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù)。
6.人教版小學五年級數(shù)學下冊因數(shù)和倍數(shù)測試題:用一個數(shù)去除15和30,正好都能整除,這個數(shù)最大是()。
*7.兩個連續(xù)自然數(shù)的和是21,這兩個數(shù)的最大公約數(shù)是(),最小公倍數(shù)是()。
*8.兩個相鄰奇數(shù)的和是16,它們的最大公約數(shù)是(),最小公倍數(shù)是()。
**9.某數(shù)除以3、5、7時都余1,這個數(shù)最小是()。
10.根據(jù)下面的要求寫出互質(zhì)的兩個數(shù)。
(1)兩個質(zhì)數(shù)()和()。(2)連續(xù)兩個自然數(shù)()和()。
(3)1和任何自然數(shù)()和()。(4)兩個合數(shù)()和()。
(5)奇數(shù)和奇數(shù)()和()。(6)奇數(shù)和偶數(shù)()和()。
二.判斷題。
1.互質(zhì)的兩個數(shù)必定都是質(zhì)數(shù)。()2.兩個不同的奇數(shù)一定是互質(zhì)數(shù)。()。
3.最小的質(zhì)數(shù)是所有偶數(shù)的最大公約數(shù)。()4.有公約數(shù)1的兩個數(shù),一定是互質(zhì)數(shù)。()5.a是質(zhì)數(shù),b也是質(zhì)數(shù),,一定是質(zhì)數(shù)。()。
三.直接說出每組數(shù)的最大公約數(shù)和最小公倍數(shù)。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52(2、3和7()。
(1)如果數(shù)a能被數(shù)b整除,a就叫做b的(),b就叫做a的()。
(2)12的最小的約數(shù)是(),最大約數(shù)是(),最小的倍數(shù)是()。
(3)15的`全部約數(shù)有()。
(4)1—20中:奇數(shù)是(),偶數(shù)是(),
質(zhì)數(shù)是(),合數(shù)是()。
(5)1,2,15,17,24各數(shù)中,既不是質(zhì)數(shù)也不是合數(shù)的是(),
既不是質(zhì)數(shù)又不是偶數(shù)的是(),既不是奇數(shù)又不是合數(shù)的是()。
(6)在66,390,12,165,105,91各數(shù)中,
能被2整除的數(shù)有(),能被3整除的數(shù)有(),
能被5整除的數(shù)有(),能同時被2、3整除的數(shù)有(),
能同時被2、5整除的數(shù)有(),能同時被3、5整除的數(shù)有(),
能同時被2、3、5整除的數(shù)有(),
(7)a和b是互質(zhì)數(shù),則a和b最大公約數(shù)是(,最小公倍數(shù)是()。
(8)用0、1、2、3組成一個能同時被2、3、5整除的最小四位數(shù)是()。
(9)a是b的倍數(shù),則a、b最大公約數(shù)是(),最小公倍數(shù)是()。
將本文的word文檔下載到電腦,方便收藏和打印。
因數(shù)與倍數(shù)五年級數(shù)學教案篇一
尊敬的各位領導、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
一、說教材:
《因數(shù)和倍數(shù)》是小學人教版課程標準實驗教材五年級下冊第二單元的內(nèi)容,也是小學階段“數(shù)與代數(shù)”部分最重要的知識之一。《因數(shù)和倍數(shù)》的學習,是在初步認識自然數(shù)的基礎上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
根據(jù)教材所處的地位和前后關系,確定了以下目標:
知識技能目標:
掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
情感,價值目標:培養(yǎng)學生合作、觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心和求知欲。
教學重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
二、學情分析:
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調(diào)動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數(shù)學中的奧妙。
三、教法與學法指導。
當今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學生為本”課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質(zhì)打下一定的基礎。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設計。
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
四,教學過程。
1、揭示主題。
老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。
2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
教師出示前置性作業(yè),小組內(nèi)交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現(xiàn)了教師的主導作用和學生的主體地位。使學生在交流中培養(yǎng)了合作學習的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。
一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學生在已有的經(jīng)驗基礎上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權交給學生,教師通過引導,使學生加深理解,化解難點。
4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。
5、引導學生置疑,集體交流,化解疑問。
便于學生對本課所學知識更好的消化理解。
三、練習。
練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現(xiàn)了課堂教學的有效性。
因數(shù)與倍數(shù)五年級數(shù)學教案篇二
人教版小學數(shù)學五年級下冊第17、18頁。
1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個數(shù)是不是2、5的倍數(shù)。
2.我知道什么是奇數(shù)和偶數(shù)。
了解2、5的倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
能正確地求出符合要求的數(shù)。
收集電影票。
一、導入新課。
二、檢查獨學。
1.互動,檢查獨學部分第1、2題完成情況。
2.質(zhì)疑探討。
三、合作探究。
(一)2、5的倍數(shù)的特征。
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規(guī)律。
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發(fā)現(xiàn)了:
(二)奇數(shù)和偶數(shù)。
1.自主閱讀教材。根據(jù)自學內(nèi)容,我知道:
根據(jù)是否是2的倍數(shù),可把自然數(shù)分為和兩類。是2的倍數(shù)的數(shù)叫做,不是2的倍數(shù)的數(shù)叫做。
2.組內(nèi)交流,并討論:0是不是2的倍數(shù)?為什么?
3.匯報總結。
4.我能說出身邊的奇數(shù)和偶數(shù)。
5.做一做(第17頁)。
因數(shù)與倍數(shù)五年級數(shù)學教案篇三
認識因數(shù)和倍數(shù)(教材第5頁內(nèi)容,以及第7頁練習二的第1題)。
1.從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2.培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3.培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
因數(shù)與倍數(shù)五年級數(shù)學教案篇四
《因數(shù)和倍數(shù)》是人教版小學數(shù)學五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領會意圖,做到用教材教。
我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關系明確的看到因數(shù)倍數(shù)這種相互依存的關系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導??磥盱`活的運用教材,深放領會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設計已經(jīng)能夠體現(xiàn)學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學例1再學例2的方式更容易讓學生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導更有效!
因數(shù)與倍數(shù)五年級數(shù)學教案篇五
人教版小學數(shù)學五年級下冊第23、24頁。
1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質(zhì)疑探討。
3.試試身手:第23頁做一做。
三、合作探究
1.小組合作,利用課本24頁的表格,用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
我的想法________________________________
4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
5.獨立思考:
(1)是不是所有的質(zhì)數(shù)都是奇數(shù)?(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內(nèi)交流。
因數(shù)與倍數(shù)五年級數(shù)學教案篇六
教學內(nèi)容:
教材分析:
本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。
教學目標:
2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經(jīng)驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行?。A設)。
嘗試題:14的因數(shù)有哪幾個?
(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動??偨Y方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結。
師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
因數(shù)與倍數(shù)五年級數(shù)學教案篇七
人教版小學數(shù)學五年級下冊教材第12—13頁。
1.我能理解因數(shù)與倍數(shù)的含義。
2.我會有序地思考,掌握了找一個數(shù)的因數(shù)的方法。
3.我知道一個數(shù)的因數(shù)的個數(shù)是有限的。
理解因數(shù)和倍數(shù)的含義,掌握求一個數(shù)的因數(shù)的方法。
能熟練地找一個數(shù)的因數(shù)。
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質(zhì)疑探討。
三、合作探究
1.小組討論:乘法算式中的因數(shù)和這里講的因數(shù)一樣嗎?
(1)我的想法:________________________________
(2)小組代表交流、匯報。
(3)自讀課本第12頁下面的一段話。
2.自學課本第13頁例1。思考:
(1)18的因數(shù)有________、________、________、________、________、________,共 有________個。
(2)18的最小因數(shù)是________,最大因數(shù)是________。它的因數(shù)的個數(shù)是________的。
(3)也可以這樣表示: 18的因數(shù)
3.組內(nèi)交流并討論:怎樣找最快,而且不容易遺漏?
我的想法:________________________________
4.小組代表匯報,總結。
5.試試身手(第13頁“做一做”)。
因數(shù)與倍數(shù)五年級數(shù)學教案篇八
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數(shù)學與生活的聯(lián)系。
一、基本訓練。
1、我們已經(jīng)掌握了找兩個數(shù)的.公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數(shù)和最小公倍數(shù)練習)。
2、填空。
5的倍數(shù)有:()。
7的倍數(shù)有:()。
5和7的公倍數(shù)有:()。
5和7的最小公倍數(shù)是:()。
3、完成練習四第5題。
(1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
每題中的兩個數(shù)有什么特征呢?(倍數(shù)關系)可以得出什么結論?
(4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。
在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
4、完成練習四第6題。
你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?
交流,匯報。
說說你是怎么想的?
二、提高訓練。
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))
三、課堂小結。
通過練習,同學們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節(jié)課的收獲。
因數(shù)與倍數(shù)五年級數(shù)學教案篇九
認識自然數(shù)和整數(shù),倍數(shù)和因數(shù)。
1、結合具體情境,認識自然數(shù)和整數(shù),聯(lián)系乘法認識倍數(shù)和因數(shù)。初步探索找一個數(shù)的倍數(shù)的方法,能在1——100的自然數(shù)中,找出10以內(nèi)某數(shù)的所有倍數(shù)。
2、學生經(jīng)歷探索認識倍數(shù)和因數(shù)的含義,能對生活中有關的數(shù)字作出合理的解釋。在教師幫助下,初步學會選擇有用的信息進行簡單地歸納與類比,發(fā)展合情推理能力。
3、在老師、同學的幫助下,對身邊與數(shù)學有關的某些事物有好奇心,參與數(shù)學活動,體驗數(shù)學與日常生活密切聯(lián)系。
探究倍數(shù)和因數(shù)。
倍數(shù)和因數(shù)的關系的理解。
一、結合“水果店”情境圖,認識自然數(shù)和整數(shù)。
1、談話引入。
2、出示水果店情境圖。
(1)學生活動:找一找。仔細觀察圖中有哪些數(shù)?我能找到幾個?全班進行交流。
(2)教師提示:還有要補充的嗎?(目的是讓學生找出圖中隱含的數(shù)字,比如0,1/2等。
(3)學生活動:分一分。你能把它們分分類嗎?學生單獨活動,教師幫助有困難的學生。全班再進行交流。交流時讓學生說出分類的標準和分類的結果。教師要適當?shù)剡M行引導,為下面教學自然數(shù)和整數(shù)做準備。
(4)根據(jù)學生的分類情況,加上教師的適當引導,揭示什么樣的數(shù)是自然數(shù),什么樣的數(shù)是整數(shù)?并讓學生舉出例子來進一步說明和鞏固。
二、利用整數(shù)乘法認識倍數(shù)和因數(shù)。
1、解決:買5千克梨需要多少錢?
5×4=20(元)。
2、利用算式說明倍數(shù)和因數(shù)的含義。
(1)說明含義。20是4和5的倍數(shù);4和5是20的因數(shù)(需進一步使學生明確,20是4的倍數(shù)也是5的倍數(shù);4是20的因數(shù),5也是20的因數(shù))關于倍數(shù)和因數(shù)這種相互依存的關系,學生第一次接觸,教師要讓學生多說一說,并通過一定的例證進一步說明。
(2)舉例說明。舉出一個乘法算式,說出其中的因數(shù)和倍數(shù)關系。
(3)練習:說一說。第3頁“說一說”先自己試說,同桌之間交流后,再進行全班交流。
3、說明研究倍數(shù)和因數(shù)的范圍。教師根據(jù)課堂生成,相機給出“只在自然數(shù)(零除外)的范圍內(nèi)研究倍數(shù)和因數(shù)”這個規(guī)定。
三、練習鞏固,加深理解。
1、第3頁:找一找。學生獨立理解題意后,先自己找出7的倍數(shù),小組內(nèi)交流自己找的方法。全班交流時讓學生在比較后得出用乘法算式的方法來找一個數(shù)的倍數(shù)比較方便快捷。同時使學生領悟到:這個數(shù)是7的倍數(shù),那么7同時也是這個數(shù)的因數(shù)。通過試一試:你還能找出7的其它倍數(shù)嗎?使學生體會到一個數(shù)的倍數(shù)是無限的。
2、同桌練習:你寫我說。在學生弄懂題目意思后,再開展活動。活動后讓中后生進行全班交流。
3、比一比:看誰找的快。
(1)自己找,比比誰找的快。要求作出各自的符號。
(2)組織交流,比比誰的方法好,比比誰找的對。
(3)歸納。說說哪幾個數(shù)既是4的倍數(shù),又是6的倍數(shù)。為學習公倍數(shù)作準備。
4、獨立練習。寫出100以內(nèi)全部6的倍數(shù)。交流時,體會怎樣做到不重復,不遺漏,進一步明確方法。
5、討論:根據(jù)除法算式如何說倍數(shù)和因數(shù)。例如:15÷3=5.
四、全課小結。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇В瑫r,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
教材中首先引導學生理解數(shù)與數(shù)之間的關系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學倍數(shù)和因數(shù)的意義。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學生“看著算式你還能想到什么?”很多學生已經(jīng)領會12也是4的倍數(shù),指名說后,再強化一下讓學生連起來說說誰是誰的倍數(shù)。接著教學“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學生很容易聯(lián)想到“4也是12的因數(shù)”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關系之后,接著練一練讓學生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數(shù)和因數(shù)的意義。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學生建立相應的數(shù)學模型。
探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學生按除法通過自主探究找出24的所有因數(shù),接著組織學生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學4的倍數(shù)時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導學生建構完整的倍數(shù)的數(shù)學模型呢?我遵循學生的認知規(guī)律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學生的腦海中得以完善、合理建構。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構了數(shù)學模型。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十一
4、培養(yǎng)學生的觀察能力。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的.你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
三、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習二1~4題。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十二
教學目標:
1、同學掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、同學能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)同學的觀察能力。
教學過程:
一、引入新課。
1、出示主題圖,讓同學各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);。
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?同學寫算式。
師:誰來出一個算式考考全班同學?
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
同學嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的.時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的自身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓同學完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它自身,沒有最大的倍數(shù))。
三、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習二1~4題。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十三
認識因數(shù)和倍數(shù)(教材第5頁內(nèi)容,以及第7頁練習二的第1題)。
【教學目標】。
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
【重點難點】。
【復習導入】。
1、教師用課件出示口算題。
10÷5=16÷2=。
12÷3=100÷25=。
220÷4=18×4=。
25×4=24×3=。
150×4=20×86=。
學生口算。
2、導入:在乘法算式中,兩個因數(shù)相乘,得到的結果叫做它們的積。乘法算式表示的是一種相乘的關系,在除法算式中,兩個數(shù)相除,得到的結果叫做它們的商。除法算式表示的是一種相除的關系,在整數(shù)乘法和除法中還有另一種關系,這就是我們這一節(jié)課要學習探討的內(nèi)容。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十四
因數(shù)和倍數(shù)是小學數(shù)學中非常基礎而重要的概念。因數(shù)指的是一個數(shù)能夠被另一個數(shù)整除,而倍數(shù)則是指一個數(shù)是另一個數(shù)的整數(shù)倍。在五年級數(shù)學學習中,我們已經(jīng)開始了深入的了解和研究因數(shù)和倍數(shù)。
第二段:因數(shù)的學習和理解。
在學習中,我們首先了解了因數(shù)的定義和性質(zhì),學會了如何求一個數(shù)的因數(shù),還進行了練習,從中歸納如下規(guī)律:一個數(shù)的因數(shù)的個數(shù)有限,且其中一半是小于它的數(shù)的因數(shù),一半是大于它的數(shù)的因數(shù)。同時還學會了不同的因數(shù)化式,例如質(zhì)因數(shù)分解、因數(shù)分解、公因式、最大公因數(shù)等。
第三段:倍數(shù)的學習和理解。
接著,我們深入學習了倍數(shù)的概念和運算,學會了求一個數(shù)的倍數(shù)以及找到兩個數(shù)的公倍數(shù)。我們對倍數(shù)的認識進行了系統(tǒng)的了解,掌握了描繪倍數(shù)之間關系的工具,例如最小公倍數(shù)。在這一過程中,我們學會了用圖示或等式描述倍數(shù),以及如何尋找它們的特定模式。
在學習中,我們還積極地了解了因數(shù)和倍數(shù)之間的聯(lián)系,發(fā)現(xiàn)了它們之間不可忽視的同一性和區(qū)別。因數(shù)和倍數(shù)是緊密相關的,它們彼此間有著重要的聯(lián)系。通過分析它們的聯(lián)系,我們發(fā)現(xiàn):我們首先找到數(shù)列的公共因數(shù)或它們的最大公因數(shù),這樣,我們就能夠快速找到任意一組數(shù)的公共倍數(shù)。
第五段:對因數(shù)和倍數(shù)的學習的感想。
搞完這門課程,我深刻認識到因數(shù)和倍數(shù)的重要性,它們可以方便地解決許多數(shù)學問題,并且在實際生活中也非常實用。這門課程也鍛煉了我們的思考能力、計算能力以及分析問題的能力。同時,我也意識到了在學習過程中,做好課前預習是非常重要的。因為難點在前,問題在前,把課前預習做好了,課堂上遇到的也會輕松很多。做好好課前預習,掌握課堂重點,能夠讓我的學習更加高效,提高了學習效率。
總之,學習因數(shù)和倍數(shù)是我們五年級必修的數(shù)學課程,它對我們的日常生活中的數(shù)學運算有重要的幫助。深入學習和理解因數(shù)和倍數(shù),是我們扎實掌握小學數(shù)學的重要體現(xiàn)。我們需要在實踐中繼續(xù)加深對因數(shù)和倍數(shù)的認識,優(yōu)化學習方法,提高學習效率。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十五
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎。
本課的教學重點是求一個數(shù)的因數(shù),在學生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關系的基礎上,對學生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學例題“找出18的因數(shù)”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結合自己對因數(shù)概念的理解,找到解決問題的`方法(培養(yǎng)學生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。
在這個學習活動環(huán)節(jié)中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。特別是用除法找因數(shù)的學生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。
在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導學生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學情(絕大多數(shù)學生能夠運用所學知識,找到求因數(shù)的方法),如教師一開始就引導學生:想幾和幾相乘,勢必會造成先入為主,妨礙學生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構新知是提高學生學習能力的有效途徑,讓學生獨立思考、自主探索、促思(促進學生思維發(fā)展)、提能(提高學習能力)是我的教學策略主要內(nèi)容。
至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學生的學習潛力是巨大的,教師是學生學習的引領者,因此教師的觀念和行為決定了學生的學習方式和結果,所以我認為教師要專研教材,充分利用教材,根據(jù)學生的實際情況,創(chuàng)造性地使用教材,為學生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學生學習的主體地位。
學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十六
《因數(shù)和倍數(shù)》這一內(nèi)容,學生初次接觸。在導入中我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。讓學生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。
放手讓每個同學找出36的所有因數(shù),學生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。
在最后的環(huán)節(jié)中我設計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。
這堂課我還存在許多不足,我的教學理念很清楚,課堂上學生是主體教師只是合作者。但在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十七
聽了一節(jié)數(shù)學課——《倍數(shù)與因數(shù)》,真的是感受頗深,受益匪淺,讓我充分領略了課堂教學的無窮藝術魅力?,F(xiàn)就這次學習談一談自己的點滴體會。
一、收獲。
1、出去聽課比在學校閉門造車受益要快要多,來得更直接。
2、真實——課堂教學應該追求的境界。
3、情境——創(chuàng)設貼近生活的教學情境是課堂教學有效的手段。
教學情境的設置應注重來自于生活,并不是每一節(jié)課都要設置與生活緊密結合的情境,而是盡量貼近于生活,這樣學生學習起來便于思考操作,同時也能在生活中加以應用。特別是像我們學校的學生更要注重與生活實際的結合,因為我們的目標就是要讓學生通過學習掌握解決生活中出現(xiàn)的一些問題的手段方法,掌握技能。所以情境的創(chuàng)設需要我在生活中教學中多觀察,多思考,多操作。
4、三維目標的整合——課堂教學的更高要求。
教育理念的轉(zhuǎn)變正在發(fā)生巨大的變化,本節(jié)課中的“三維目標”要求教師在教學中盡量做到這三個目標的整合,而且是“品之有味,尋之無跡”,如在這節(jié)數(shù)學課的教學中,她通過教學讓學生體會到了,不同的事物從不同的角度去看去評定都會有不同的結果和答案,那么做人就是這樣我們不應該以一種標準去看待我們周邊的人、事,我們要從多角度去思考一個問題,所以這節(jié)課就是在這樣的看似在作練習的過程中,讓學生通過學習知識,提高了學生分析判斷事物的能力,同時也教會學生如何做人。做到了“三維目標的整合”。
5、亮點——讓課堂教學生輝的裝飾品。
能讓聽者有暢所欲言的欲望的課就是一節(jié)好課,能夠讓聽者回去就可借鑒操作的也是一節(jié)好課,我覺得一節(jié)好課并非是很完美的,哪怕只有一個亮點,能夠引起大家共鳴,我覺得都是好課,其實這位老師的課并不是像我想象中的那么好,而且在我們學校應用起來未必就很實用,但是在他練習的設計中,他采用了層層遞進、小組合作,并讓學生進行質(zhì)疑,我感到了教學的效果非常好,這就是一個亮點,使這節(jié)課生輝。
6、教師素質(zhì)之高,學生習慣之好。是我們該思考如何去做。
二、自我反思。
總之,觀摩了這位老師的課,聆聽了教研室教學質(zhì)量分析,我充分認識到每一次外出學習對于我都是一種反思和激勵,讓我在欣賞別人精彩的同時發(fā)現(xiàn)了自己的很多不足,在以后的教學中,一定要嚴格要求自己:做到課前認真解讀教材,根據(jù)學生的實際情況設計出合理的教學流程;課后認真反思,堅持寫好教學后記;多看書學習,多做筆記,不斷提高自己教學業(yè)務水平。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十八
《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。
2、由偶數(shù)都是2的倍數(shù),復習2的`倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關系,加深了學生對倍數(shù)與因數(shù)相互依存關系的理解和認識。
3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復習什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
將本文的word文檔下載到電腦,方便收藏和打印。
因數(shù)與倍數(shù)五年級數(shù)學教案篇十九
倍數(shù)和因數(shù)一課是蘇教版數(shù)學第八冊中的內(nèi)容。這一內(nèi)容是在學生已經(jīng)分階段認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù),較為系統(tǒng)地掌握了十進制記數(shù)法,同時也基本完成了整數(shù)四則運算基礎上進行的教學,主要是要使學生初步認識倍數(shù)和因數(shù)的意義,學會在1-100的自然數(shù)中找10以內(nèi)某個數(shù)的所有倍數(shù)和100以內(nèi)某個數(shù)的所有因數(shù)的方法。這是學生進一步學習公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算的基礎,對以后的學習起著重要的作用。
1、知識與技能目標:使學生結合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法,并能找一個數(shù)的倍數(shù)和因數(shù)。
2、過程與方法目標:引導學生自主探究找一個數(shù)倍數(shù)和因數(shù)的方法,體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
3、情感與態(tài)度目標:在學習活動中激發(fā)學生學習數(shù)學的興趣和自信心。
4、重點:理解因數(shù)和倍數(shù)的含義,知道它們呢的關系是相互依存的。
5、難點:探索并掌握求一個數(shù)的倍數(shù)和因數(shù)的方法。
(一)認識倍數(shù)和因數(shù)。
認識倍數(shù)和因數(shù)時,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,引導學生在操作中得到乘積相同的不同乘法算式,并進一步引出倍數(shù)和因數(shù)的概念。倍數(shù)和因數(shù)是指兩個數(shù)之間的關系,不能單獨說某數(shù)倍數(shù)或因數(shù),這一點學生往往搞不清,為了使學生明白倍數(shù)和因數(shù)是一種相互依存的關系,我舉了生活中的兄弟關系,母女關系的例子幫助學生理解,讓學生感受到數(shù)學與生活的聯(lián)系,同時也讓學生明白,用數(shù)學知識解決生活問題是學習數(shù)學的真正目的。
(二)探索求一個數(shù)的倍數(shù)的方法。
從例1中得出:12是3的倍數(shù),又把學生舉的一個3的倍數(shù)的例子有目的地寫在黑板上結合起來看,引導學生說出3的倍數(shù)還有哪些。學生在舉例子時說出來的數(shù)是無序的,這時教師引導學生思考怎樣才能按從小到大的順序有條理地找出3的倍數(shù),促使學生去關注思想方法,并在學生討論交流中感受有序的思想方法。
在學生掌握方法的基礎上,采用比賽的形式要求學生有序地寫出2、5的倍數(shù),然后在整體觀察2、3、5倍數(shù)的基礎上通過學生討論,一個數(shù)倍數(shù)的特點。培養(yǎng)了學生觀察、比較、歸納概念的能力。
(三)探索求一個數(shù)的因數(shù)的方法。
從例中看出4、3、6、2、12、1都是12的因數(shù),那我們可以怎樣找一個數(shù)的因數(shù)呢?先讓學生獨自找36的因數(shù),再指名幾個學生說說是怎么找的,通過幾位學生找的方法的比較得出較合理的方法。接著又找了15、16的因數(shù),歸納出一個數(shù)因數(shù)的特點。
(四)全課小結。
(五)鞏固練習。
為了提高學生學習興趣,鞏固所學知識,我又補充了兩個練習:
1、判斷題目的是強化學生對基礎知識的掌握。
2、出示幾張數(shù)字卡片。從中選擇只有倍數(shù)和因數(shù)關系,比誰選擇得多。
因數(shù)與倍數(shù)五年級數(shù)學教案篇二十
一.填空題。
1.都是自然數(shù),如果,的最大公約數(shù)是(),最小公倍數(shù)是()。
2.甲,乙,甲和乙的最大公約數(shù)是()×()=(),甲和乙的最小公倍數(shù)是()×()×()×()=()。
3.所有自然數(shù)的公約數(shù)為()。
4.如果m和n是互質(zhì)數(shù),那么它們的最大公約數(shù)是(),最小公倍數(shù)是()。
5.在4、9、10和16這四個數(shù)中,()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù)。
6.人教版小學五年級數(shù)學下冊因數(shù)和倍數(shù)測試題:用一個數(shù)去除15和30,正好都能整除,這個數(shù)最大是()。
*7.兩個連續(xù)自然數(shù)的和是21,這兩個數(shù)的最大公約數(shù)是(),最小公倍數(shù)是()。
*8.兩個相鄰奇數(shù)的和是16,它們的最大公約數(shù)是(),最小公倍數(shù)是()。
**9.某數(shù)除以3、5、7時都余1,這個數(shù)最小是()。
10.根據(jù)下面的要求寫出互質(zhì)的兩個數(shù)。
(1)兩個質(zhì)數(shù)()和()。(2)連續(xù)兩個自然數(shù)()和()。
(3)1和任何自然數(shù)()和()。(4)兩個合數(shù)()和()。
(5)奇數(shù)和奇數(shù)()和()。(6)奇數(shù)和偶數(shù)()和()。
二.判斷題。
1.互質(zhì)的兩個數(shù)必定都是質(zhì)數(shù)。()2.兩個不同的奇數(shù)一定是互質(zhì)數(shù)。()。
3.最小的質(zhì)數(shù)是所有偶數(shù)的最大公約數(shù)。()4.有公約數(shù)1的兩個數(shù),一定是互質(zhì)數(shù)。()5.a是質(zhì)數(shù),b也是質(zhì)數(shù),,一定是質(zhì)數(shù)。()。
三.直接說出每組數(shù)的最大公約數(shù)和最小公倍數(shù)。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52(2、3和7()。
(1)如果數(shù)a能被數(shù)b整除,a就叫做b的(),b就叫做a的()。
(2)12的最小的約數(shù)是(),最大約數(shù)是(),最小的倍數(shù)是()。
(3)15的`全部約數(shù)有()。
(4)1—20中:奇數(shù)是(),偶數(shù)是(),
質(zhì)數(shù)是(),合數(shù)是()。
(5)1,2,15,17,24各數(shù)中,既不是質(zhì)數(shù)也不是合數(shù)的是(),
既不是質(zhì)數(shù)又不是偶數(shù)的是(),既不是奇數(shù)又不是合數(shù)的是()。
(6)在66,390,12,165,105,91各數(shù)中,
能被2整除的數(shù)有(),能被3整除的數(shù)有(),
能被5整除的數(shù)有(),能同時被2、3整除的數(shù)有(),
能同時被2、5整除的數(shù)有(),能同時被3、5整除的數(shù)有(),
能同時被2、3、5整除的數(shù)有(),
(7)a和b是互質(zhì)數(shù),則a和b最大公約數(shù)是(,最小公倍數(shù)是()。
(8)用0、1、2、3組成一個能同時被2、3、5整除的最小四位數(shù)是()。
(9)a是b的倍數(shù),則a、b最大公約數(shù)是(),最小公倍數(shù)是()。
將本文的word文檔下載到電腦,方便收藏和打印。