高中必修三數(shù)學(xué)教案(優(yōu)秀17篇)

字號(hào):

    教案應(yīng)根據(jù)不同學(xué)生的特點(diǎn)和學(xué)習(xí)需求進(jìn)行個(gè)性化調(diào)整,以促進(jìn)他們的全面發(fā)展。在編寫(xiě)教案時(shí),要注重課堂教學(xué)的研究和創(chuàng)新,提高教學(xué)質(zhì)量。下面是一些優(yōu)秀的教案模板,供大家參考和借鑒。
    高中必修三數(shù)學(xué)教案篇一
    對(duì)重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對(duì)性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識(shí),不要盲目地做題,要有針對(duì)性地選題,回味練習(xí).
    高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們?cè)趶?fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對(duì)數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
    應(yīng)注意實(shí)際問(wèn)題的解決和探索性試題的研究。
    現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無(wú)患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
    高中必修三數(shù)學(xué)教案篇二
    本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
    (1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。
    (2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。
    數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
    本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
    教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。”設(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
    加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
    本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。”這樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
    《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
    位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。
    在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
    學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
    1.1正弦定理和余弦定理(約3課時(shí))
    1.2應(yīng)用舉例(約4課時(shí))
    1.3實(shí)習(xí)作業(yè)(約1課時(shí))
    1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
    2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。
    高中必修三數(shù)學(xué)教案篇三
    曾經(jīng)有同學(xué)問(wèn)我,你是怎么學(xué)數(shù)學(xué)的,也沒(méi)見(jiàn)你做多少的練習(xí)題,可數(shù)學(xué)的成績(jī)不錯(cuò)。我覺(jué)得課堂的學(xué)習(xí)是關(guān)鍵,要緊緊抓住課堂的45分鐘的時(shí)間。在這有限的時(shí)間內(nèi),是教師與學(xué)生的交流,這時(shí)候,作為學(xué)生你的思維要跟得上老師的變化,這個(gè)知識(shí)點(diǎn)的關(guān)鍵點(diǎn)在那兒,前后的聯(lián)系是什么,在聽(tīng)課的過(guò)程中不能分心、走神,提高聽(tīng)課的效率。為此,在每一堂課前,我都要做好以下幾項(xiàng)工作。
    1、課前預(yù)習(xí)是關(guān)鍵。
    相信我們學(xué)生都聽(tīng)到過(guò)老師對(duì)我們的要求,要進(jìn)行課前預(yù)習(xí),不論什么課,這是所有的老師都會(huì)提的一個(gè)要求,可真正進(jìn)行課前預(yù)習(xí)的學(xué)生有多少呢,班里面我們也沒(méi)有統(tǒng)計(jì)過(guò),不過(guò)我覺(jué)得有一半的學(xué)生預(yù)習(xí)了,就是不錯(cuò)的了,另外,既使有的學(xué)生也預(yù)習(xí)了,只是走馬觀花的看一下書(shū),那效果可想而知。
    預(yù)習(xí)也要講究方法,在預(yù)習(xí)中發(fā)現(xiàn)了難點(diǎn),出現(xiàn)了自己解決不了的問(wèn)題,這個(gè)就是聽(tīng)課中的重點(diǎn),要做好標(biāo)記;通過(guò)預(yù)習(xí)還能發(fā)現(xiàn)自己沒(méi)有掌握住的舊知識(shí),起到溫故而知新的作用,可以對(duì)知識(shí)起到查漏補(bǔ)缺的效果;另外,預(yù)習(xí)的過(guò)程也是一個(gè)自學(xué)的過(guò)程,有助于提高自己分析問(wèn)題、解決問(wèn)題的能力,將自己在預(yù)習(xí)中的理解和老師講解的進(jìn)行對(duì)照,不斷進(jìn)行改進(jìn),可以起到提高自己思維水平的作用。
    2、科學(xué)聽(tīng)課是保障。
    所謂科學(xué)聽(tīng)課也就是說(shuō)在教師授課的過(guò)程中學(xué)生的表現(xiàn),是不是為這節(jié)課做好了準(zhǔn)備工作。在聽(tīng)課的過(guò)程中要調(diào)動(dòng)眼、耳、心、口、手等各個(gè)器官,全身心的投入到課堂學(xué)習(xí)中去,在聽(tīng)課的過(guò)程中遇到重要的知識(shí)點(diǎn)同時(shí)又要做好筆記,但是不能因?yàn)楣P記的原因而影響到聽(tīng)課,所以,這里面有一個(gè)科學(xué)合理安排聽(tīng)課時(shí)間的問(wèn)題。聽(tīng)課的過(guò)程中是一個(gè)高度集中注意力的過(guò)程,但同時(shí)也是有張有弛;聽(tīng)課的過(guò)程中也的聽(tīng)的技巧,聽(tīng)教師如何分析?如何歸納總結(jié)?如何突破難點(diǎn),結(jié)合自己在預(yù)習(xí)時(shí)又是如何理解的,相互比較,同時(shí)要用心思考,跟上教師的教學(xué)思路,能在教師的啟發(fā)和點(diǎn)撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
    3、做一定量的習(xí)題。
    在數(shù)學(xué)的學(xué)習(xí)過(guò)程中,對(duì)于做多少習(xí)題并沒(méi)有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習(xí)題;另一種是做適當(dāng)?shù)牧?xí)題。做大量的習(xí)題的做法來(lái)源于題海戰(zhàn)術(shù),曾經(jīng)有一種說(shuō)法,做題吧,在做題的過(guò)程中你就掌握了知識(shí)點(diǎn),誠(chéng)然,多做題對(duì)于掌握知識(shí)是有好處的,但并不是題做的越多越好。在高中的學(xué)習(xí)過(guò)程中,時(shí)間非常緊,在有限的時(shí)間內(nèi)要學(xué)習(xí)好幾門(mén)知識(shí),你數(shù)學(xué)題做的多了,難免會(huì)在其他科目上用時(shí)不夠,會(huì)對(duì)其他科目的學(xué)習(xí)造成影響。因此,大量的做題是不可取的。
    在學(xué)習(xí)的過(guò)程中,我崇尚做適當(dāng)?shù)牧?xí)題,而且在實(shí)際的學(xué)習(xí)過(guò)程中我也是這樣做的。做題的過(guò)程中是一個(gè)舉一反三的過(guò)程,做會(huì)這一道題就掌握了這一類(lèi)題目的做法,關(guān)鍵的問(wèn)題是在做完這道題后的分析總結(jié),數(shù)學(xué)的題目太多了,你是不可能做完所有的題的,因此,我們?cè)谡莆罩R(shí)點(diǎn)的時(shí)候是一類(lèi)一類(lèi)的掌握,所謂的舉一反三,觸類(lèi)旁通。每當(dāng)做完一道題后尤其是難度大的題目,我會(huì)靜下心來(lái)再?gòu)念^看一遍,把其中的關(guān)鍵點(diǎn)再熟悉一遍,雖然當(dāng)時(shí)看起來(lái)是費(fèi)了一點(diǎn)時(shí)間,但那收獲是很大的。以后再遇到這類(lèi)題目的時(shí)候,解決起來(lái)就相對(duì)容易的多。
    高中必修三數(shù)學(xué)教案篇四
    立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。
    二、立足課本,夯實(shí)基礎(chǔ)。
    學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
    三、培養(yǎng)空間想象力。
    為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫(huà)圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起。最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
    四、“轉(zhuǎn)化”思想的應(yīng)用。
    解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
    (1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
    (2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
    (3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
    五、建立數(shù)學(xué)模型。
    新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
    從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周?chē)膶?shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
    高中必修三數(shù)學(xué)教案篇五
    棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
    棱柱的性質(zhì)。
    (1)側(cè)棱都相等,側(cè)面是平行四邊形。
    (2)兩個(gè)底面與平行于底面的截面是全等的多邊形。
    (3)過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形。
    2、棱錐。
    棱錐的性質(zhì):
    (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形。
    3、正棱錐。
    正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個(gè)特殊的直角三角形。
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
    b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
    高中必修三數(shù)學(xué)教案篇六
    各位老師大家好!
    我說(shuō)課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時(shí)。
    (一)教材分析。
    本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時(shí),直線的傾斜角和斜率解析幾何的重要概念;是刻畫(huà)直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對(duì)直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識(shí)理解的基礎(chǔ)上,重新以解析法的方式來(lái)研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點(diǎn);另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開(kāi)啟全章、滲透方法,承前啟后的作用。
    (二)學(xué)情分析。
    本節(jié)課的教學(xué)對(duì)象是高二學(xué)生,這個(gè)年齡段的學(xué)生天性活潑,求知欲強(qiáng),并且學(xué)習(xí)主動(dòng),在知識(shí)儲(chǔ)備上知道兩點(diǎn)確定一條直線,知道點(diǎn)與坐標(biāo)的關(guān)系,實(shí)現(xiàn)了最簡(jiǎn)單的形與數(shù)的轉(zhuǎn)化;了解刻畫(huà)傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類(lèi)討論的思想。但根據(jù)學(xué)生的認(rèn)知規(guī)律,還沒(méi)有形成自覺(jué)地把數(shù)學(xué)問(wèn)題抽象化的能力。所以在教學(xué)設(shè)計(jì)時(shí)需從學(xué)生的最近發(fā)展區(qū)進(jìn)行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過(guò)程。
    (三)教學(xué)目標(biāo)。
    1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。
    2.掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;。
    3.通過(guò)經(jīng)歷從具體實(shí)例抽象出數(shù)學(xué)概念的過(guò)程,培養(yǎng)學(xué)生觀察、分析和概括能力;。
    生嚴(yán)謹(jǐn)求簡(jiǎn)的數(shù)學(xué)精神。
    重點(diǎn):斜率的概念,用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,過(guò)兩點(diǎn)的直線斜率的計(jì)算公式。
    難點(diǎn):直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
    (四)教法和學(xué)法。
    課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng)設(shè)問(wèn)題的情景,激發(fā)學(xué)生主動(dòng)的發(fā)現(xiàn)問(wèn)題解決問(wèn)題,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問(wèn)題串的形式,啟發(fā)引導(dǎo)學(xué)生類(lèi)比、聯(lián)想,產(chǎn)生知識(shí)遷移;通過(guò)幾何畫(huà)板演示實(shí)驗(yàn)、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實(shí)驗(yàn),體驗(yàn)知識(shí)的形成過(guò)程;由此循序漸進(jìn),使學(xué)生很自然達(dá)到本節(jié)課的學(xué)習(xí)目標(biāo)。
    (五)教學(xué)過(guò)程。
    環(huán)節(jié)1.指明研究方向(3min)。
    簡(jiǎn)介17世紀(jì)法國(guó)數(shù)學(xué)家笛卡爾和費(fèi)馬的數(shù)學(xué)史。
    高中必修三數(shù)學(xué)教案篇七
    在復(fù)習(xí)時(shí),由于解題的量很大,就更要求我們將解題活動(dòng)組織得生動(dòng)活潑、情趣盎然。讓學(xué)生領(lǐng)略到數(shù)學(xué)的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學(xué)題,即便具有相當(dāng)?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
    “山重水復(fù)”的困惑被“柳暗花明”的喜悅?cè)〈?,學(xué)生又怎能不贊嘆自己智能的威力?我們要使學(xué)生由“要我學(xué)”轉(zhuǎn)化為“我要學(xué)”,課堂上要想方設(shè)法調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運(yùn)用情感原理,喚起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情;二是運(yùn)用成功原理,變苦學(xué)為樂(lè)學(xué);三是在學(xué)法上教給學(xué)生“點(diǎn)金術(shù)”,等等。
    在課堂教學(xué)結(jié)構(gòu)上,更新教育觀念,始終堅(jiān)持以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)原則。
    教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學(xué)生通過(guò)自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西?!卑次覀兊恼f(shuō)法就是:師傅的任務(wù)在于度,徒弟的任務(wù)在于悟。數(shù)學(xué)課堂教學(xué)必須廢除“注入式”“滿(mǎn)堂灌”的教法。復(fù)習(xí)課也不能由教師包講,更不能成為教師展示自己解題“高難動(dòng)作”的“絕活表演”,而要讓學(xué)生成為學(xué)習(xí)的主人,讓他們?cè)谥鲃?dòng)積極的探索活動(dòng)中實(shí)現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學(xué)素養(yǎng)和悟性。
    作為教學(xué)活動(dòng)的組織者,教師的任務(wù)是點(diǎn)撥、啟發(fā)、誘導(dǎo)、調(diào)控,而這些都應(yīng)以學(xué)生為中心。復(fù)習(xí)課上有一個(gè)突出的矛盾,就是時(shí)間太緊,既要處理足量的題目,又要充分展示學(xué)生的思維過(guò)程,二者似乎是很難兼顧。我們可采用“焦點(diǎn)訪談”法較好地解決這個(gè)問(wèn)題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過(guò)程中,常在某一點(diǎn)或某幾點(diǎn)上擱淺受阻,這些點(diǎn)被稱(chēng)為“焦點(diǎn)”,其余的則被稱(chēng)為“外圍”。我們大可不必在外圍處花精力去進(jìn)行淺表性的啟發(fā)誘導(dǎo),好鋼要用在刀刃上,而只要在焦點(diǎn)處發(fā)動(dòng)學(xué)生探尋突破口,通過(guò)訪談,集中學(xué)生的智慧,讓學(xué)生的思維在關(guān)鍵處閃光,能力在要害處增長(zhǎng),弱點(diǎn)在隱蔽處暴露,意志在細(xì)微處磨礪。通過(guò)訪談實(shí)現(xiàn)學(xué)生間、師生間智慧和能力的互補(bǔ),促進(jìn)相互的心靈和感情的溝通。
    高中必修三數(shù)學(xué)教案篇八
    集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問(wèn)題;分類(lèi)討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問(wèn)題、解決問(wèn)題的能力。
    (二)規(guī)律方法總結(jié)。
    1、集合中元素的互異性是集合概念的重點(diǎn)考查內(nèi)容。一般給出兩個(gè)集合,并告知兩個(gè)集合之間的關(guān)系,求集合中某個(gè)參數(shù)的范圍或值的時(shí)候,要特別驗(yàn)證是否符合元素之間互異性。2、考查集合的運(yùn)算和包含關(guān)系,解題中常用到分類(lèi)討論思想,分類(lèi)時(shí)注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運(yùn)算問(wèn)題是以已知的集合或運(yùn)算為背景,引出新的集合概念或運(yùn)算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。
    基本初等函數(shù)。
    基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識(shí)的必要的一步。與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運(yùn)算推理來(lái)解題。所以這部分內(nèi)容更注重通過(guò)函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來(lái)解題的能力。
    (二)規(guī)律方法總結(jié)。
    1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識(shí)結(jié)合考查綜合應(yīng)用知識(shí)解決函數(shù)問(wèn)題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。
    2、解對(duì)數(shù)方程(或不等式)就是將對(duì)數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價(jià)的,特別要考慮到對(duì)數(shù)函數(shù)定義域。
    高中必修三數(shù)學(xué)教案篇九
    2.教學(xué)重點(diǎn)。
    函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性.。
    3.教學(xué)難點(diǎn)。
    函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。
    1.教學(xué)有利因素。
    2.教學(xué)不利因素。
    1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡(jiǎn)單函數(shù)單調(diào)性的方法.。
    為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:
    (一)創(chuàng)設(shè)情境,引入課題。
    問(wèn)題1:觀察下列函數(shù)圖象,請(qǐng)你說(shuō)說(shuō)這些函數(shù)有什么變化趨勢(shì)?
    設(shè)函數(shù)的定義域?yàn)?,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱(chēng)函數(shù)在區(qū)間上是遞增的,區(qū)間稱(chēng)為函數(shù)的單調(diào)增區(qū)間(學(xué)生類(lèi)比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)。
    (二)引導(dǎo)探索,生成概念。
    問(wèn)題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
    (2)函數(shù)在區(qū)間上有何單調(diào)性?
    預(yù)設(shè):學(xué)生會(huì)不置可否,或者憑感覺(jué)猜測(cè),可追問(wèn)判定依據(jù).。
    問(wèn)題3:(1)如何用數(shù)學(xué)符號(hào)描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
    (2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
    拖動(dòng)“拖動(dòng)點(diǎn)”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
    (3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
    拖動(dòng)“拖動(dòng)點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.。
    (4)已知,若有。
    能保證函數(shù)在區(qū)間上遞增嗎?
    設(shè)計(jì)說(shuō)明:可先請(qǐng)持贊同觀點(diǎn)的同學(xué)說(shuō)明理由,再請(qǐng)持反對(duì)意見(jiàn)的學(xué)生畫(huà)出反駁,然后追問(wèn):無(wú)數(shù)個(gè)也不能保證函數(shù)遞增,那該怎么辦呢?若學(xué)生回答全部取完或任取,追問(wèn)“總不能一個(gè)一個(gè)驗(yàn)證吧?”
    問(wèn)題4:如何用數(shù)學(xué)語(yǔ)言準(zhǔn)確刻畫(huà)函數(shù)在區(qū)間上遞增呢?
    問(wèn)題5:請(qǐng)你試著用數(shù)學(xué)語(yǔ)言定義函數(shù)在區(qū)間上是遞減的.。
    (三)學(xué)以致用,理解感悟。
    判斷題:你認(rèn)為下列說(shuō)法是否正確,請(qǐng)說(shuō)明理由.(舉例或者畫(huà)圖)。
    (1)設(shè)函數(shù)的定義域?yàn)椋魧?duì)任意,都有,則在區(qū)間上遞增;
    (2)設(shè)函數(shù)的定義域?yàn)閞,若對(duì)任意,且,都有,則是遞增的;
    (3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。
    例題:判斷并證明函數(shù)的單調(diào)性.。
    高中必修三數(shù)學(xué)教案篇十
    掌握三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
    教學(xué)重難點(diǎn)。
    利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
    教學(xué)過(guò)程。
    一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
    (精確到0.001).
    米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
    練習(xí):教材p65面3題。
    三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
    (1)根據(jù)圖象建立解析式;。
    (2)根據(jù)解析式作出圖象;。
    (3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
    2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
    四、作業(yè)《習(xí)案》作業(yè)十四及十五。
    高中必修三數(shù)學(xué)教案篇十一
    一、教學(xué)目標(biāo):
    知識(shí)與技能:了解直線參數(shù)方程的條件及參數(shù)的意義。
    過(guò)程與方法:能根據(jù)直線的幾何條件,寫(xiě)出直線的參數(shù)方程及參數(shù)的意義。
    情感、態(tài)度與價(jià)值觀:通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
    二、重難點(diǎn):
    教學(xué)重點(diǎn):曲線參數(shù)方程的定義及方法。
    教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫(xiě)出曲線的參數(shù)方程.
    三、教學(xué)方法:
    啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
    四、教學(xué)過(guò)程。
    (一)、復(fù)習(xí)引入:
    1.寫(xiě)出圓方程的標(biāo)準(zhǔn)式和對(duì)應(yīng)的參數(shù)方程。
    圓參數(shù)方程(為參數(shù))。
    (2)圓參數(shù)方程為:(為參數(shù))。
    2.寫(xiě)出橢圓參數(shù)方程.
    (二)、講解新課:
    如果已知直線l經(jīng)過(guò)兩個(gè)定點(diǎn)q(1,1),p(4,3),
    那么又如何描述直線l上任意點(diǎn)的位置呢?
    2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:
    (1)過(guò)定點(diǎn)傾斜角為的直線的。
    參數(shù)方程。
    (為參數(shù))。
    【辨析直線的參數(shù)方程】:設(shè)m(x,y)為直線上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)p到點(diǎn)m的位移,可以用有向線段數(shù)量來(lái)表示。帶符號(hào).
    (2)、經(jīng)過(guò)兩個(gè)定點(diǎn)q,p(其中)的'直線的參數(shù)方程為。其中點(diǎn)m(x,y)為直線上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動(dòng)點(diǎn)m分有向線段的數(shù)量比。當(dāng)時(shí),m為內(nèi)分點(diǎn);當(dāng)且時(shí),m為外分點(diǎn);當(dāng)時(shí),點(diǎn)m與q重合。
    (三)、直線的參數(shù)方程應(yīng)用,強(qiáng)化理解。
    1、例題:
    學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)。反思?xì)w納:
    1)求直線參數(shù)方程的方法;。
    2)利用直線參數(shù)方程求交點(diǎn)。
    2、鞏固導(dǎo)練:
    補(bǔ)充:
    1)直線與圓相切,那么直線的傾斜角為(a)。
    a.或b.或c.或d.或。
    2)(坐標(biāo)系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.
    解:直線化為普通方程是,
    該直線的斜率為,
    直線(為參數(shù))化為普通方程是,
    該直線的斜率為,
    則由兩直線垂直的充要條件,得,。
    (四)、小結(jié):
    (1)直線參數(shù)方程求法;。
    (2)直線參數(shù)方程的特點(diǎn);。
    (3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
    (五)、作業(yè):
    補(bǔ)充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為。
    【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
    解析:由題直線的普通方程為,故它與與的距離為。
    五、教學(xué)反思:
    高中必修三數(shù)學(xué)教案篇十二
    學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。
    2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。
    教學(xué)重點(diǎn):
    如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。
    教學(xué)過(guò)程:
    一、問(wèn)題情境。
    問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大?
    問(wèn)題3做一個(gè)容積為256l的方底無(wú)蓋水箱,它的高為多少時(shí)材料最省?
    二、新課引入。
    導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。
    1。幾何方面的應(yīng)用(面積和體積等的最值)。
    2。物理方面的應(yīng)用(功和功率等最值)。
    3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。
    三、知識(shí)建構(gòu)。
    說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。
    說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類(lèi)似,加一步與幾個(gè)極。
    值及端點(diǎn)值比較即可。
    例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才。
    能使所用的材料最省?
    說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱(chēng)單峰函數(shù)。
    說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為:
    s1列:列出函數(shù)關(guān)系式。
    s2求:求函數(shù)的導(dǎo)數(shù)。
    s3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時(shí)作答。
    例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為。
    多大時(shí),才能使電功率最大?最大電功率是多少?
    說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。
    例4強(qiáng)度分別為a,b的兩個(gè)光源a,b,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線段ab上,何處照度最???試就a=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。
    例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱(chēng)為成本函數(shù),記為;出售單位產(chǎn)品的收益稱(chēng)為收益函數(shù),記為;稱(chēng)為利潤(rùn)函數(shù),記為。
    (1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?
    (2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大?
    四、課堂練習(xí)。
    1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
    2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽闀r(shí),它的面積最大。
    4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面abcd的面積為定值s時(shí),使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。
    五、回顧反思。
    (1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。
    (2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。
    (3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。
    六、課外作業(yè)。
    課本第38頁(yè)第1,2,3,4題。
    高中必修三數(shù)學(xué)教案篇十三
    了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
    (2)一元二次不等式。
    會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
    通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題。
    會(huì)從實(shí)際情境中抽象出二元一次不等式組.
    了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.
    (4)基本不等式:
    了解基本不等式的證明過(guò)程.
    高中必修三數(shù)學(xué)教案篇十四
    一)、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
    新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
    二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
    要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
    三)、調(diào)整心態(tài),正確對(duì)待考試。
    首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
    在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
    高中必修三數(shù)學(xué)教案篇十五
    一、教學(xué)目標(biāo):1.了解普查的意義.2.結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性.
    二、重難點(diǎn):結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性.
    三、教學(xué)方法:閱讀材料、思考與交流。
    四、教學(xué)過(guò)程。
    (一)、普查。
    1、【問(wèn)題提出】p7。
    通過(guò)我國(guó)第五次人口普查的有關(guān)數(shù)據(jù),讓學(xué)生體會(huì)到統(tǒng)計(jì)對(duì)政府決策的重要作用――統(tǒng)計(jì)數(shù)據(jù)可以提供大量的信息,為國(guó)家的宏觀決策提供有關(guān)的支持.教科書(shū)通過(guò)對(duì)人口普查的有關(guān)新聞報(bào)道,讓學(xué)生體會(huì)人口普查的規(guī)模是何等的宏大與艱辛.
    教科書(shū)提出了三個(gè)有代表性的問(wèn)題.第一個(gè)問(wèn)題主要是針對(duì)人口普查的作用,人口普查可以了解一個(gè)國(guó)家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長(zhǎng)趨勢(shì)等.人口普查是對(duì)國(guó)家的政府決策實(shí)行情況的一個(gè)檢驗(yàn),比如,國(guó)家計(jì)劃生育政策,經(jīng)濟(jì)發(fā)展戰(zhàn)略,國(guó)家“普及九年義務(wù)教育”政策,人民群眾的生活水平等.第二個(gè)問(wèn)題是針對(duì)普查本身存在的問(wèn)題提出的,以加深學(xué)生對(duì)于普查的理解.學(xué)生可能有一個(gè)誤解,普查就是100%的準(zhǔn)確,其實(shí)不然,即使是最周全的調(diào)查方案,在實(shí)際執(zhí)行時(shí)都會(huì)產(chǎn)生一個(gè)誤差.教科書(shū)通過(guò)這個(gè)問(wèn)題,目的是讓學(xué)生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設(shè)計(jì)是盡可能讓這個(gè)誤差降低到最小.同時(shí),也要讓學(xué)生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對(duì)國(guó)家的宏觀決策依然具有重要的作用.第三個(gè)問(wèn)題是針對(duì)人口普查工作的艱辛而提出的,讓學(xué)生體會(huì)人口普查數(shù)據(jù)得來(lái)不易,要尊重人口普查人員的勞動(dòng),對(duì)人口普查工作要大力支持.
    2、【閱讀材料】p4。
    “閱讀材料”是課堂閱讀,目的是讓學(xué)生了解普查工作的特點(diǎn)和重要性,以及我國(guó)目前主要的一些普查工作.進(jìn)而,總結(jié)出普查的主要不足之處,這是從一個(gè)方面說(shuō)明了抽樣調(diào)查的必要性.
    普查是指一個(gè)國(guó)家或一個(gè)地區(qū)專(zhuān)門(mén)組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細(xì)地了解某項(xiàng)重要的國(guó)情、國(guó)力.
    普查主要有兩個(gè)特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時(shí)段的社會(huì)經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.
    普查是一項(xiàng)非常艱巨的工作,它要對(duì)所有的對(duì)象進(jìn)行調(diào)查.當(dāng)普查的對(duì)象很少時(shí),普查無(wú)疑是一項(xiàng)非常好的調(diào)查方式.
    (二)、抽樣調(diào)查。
    【例1和其后的“思考交流”】p8~9。
    緊接著,教科書(shū)通過(guò)例1和“思考交流”的兩個(gè)問(wèn)題,讓學(xué)生了解普查有時(shí)候難以實(shí)現(xiàn).這主要有兩個(gè)方面的原因,其一,被調(diào)查對(duì)象的量大;其二,普查對(duì)被調(diào)查對(duì)象本身具有一定的破壞性.這從另一個(gè)方面說(shuō)明了抽樣調(diào)查的必要性.然后,教科書(shū)通過(guò)抽象概括總結(jié)出抽樣調(diào)查的兩個(gè)主要優(yōu)點(diǎn).
    【例2和其后的“思考交流”】p9~10。
    主要是討論在抽樣調(diào)查時(shí),什么樣的樣本才具有代表性.在抽樣時(shí),如果抽樣不當(dāng),那么調(diào)查的結(jié)果可能會(huì)出現(xiàn)與實(shí)際情況不符,甚至是錯(cuò)誤的結(jié)果,導(dǎo)致對(duì)決策的誤導(dǎo).在抽樣調(diào)查時(shí),一定要保證隨機(jī)性原則,盡可能地避免人為因素的干擾;并且要保證每個(gè)個(gè)體以一定的概率被抽取到;同時(shí),還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.
    由于檢驗(yàn)對(duì)象的量很大,或檢驗(yàn)對(duì)檢驗(yàn)對(duì)象具有破壞性時(shí),通常情況下,所以采用普查的方法有時(shí)是行不通的.通常情況下,從調(diào)查對(duì)象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測(cè),獲取數(shù)據(jù),并以此調(diào)查對(duì)象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對(duì)象的全體稱(chēng)為總體,被抽取的一部分稱(chēng)為樣本.
    抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時(shí);(2)節(jié)約人力、物力和財(cái)力.
    解:統(tǒng)計(jì)的總體是指該地10000名學(xué)生的體重;個(gè)體是指這10000名學(xué)生中每一名學(xué)生的體重;樣本指這10000名學(xué)生中抽出的200名學(xué)生的體重;總體容量為10000;樣本容量為200.若對(duì)每一個(gè)個(gè)體逐一進(jìn)行“調(diào)查”,有時(shí)費(fèi)時(shí)、費(fèi)力,有時(shí)根本無(wú)法實(shí)現(xiàn),一個(gè)行之有效的辦法就是在每一個(gè)個(gè)體被抽取的機(jī)會(huì)均等的前提下從總體中抽取部分個(gè)體,進(jìn)行抽樣調(diào)查.
    例2為了制定某市高一、高二、高三三個(gè)年級(jí)學(xué)生校服的生產(chǎn)計(jì)劃,有關(guān)部門(mén)準(zhǔn)備對(duì)180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:
    a.測(cè)量少年體校中180名男子籃球、排球隊(duì)員的身高;。
    b.查閱有關(guān)外地180名男生身高的統(tǒng)計(jì)資料;。
    c.在本市的市區(qū)和郊縣各任選一所完全中學(xué),兩所初級(jí)中學(xué),在這六所學(xué)校有關(guān)年級(jí)的小班中,用抽簽的方法分別選出10名男生,然后測(cè)量他們的身高.
    解:選c方案.理由:方案c采取了隨機(jī)抽樣的方法,隨機(jī)樣本比較具有代表性、普遍性,可以被用來(lái)估計(jì)總體.
    例3中央電視臺(tái)希望在春節(jié)聯(lián)歡晚會(huì)播出后一周內(nèi)獲得當(dāng)年春節(jié)聯(lián)歡晚會(huì)的收視率.下面三名同學(xué)為電視臺(tái)設(shè)計(jì)的調(diào)查方案.
    甲同學(xué):我把這張《春節(jié)聯(lián)歡晚會(huì)收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計(jì)收視率了.
    乙同學(xué):我給我們居民小區(qū)的每一份住戶(hù)發(fā)一個(gè)是否在除夕那天晚上看過(guò)中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)的調(diào)查表,只要一兩天就可以統(tǒng)計(jì)出收視率.
    丙同學(xué):我在電話號(hào)碼本上隨機(jī)地選出一定數(shù)量的電話號(hào)碼,然后逐個(gè)給他們打電話,問(wèn)一下他們是否收看了中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì),我不出家門(mén)就可以統(tǒng)計(jì)出中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)的收視率.
    請(qǐng)問(wèn):上述三名同學(xué)設(shè)計(jì)的調(diào)查方案能夠獲得比較準(zhǔn)確的收視率嗎?為什么?
    解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準(zhǔn)確的收視率.
    (三)、課堂小結(jié):1、普查是一項(xiàng)非常艱巨的工作,它要對(duì)所有的對(duì)象進(jìn)行調(diào)查.當(dāng)普查的對(duì)象很少時(shí),普查無(wú)疑是一項(xiàng)非常好的調(diào)查方式.普查主要有兩個(gè)特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時(shí)段的社會(huì)經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對(duì)象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測(cè),獲取數(shù)據(jù),并以此調(diào)查對(duì)象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對(duì)象的全體稱(chēng)為總體,被抽取的一部分稱(chēng)為樣本.抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時(shí);(2)節(jié)約人力、物力和財(cái)力.
    (四)、作業(yè):p10練習(xí)題;p10【習(xí)題1―2】。
    五、教后反思:
    高中必修三數(shù)學(xué)教案篇十六
    要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個(gè)好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實(shí)。
    想學(xué)好數(shù)學(xué),對(duì)數(shù)學(xué)感興趣。
    其實(shí)學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自?xún)?nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會(huì)到從學(xué)習(xí)中所收獲的樂(lè)趣。自己的成就感提升,對(duì)于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺(jué)得數(shù)學(xué)并沒(méi)有那么難,就愿意去多接觸了。
    多做題反復(fù)做,有題感。
    其實(shí)學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強(qiáng)學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會(huì)有題感。有些題,它的類(lèi)型都是一樣的,題做多了之后,即使你不會(huì)做,你也會(huì)找到一些解題的思路和技巧。
    高中必修三數(shù)學(xué)教案篇十七
    (1)掌握與()型的絕對(duì)值不等式的解法.
    (2)掌握與()型的絕對(duì)值不等式的解法.
    (3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
    教學(xué)重點(diǎn):型的不等式的解法;。
    教學(xué)難點(diǎn):利用絕對(duì)值的意義分析、解決問(wèn)題.
    教學(xué)過(guò)程設(shè)計(jì)。
    教師活動(dòng)。
    學(xué)生活動(dòng)。
    設(shè)計(jì)意圖。
    一、導(dǎo)入新課。
    【提問(wèn)】正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?
    【概括】。
    口答。
    絕對(duì)值的概念是解與()型絕對(duì)值不等值的概念,為解這種類(lèi)型的絕對(duì)值不等式做好鋪墊.。
    二、新課。
    【提問(wèn)】如何解絕對(duì)值方程.。
    【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
    【練習(xí)】解下列不等式:
    (1);
    (2)。
    【設(shè)問(wèn)】如果在中的,也就是怎樣解?
    【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.。
    所以,原不等式的解集是。
    【設(shè)問(wèn)】如果中的是,也就是怎樣解?
    【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.。
    或
    由得。
    由得。
    所以,原不等式的解集是。
    口答.畫(huà)出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).。
    畫(huà)出數(shù)軸,思考答案。
    不等式的解集表示為。
    畫(huà)出數(shù)軸。
    思考答案。
    不等式的解集為。
    或表示為,或。
    筆答。
    (1)。
    (2),或。
    筆答。
    筆答。
    根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程()的解法.。
    由淺入深,循序漸進(jìn),在型絕對(duì)值方程的基礎(chǔ)上引出()型絕對(duì)值方程的解法.。
    針對(duì)解()絕對(duì)值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
    落實(shí)會(huì)正確解出與()絕對(duì)值不等式的教學(xué)目標(biāo).。
    在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動(dòng)地進(jìn)行練習(xí).。
    繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯(cuò)誤.。
    三、課堂練習(xí)。
    解下列不等式:
    (1);
    (2)。
    筆答。
    (1);
    (2)。
    檢查教學(xué)目標(biāo)落實(shí)情況.。
    四、小結(jié)。
    的解集是;的解集是。
    解絕對(duì)值不等式注意不要丟掉這部分解集.。
    五、作業(yè)。
    1.閱讀課本含絕對(duì)值不等式解法.。
    2.習(xí)題2、3、4。
    課堂教學(xué)設(shè)計(jì)說(shuō)明。
    1.抓住解型絕對(duì)值不等式的關(guān)鍵是絕對(duì)值的意義,為此首先通過(guò)復(fù)習(xí)讓學(xué)生掌握好絕對(duì)值的意義,為解絕對(duì)值不等式打下牢固的基礎(chǔ).
    2.在解與絕對(duì)值不等式中的關(guān)鍵處設(shè)問(wèn)、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會(huì)貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
    3.針對(duì)學(xué)生解()絕對(duì)值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對(duì)值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.