二次根式數(shù)學教案大全(12篇)

字號:

    教案中的教學策略和方法選擇對于教學效果至關重要。教案的編寫要充分利用教學資源,提高教學資源的利用效率。以下是一些教學設計的范例,供大家參考,希望能夠激發(fā)大家的創(chuàng)新思維。
    二次根式數(shù)學教案篇一
    重難點分析。
    本節(jié)課的重點是二次根式的加、減、乘、除、乘方、開方的混合運算及分母有理化。它是以二次根式的概念和性質為基礎,同時又緊密地聯(lián)系著整式、分式的運算,也可以說它是運算問題在初中階段一次總結性,提高性綜合學習;二次根式的運算和有理化的方法與技巧,能夠進一步開拓學生的解題思路,提高學生的解題能力。
    本節(jié)課的難點是把分母中含有兩個二次根式的式子進行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學者來說,這一過程容易出現(xiàn)找錯有理化因式和計算出錯的問題。
    教法建議。
    1.在知識的引入上,可采取復習引入方式,比如復習有理數(shù)的混合運算或整式的運算。
    2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應用,逐漸從數(shù)過渡到帶有字母的式。
    3.在有理化因式教學中,要多出幾組題目從不同角度要求學生辨別,并及時總結。
    學生特點:實驗班的a層學生(數(shù)學實施分層教學),主動學習積極性高,基礎扎實,思維活躍,,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質疑的習慣。
    教材特點:本節(jié)課是在學習了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學習。
    鑒于學生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學模式及“談話式”的教學方法,以此實現(xiàn)生生互動、師生互動、學生與教材之間的互動。具體說明如下:
    (一)在師生互動方面,教師注重問題設計,注重引導、點撥及提高性總結。使學生學中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
    強調(diào):運算順序及運算律和有理數(shù)相同。
    (二)在學生與學生的互動上,教師注重活動設計,使學生學中有樂,樂中悟道。教師設計一組題目,讓學生以競賽的形式解答,然后以記成績的方法讓其它同學說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎知識,學生很容易掌握而且從意識上認為本節(jié)課太簡單,不會很感興趣,所以為了提高學生的學習興趣及更好的抓好基礎,提高學生的運算能力,如此這般設計。
    (三)在個體與群體的互動方式上,教師注重合作設計,使學生學中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學,出示一個題目,讓學生思考,找個別學生說出自己的想法,然后其它同學補充完成。
    學生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導,才能達到彼此互動。正是在這一教育思想的指導下,追求學生的認知活動與情感活動的協(xié)調(diào)發(fā)展,有效地喚起學生的主體意識,在和諧、愉快的情境中達到師生互動,生生互動?;邮浇虒W模式的目的是讓教師樂教、會教、善教,促使學生樂學、會學、善學,從而優(yōu)化課堂教學、提高教學質量,在和諧、愉快的情景中實現(xiàn)教與學的共振。
    二次根式數(shù)學教案篇二
    重難點分析。
    本節(jié)課的重點是二次根式的加、減、乘、除、乘方、開方的混合運算及分母有理化。它是以二次根式的概念和性質為基礎,同時又緊密地聯(lián)系著整式、分式的運算,也可以說它是運算問題在初中階段一次總結性,提高性綜合學習;二次根式的運算和有理化的方法與技巧,能夠進一步開拓學生的解題思路,提高學生的解題能力。
    本節(jié)課的難點是把分母中含有兩個二次根式的式子進行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學者來說,這一過程容易出現(xiàn)找錯有理化因式和計算出錯的問題。
    教法建議。
    1.在知識的引入上,可采取復習引入方式,比如復習有理數(shù)的混合運算或整式的運算。
    2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應用,逐漸從數(shù)過渡到帶有字母的式。
    3.在有理化因式教學中,要多出幾組題目從不同角度要求學生辨別,并及時總結。
    學生特點:實驗班的a層學生(數(shù)學實施分層教學),主動學習積極性高,基礎扎實,思維活躍,,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質疑的習慣。
    教材特點:本節(jié)課是在學習了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學習。
    鑒于學生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學模式及“談話式”的教學方法,以此實現(xiàn)生生互動、師生互動、學生與教材之間的互動。具體說明如下:
    (一)在師生互動方面,教師注重問題設計,注重引導、點撥及提高性總結。使學生學中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
    強調(diào):運算順序及運算律和有理數(shù)相同。
    (二)在學生與學生的互動上,教師注重活動設計,使學生學中有樂,樂中悟道。教師設計一組題目,讓學生以競賽的形式解答,然后以記成績的方法讓其它同學說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎知識,學生很容易掌握而且從意識上認為本節(jié)課太簡單,不會很感興趣,所以為了提高學生的學習興趣及更好的抓好基礎,提高學生的運算能力,如此這般設計。
    (三)在個體與群體的互動方式上,教師注重合作設計,使學生學中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學,出示一個題目,讓學生思考,找個別學生說出自己的想法,然后其它同學補充完成。
    學生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導,才能達到彼此互動。正是在這一教育思想的指導下,追求學生的認知活動與情感活動的協(xié)調(diào)發(fā)展,有效地喚起學生的主體意識,在和諧、愉快的情境中達到師生互動,生生互動?;邮浇虒W模式的目的是讓教師樂教、會教、善教,促使學生樂學、會學、善學,從而優(yōu)化課堂教學、提高教學質量,在和諧、愉快的情景中實現(xiàn)教與學的共振。
    復習:
    1.計算:(1);(2).
    解:(1)(2)。
    ==。
    =;=.
    2.在整式乘法中,單項式與多項式相乘的法則是什么?多項式與多項式的乘法法則是什么?什么是完全平方式?分別用式子表示出來。
    m(a+b+c)=ma+mb+mc。
    (a+b)(m+n)=am+an+bm+bn,。
    其中a,b,m,n都是單項式。
    完全平方式是。
    ;。
    在實數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運用乘法法則及乘法公式可以進行二次根式的混合運算。引入新課。
    二次根式數(shù)學教案篇三
    1.知識技能:
    (1).會進行簡單的二次根式的除法運算.
    (2).使學生能利用商的算術平方根的性質進行二次根式的化簡與運算.
    2.數(shù)學思考:在學習了二次根式乘法的基礎上進行總結對比,得出除法的運算法則.
    3.解決問題:引導學生從特殊到一般總結歸納的方法以及類比的方法,解決數(shù)學問題.
    4.情感態(tài)度:通過本節(jié)課的學習使學生認識到事物之間是相互聯(lián)系的,相互作用的.
    二次根式數(shù)學教案篇四
    教法:
    2、講練結合法:在例題教學中,引導學生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養(yǎng)學生的閱讀習慣和規(guī)范的解題格式。
    學法:
    1、類比的方法通過觀察、類比,使學生感悟二次根式的模型,形成有效的學習策略。
    2、閱讀的方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
    3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學習活動中的交流與合作。
    4、練習法采用不同的練習法,鞏固所學的知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學生的素質。
    二次根式數(shù)學教案篇五
    一、教學目標。
    1.理解分母有理化與除法的關系.。
    4.通過學習分母有理化與除法的關系,向學生滲透轉化的數(shù)學思想。
    二、教學設計。
    小結、歸納、提高。
    三、重點、難點解決辦法。
    1.教學重點:分母有理化.。
    2.教學難點:分母有理化的技巧.。
    四、課時安排。
    1課時。
    五、教具學具準備。
    投影儀、膠片、多媒體。
    六、師生互動活動設計。
    復習小結,歸納整理,應用提高,以學生活動為主。
    七、教學過程()。
    【復習提問】。
    例1說出下列算式的運算步驟和順序:
    (1)(先乘除,后加減).。
    (2)(有括號,先去括號;不宜先進行括號內(nèi)的運算).。
    (3)辨別有理化因式:
    有理化因式:與,與,與…。
    不是有理化因式:與,與…。
    例如,、、等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?
    引入新課題.。
    【引入新課】。
    例2把下列各式的分母有理化:
    (1);(2);(3)。
    解:略.。
    (二)隨堂練習。
    1.把下列各式的分母有理化:
    (1);(2);
    (3);(4).。
    解:(1).。
    (2).。
    另解:.。
    (3)。
    .
    另解:.。
    通過以上例題和練習題,可以看出,有關二次根式的除法,可先寫成分式的形式,然后通過分母有理化進行運算,例如:
    現(xiàn)將分母有理化就可以了.。
    學生易發(fā)生如下錯誤將式子變形為而正確的做法是.。
    2.計算:
    (1);
    (2);
    (3).。
    解:(1)。
    .
    (2)。
    .
    (3)。
    .
    (三)小結。
    2.注意對有理化因式的概括并尋找出它的規(guī)律.。
    (2)練習:教材p202中1、2.。
    (四)布置作業(yè)。
    教材p205中4、5.。
    (五)板書設計。
    標題。
    1.復習內(nèi)容3.練習題一。
    2.例44.練習題二。
    二次根式數(shù)學教案篇六
    重難點分析。
    本節(jié)的重點是的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論.
    本節(jié)的難點是正確理解與應用公式。
    這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤.
    教法建議。
    1.性質的引入方法很多,以下2種比較常用:
    (1)設計問題引導啟發(fā):由設計的問題。
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導學生猜想出。
    (2)從算術平方根的意義引入.。
    2.性質的鞏固有兩個方面需要注意:
    (1)注意與性質進行對比,可出幾道類型不同的題進行比較;
    (第1課時)。
    一、教學目標。
    3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法。
    二、教學設計。
    對比、歸納、總結。
    三、重點和難點。
    四、課時安排。
    1課時。
    五、教具學具準備。
    投影儀、膠片、多媒體。
    六、師生互動活動設計。
    復習對比,歸納整理,應用提高,以學生活動為主。
    七、教學過程。
    一、導入新課。
    我們知道,式子()表示非負數(shù)的算術平方根.。
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負數(shù)的算術平方根,即,且,從而可以取任意實數(shù).。
    二、新課。
    計算下列各題,并回答以下問題:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8)。
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結果和相應的被開方數(shù)的冪的底數(shù)有什么關系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結論?并用語言敘述你的結論.。
    答:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8).。
    3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。
    (),
    用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。
    ().。
    問:請把上述討論結論,用一個式子表示.(注意表示條件和結論)。
    答:
    請同學回憶實數(shù)的絕對值的代數(shù)意義,它和上述二次根式的性質有什么聯(lián)系?
    答:
    填空:
    1.當_________時,;
    2.當時,,當時,;
    3.若,則________;
    4.當時,.。
    答:
    1.當時,;
    2.當時,,
    當時,;
    3.若,則;
    4.當時,.。
    例1化簡().。
    分析:可以利用積的算術平方根的性質及二次根式的性質化簡.。
    解,因為,所以,所以。
    .
    指出:在化簡和運算過程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結果.。
    例2化簡().。
    解.。
    例3化簡:(1)();(2)().。
    解(1).。
    (2).。
    注意:(1)題中的被開方數(shù),因為,所以.。
    (2)題中的被開方數(shù),因為,所以.。
    這里的取值范圍,在已知條件中沒有直接給出,但可以由已知條件分析而得出.。
    例4化簡.。
    .
    所以要比較與3及1與的大小以確定及的符號,然后再進行化簡.。
    解因為,,所以。
    .
    所以。
    .
    三、課堂練習。
    1.求下列各式的值:
    (1);(2).。
    2.化簡:
    (1);(2);
    (3)();(4)().。
    3.化簡:
    (1);(2);
    (3);(4);
    (5);(6)().。
    答案:
    1.(1)0.1;(2).。
    2.(1);(2);(3);(4).。
    3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.。
    四、小結。
    1.二次根式的意義是,所以,因此,其中可以取任意實數(shù).。
    五、作業(yè)。
    1.化簡:
    (1);(2);
    (3)();(4)();
    (5);(6)(,);
    (7)().。
    2.化簡:
    (1);
    (2)();
    (3)(,).。
    答案:
    1.(1)-30;(2);(3);
    (4);(5);(6);(7).。
    2.(1)2;(2)0;(3).。
    二次根式數(shù)學教案篇七
    2、能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。
    3、情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。
    重點:能熟練進行二次根式的加減運算。
    難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應用。
    教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。
    運用教具:小黑板等。
    問題與情景。
    師生活動。
    設計目的。
    活動一:
    情景引入,導學展示。
    這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。教師傾聽學生的交流,指導學生探究。
    問:什么樣的二次根式能進行加減運算,運算到那一步為止。
    由此也可以看到只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。
    加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。
    3、a、b層同學自主學習15頁例1、例2、例3,c層同學至少完成例1、例2的學習。
    例1.計算:
    (1);
    (2)-;
    例2.計算:
    1)。
    2)。
    活動二:分層練習,合作互助。
    1、下列計算是否正確?為什么?
    (1)。
    (2);
    (3)。
    2、計算:
    (1);
    (2)。
    (3)。
    (4)。
    3、(見課本16頁)。
    補充:
    活動三:分層檢測,反饋小結。
    教材17頁習題:
    a層、b層:2、3.
    c層1、2.
    小結:
    這節(jié)課你學到了什么知識?你有什么收獲?
    作業(yè):課堂練習冊第5、6頁。
    自學的同時抽查部分同學在黑板上板書計算過程。抽2名c層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名b層同學訂正。抽2名b層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名a層同學訂正。抽1名a層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。
    此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結果精確到0.1m,學生考慮問題要全面,不能漏掉任何一段鋼材。
    老師提示:
    1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。
    a層同學完成16頁練習1、2、3;b層同學完成練習1、2,可選做第3題;c層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名c層同學口答練習1;抽4名b層或c層同學在黑板上板書練習第2題;抽1名a層或b層同學在黑板上板書練習第3題后再分析講解。
    3)運算法則的運用是否正確。
    先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。
    小結時教師要關注:
    1)學生是否抓住本課的重點;
    2)對于常見錯誤的認識。
    把學習目標由高到低分為a、b、c三個層次,教學中做到分層要求。
    學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。
    將運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應用意識和能力。
    小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。
    培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。
    對課堂的問題及時反饋,使學生熟練掌握新知識。
    每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。
    二次根式數(shù)學教案篇八
    2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
    最簡二次根式的定義。
    一個二次根式化成最簡二次根式的方法。
    1.把下列各根式化簡,并說出化簡的根據(jù):
    2.引導學生觀察考慮:
    化簡前后的根式,被開方數(shù)有什么不同?
    化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
    3.啟發(fā)學生回答:
    二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
    1.總結學生回答的內(nèi)容后,給出最簡二次根式定義:
    滿足下列兩個條件的二次根式叫做最簡二次根式:
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
    最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
    2.練習:
    下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
    3.例題:
    例1 把下列各式化成最簡二次根式:
    例2 把下列各式化成最簡二次根式:
    4.總結
    把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
    當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
    當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。
    此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
    1.把下列各式化成最簡二次根式:
    2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
    本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。
    下列各式化成最簡二次根式:
    二次根式數(shù)學教案篇九
    1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。
    2、過程與方法:進一步體會分類討論的數(shù)學思想。
    3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。
    1、重點:準確理解二次根式的概念,并能進行簡單的計算。
    2、難點:準確理解二次根式的雙重非負性。
    課本第2― 3頁
    一、 課前準備(預習學案見附件1)
    學生在家中認真閱讀理解課本中相關內(nèi)容的知識,并根據(jù)自己的理解完成預習學案。
    二、 課堂教學
    (一)合作學習階段。
    教師出示課堂教學目標及引導材料,各學習小組結合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結,并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。
    (二)集體講授階段。(15分鐘左右)
    1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。
    2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。
    3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。
    (三)當堂檢測階段
    為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。
    (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)
    三、 課后作業(yè)(課后作業(yè)見附件2)
    教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。
    四、板書設計
    課題:二次根式(1)
    二次根式概念 例題 例題
    二次根式性質
    反思:
    二次根式數(shù)學教案篇十
    新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結構的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術平方根的意義找出二次根式的三個性質。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應用意識。
    1.知道什么是二次根式,并會用二次根式的意義解題;
    2.熟記二次根式的性質,并能靈活應用;
    通過二次根式的概念和性質的學習,培養(yǎng)邏輯思維能力;
    1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應用的意識;
    2.通過二次根式性質的介紹滲透對稱性、規(guī)律性的數(shù)學美。
    重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;
    難點:確定二次根式中字母的取值范圍。
    啟發(fā)式、講練結合
    多媒體
    1課時
    二次根式數(shù)學教案篇十一
    本節(jié)是九年級上學期數(shù)學的起始課。二次根式的學習,是對代數(shù)式的進一步學習。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎。
    1、學習任務分析:
    通過對數(shù)和平方根、算術平方根的復習,鼓勵學生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉化為不等式來解決。注意學生數(shù)學書寫格式的規(guī)范,為以后的學習打好基礎。為了使學生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學生放到主體位置。
    2、學生的認知起點分析:
    學生已掌握數(shù)的平方根和算術平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準備。另外,學生對數(shù)的算術平方根的理解作為基礎,經(jīng)歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的理解。
    案例反思:
    以往對這類問題的回答都是全班回答,有些學生反面信息不能體現(xiàn)出來。采取的`措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
    2、合作活動:
    第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;
    第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;
    第四位同學——復查者:請你一定要把好關哦!
    出題者姓名:
    解題者姓名:
    1、要使式子的值為實數(shù),求x的取值范圍。
    2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
    3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
    1、要使式子的值為實數(shù),求x的取值范圍。
    2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
    3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
    批改者姓名:
    復查者姓名:
    《課程標準》突出了學生在學習中的地位--學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從“主導”變成了“學生學習活動的組織者、引導者和合作者”。合作活動的安排就是對這一課程標準的體現(xiàn)。
    二次根式數(shù)學教案篇十二
    2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
    一個二次根式化成最簡二次根式的方法。
    1.把下列各根式化簡,并說出化簡的根據(jù):
    2.引導學生觀察考慮:
    化簡前后的根式,被開方數(shù)有什么不同?
    化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
    3.啟發(fā)學生回答:
    二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
    1.總結學生回答的內(nèi)容后,給出最簡二次根式定義:
    滿足下列兩個條件的二次根式叫做最簡二次根式:
    (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;。
    (2)被開方數(shù)中不含能開得盡的.因數(shù)或因式。
    最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
    2.練習:
    下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
    3.例題:
    例1把下列各式化成最簡二次根式:
    例2把下列各式化成最簡二次根式:
    4.總結。
    把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
    當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
    當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。
    此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
    1.把下列各式化成最簡二次根式:
    2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
    本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。