平面直角坐標(biāo)系教案(模板17篇)

字號(hào):

    教案是教師為了組織教學(xué)活動(dòng)而編寫的一種教學(xué)設(shè)計(jì)和方案。引入一些互動(dòng)環(huán)節(jié),促進(jìn)學(xué)生的思考和互動(dòng),激發(fā)他們的學(xué)習(xí)潛力。小編精心挑選了一些獨(dú)具特色的教案,希望能夠?yàn)榻處焸儙硪恍╈`感和啟示。
    平面直角坐標(biāo)系教案篇一
    2.滲透對(duì)應(yīng)關(guān)系,提高學(xué)生的數(shù)感。
    難點(diǎn):正確畫坐標(biāo)和找對(duì)應(yīng)點(diǎn)。
    一。利用已有知識(shí),引入。
    1.如圖,怎樣說明數(shù)軸上點(diǎn)a和點(diǎn)b的位置,
    2.根據(jù)下圖,你能正確說出各個(gè)象棋子的位置嗎?
    二。明確概念。
    由數(shù)軸的表示引入,到兩個(gè)數(shù)軸和有序數(shù)對(duì)。
    點(diǎn)的坐標(biāo):我們用一對(duì)有序數(shù)對(duì)表示平面上的點(diǎn),這對(duì)數(shù)叫坐標(biāo)。表示方法為(a,b).a是點(diǎn)對(duì)應(yīng)橫軸上的數(shù)值,b是點(diǎn)在縱軸上對(duì)應(yīng)的數(shù)值。
    例1寫出圖中a、b、c、d點(diǎn)的坐標(biāo)。
    建立平面直角坐標(biāo)系后,平面被坐標(biāo)軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
    你能說出例1中各點(diǎn)在第幾象限嗎?
    ()a(3,4);b(-1,2);c(-3,-2);d(2,-2)。
    問題1:各象限點(diǎn)的坐標(biāo)有什么特征?
    練習(xí):教材49頁:練習(xí)1,2。
    三。深入探索。
    教材48頁:探索:
    識(shí)別坐標(biāo)和點(diǎn)的位置關(guān)系,以及由坐標(biāo)判斷兩點(diǎn)的關(guān)系以及兩點(diǎn)所確定的直線的位置關(guān)系。
    1.教材49頁習(xí)題6.1——第1題。
    2.教材50頁——第2,4,5,6。
    2.點(diǎn)的坐標(biāo)及其表示。
    3.各象限內(nèi)點(diǎn)的坐標(biāo)的特征。
    4.坐標(biāo)的簡單應(yīng)用。
    必做題:教科書50頁:3題。
    (教材51頁綜合運(yùn)用7,8,9,10為練習(xí)課內(nèi)容)。
    明確點(diǎn)的坐標(biāo)的表示法。
    仿照例題,畫坐標(biāo)軸,描點(diǎn),要求能正確畫平面直角坐標(biāo)系。
    通過探究,發(fā)現(xiàn)坐標(biāo)不但能代表點(diǎn)的位置,而且能反映他所在的直線的特征。
    平面直角坐標(biāo)系教案篇二
    1、能說出平面直角坐標(biāo)系,以及橫軸、縱軸、原點(diǎn)、坐標(biāo)的概念。會(huì)畫平面直角坐標(biāo)系,并能在給定的平面直角坐標(biāo)系中由點(diǎn)的位置寫出它的坐標(biāo),以及能根據(jù)坐標(biāo)描出點(diǎn)的位置。
    2、知道平面直角坐標(biāo)系內(nèi)有幾個(gè)象限,清楚各象限的點(diǎn)的坐標(biāo)的符號(hào)特點(diǎn)。
    3、給出坐標(biāo)能判斷所在象限。
    1、在給定的平面直角坐標(biāo)系內(nèi),會(huì)根據(jù)坐標(biāo)確定點(diǎn),根據(jù)點(diǎn)的位置寫出點(diǎn)的坐標(biāo)。
    2、知道象限內(nèi)點(diǎn)的坐標(biāo)符號(hào)的特點(diǎn),根據(jù)點(diǎn)的坐標(biāo)判斷其所在象限。
    坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)。
    自主學(xué)習(xí)合作探究
    一自主學(xué)習(xí):
    1、畫一條數(shù)軸,在數(shù)軸上標(biāo)出3,—3,0,2
    數(shù)軸上的點(diǎn)可以用個(gè)實(shí)數(shù)來表示,這個(gè)實(shí)數(shù)叫做___________。
    2、思考:直線上的一個(gè)點(diǎn)可以用數(shù)軸上一個(gè)實(shí)數(shù)來表示點(diǎn)的位置,能不能找到一種辦法來確定平面內(nèi)的點(diǎn)的位置呢?(例如圖7.1—3中a、b、c、d各點(diǎn))。
    3、自學(xué)課本第66—67頁的內(nèi)容,然后填空。
    (1)我們可以在平面內(nèi)畫兩條互相_____、_____重合的數(shù)軸,組成________________,水平的數(shù)軸稱為_____軸或_____軸,習(xí)慣上取向____為正方向;豎直的數(shù)軸稱為____軸或____軸,取向___方向?yàn)檎较?;兩坐?biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的________。
    (2)如何確定點(diǎn)的坐標(biāo)。(閱讀課本第66頁最后一段)如圖7.1—4寫出點(diǎn)b、c、d的坐標(biāo)_______________________。
    思考:原點(diǎn)o的坐標(biāo)是什么?x軸和y軸上的點(diǎn)的坐標(biāo)有什么特點(diǎn)?
    1、如果點(diǎn)m到x軸和y軸的距離相等,則點(diǎn)m橫、縱坐標(biāo)的關(guān)系是()。
    a、相等 b、互為相反數(shù) c、互為倒數(shù) d、相等或互為相反數(shù)
    2、將某圖形的橫坐標(biāo)都減去2,縱坐標(biāo)不變,則該圖形()。
    a、向右平移2個(gè)單位 b、向左平移2個(gè)單位
    c、向上平移2個(gè)單位 d、向下平移2個(gè)單位
    1、生活中只要你留心,就會(huì)發(fā)現(xiàn)有許多用數(shù)字“代替”目標(biāo)位置的現(xiàn)象。
    (1)一張電影票上寫有“7排9號(hào)”,進(jìn)電影院先找,后找,這是一對(duì)有序數(shù)對(duì);
    (2)一張硬座的火車票“10車廂18號(hào)”,上火車時(shí)你得先找,再在車廂里找號(hào)座位。
    2、教室內(nèi)座位,列數(shù)在前,排數(shù)在后。如果李小剛的座位是(3,4),則(3,4)意義是。
    3、某一本書在印刷上有錯(cuò)別字,在第20頁第4行從左數(shù)第11個(gè)字上,如果用數(shù)序表示可記為(20,4,11),你是電腦打字員你認(rèn)為(100,20,4)的意義是。
    4、在電影票上將“10排8號(hào)”前記為(10,8),那么(25,11)表示的意義是。
    5、小亮家住在3號(hào)路,門牌是18號(hào),可記為(3,18),那么小琪家在5號(hào)路門牌號(hào)是49號(hào),可記為。
    平面直角坐標(biāo)系教案篇三
    一、教學(xué)目標(biāo):
    1、通過實(shí)例讓學(xué)生認(rèn)識(shí)有序數(shù)對(duì),感受有序數(shù)對(duì)在確定點(diǎn)的位置中的`作用。
    2、通過學(xué)習(xí)讓學(xué)生感受數(shù)學(xué)知識(shí)來源于生活,作用于生活。
    3、培養(yǎng)學(xué)生邏輯思維能力,培養(yǎng)學(xué)生拾金不昧的優(yōu)秀品質(zhì)。
    二、教學(xué)重難點(diǎn):
    感受有序數(shù)對(duì)與點(diǎn)的位置關(guān)系。
    三、教學(xué)思想:
    理論聯(lián)系實(shí)際,數(shù)形結(jié)合。
    四、課堂教學(xué)過程:
    生:開始交流、猜測,把目光集中在第一排的幾名同學(xué)身上。
    生1:王曉洪。
    生2:張樂。
    生3:云霄。
    生4:許婷婷。
    師:具體是誰確定嗎?可能會(huì)有幾個(gè)人?
    生:不確定,可能有六個(gè)人。
    師:這名同學(xué)恰好又在第二行,同學(xué)們這回你們知道這位同學(xué)是誰了嗎?
    生:討論、交流。
    平面直角坐標(biāo)系教案篇四
    1、理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
    2、掌握坐標(biāo)法解決幾何問題的步驟;體會(huì)坐標(biāo)系的作用。
    新授課。
    啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)、
    多媒體、實(shí)物投影儀。
    一、復(fù)習(xí)引入:
    情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
    情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
    問題1:如何刻畫一個(gè)幾何圖形的位置?
    問題2:如何創(chuàng)建坐標(biāo)系?
    二、學(xué)生活動(dòng)。
    學(xué)生回顧。
    刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系。
    1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定。
    在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
    在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
    三、講解新課:
    1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
    任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置。
    2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)。
    四、數(shù)學(xué)運(yùn)用。
    例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。
    變式訓(xùn)練。
    變式訓(xùn)練。
    2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程。
    例3已知q(a,b),分別按下列條件求出p的坐標(biāo)。
    (1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)。
    (2)p是點(diǎn)q關(guān)于直線l:x—y+4=0的對(duì)稱點(diǎn)(q不在直線1上)。
    變式訓(xùn)練。
    用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
    思考。
    通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
    五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
    六、課后作業(yè):
    平面直角坐標(biāo)系教案篇五
    教學(xué)目標(biāo):
    1、理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
    2、掌握坐標(biāo)法解決幾何問題的步驟;體會(huì)坐標(biāo)系的作用。
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
    授課類型:
    新授課。
    教學(xué)模式:
    啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)、
    教具:
    多媒體、實(shí)物投影儀。
    教學(xué)過程:
    一、復(fù)習(xí)引入:
    情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
    情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
    問題1:如何刻畫一個(gè)幾何圖形的位置?
    問題2:如何創(chuàng)建坐標(biāo)系?
    二、學(xué)生活動(dòng)。
    學(xué)生回顧。
    刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系。
    1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定。
    在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
    在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
    三、講解新課:
    1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
    任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置。
    2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)。
    四、數(shù)學(xué)運(yùn)用。
    例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。
    變式訓(xùn)練。
    變式訓(xùn)練。
    2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程。
    例3已知q(a,b),分別按下列條件求出p的坐標(biāo)。
    (1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)。
    (2)p是點(diǎn)q關(guān)于直線l:x—y+4=0的對(duì)稱點(diǎn)(q不在直線1上)。
    變式訓(xùn)練。
    用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
    思考。
    通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
    五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
    六、課后作業(yè):
    平面直角坐標(biāo)系教案篇六
    1:認(rèn)識(shí)并能畫出平面直角坐標(biāo)系;能在方格紙上建立適當(dāng)?shù)闹苯亲鴺?biāo)系,描述物體的位置;在給定的直角坐標(biāo)系中,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置,由點(diǎn)的位置寫出它的坐標(biāo)。
    2:經(jīng)歷畫坐標(biāo)系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識(shí)、合作交流意識(shí)。
    二:教學(xué)重點(diǎn)。
    能畫出平面直角坐標(biāo)系;會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置,由點(diǎn)的位置寫出它的坐標(biāo)。
    三:教學(xué)難點(diǎn)。
    能能建立平面直角坐標(biāo)系;求出點(diǎn)的坐標(biāo),由點(diǎn)的位置寫出它的坐標(biāo)。
    四:教學(xué)時(shí)間。
    三課時(shí)。
    五:教學(xué)過程。
    第一課時(shí)。
    一)引入新課。
    1:要在平面內(nèi)確定一個(gè)地點(diǎn)的位置需要幾個(gè)數(shù)據(jù)?
    二)新課。
    1:我們可以以“中心廣場”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右和向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長看做一個(gè)單位長度,你能表示出“碑林”的位置嗎?“大成殿”的位置嗎?(學(xué)生回答,老師小結(jié))。
    2:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。(通常兩條數(shù)軸成水平位置與鉛直位置,取向上或向右為正方向,水平位置的數(shù)軸叫橫軸,鉛直位置的數(shù)軸叫縱軸,它們的公共原點(diǎn)叫直角坐標(biāo)系的原點(diǎn)。)。
    3:兩條坐標(biāo)軸把平面分成四部分:右上部分叫第一象限,其它三部分按逆時(shí)針方向依次叫第二象限、第三象限、第四象限。
    4:怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?
    對(duì)于平面內(nèi)任意一點(diǎn),過該點(diǎn)分別向橫軸、縱軸作垂線,垂足在橫軸、縱軸上對(duì)應(yīng)的數(shù)分別叫該點(diǎn)的橫坐標(biāo)、縱坐標(biāo)。
    例1寫出多邊形abcdef各頂點(diǎn)的坐標(biāo)。
    y
    ab。
    focx。
    ed。
    5:想一想。
    (1)點(diǎn)a與b的縱坐標(biāo)相同,線段ab的位置有什么特點(diǎn)?
    (2)線段db的位置有什么特點(diǎn)?
    (3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
    6:練習(xí)p131做一做。
    (2)怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?
    (4)知道點(diǎn)的坐標(biāo)怎樣描出點(diǎn)?
    四:作業(yè)p132。
    第二課時(shí)。
    一:復(fù)習(xí)。
    (2)怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?
    y
    a
    bc。
    ox
    已知等邊三角形的邊長為2cm,求出各頂點(diǎn)的坐標(biāo)?
    (3)道點(diǎn)的坐標(biāo)怎樣描出點(diǎn)?
    二:新課。
    例在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段依次連接起來。
    (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5)。
    (2)-9,3),(-9,0),(-3,0),(-3,3)。
    (3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9)。
    (4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7)。
    (5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
    觀察所得的圖形,你覺得它像什么?
    y
    ox。
    三:練習(xí)p134做一做。
    四:作業(yè)p135習(xí)題5.4(1、2)。
    第三課時(shí)。
    一;新課引入與復(fù)習(xí)。
    1)怎樣畫平面直角坐標(biāo)系?畫平面直角坐標(biāo)系時(shí)應(yīng)注意些什么?
    2)怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?(對(duì)于平面內(nèi)任意一點(diǎn),過該點(diǎn)分別向橫軸、縱軸作垂線,垂足在橫軸、縱軸上對(duì)應(yīng)的數(shù)分別叫該點(diǎn)的橫坐標(biāo)、縱坐標(biāo)。)。
    二:新課。
    例3如圖,矩形abcd的長與寬分別是6,4。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各個(gè)頂點(diǎn)的坐標(biāo)。
    y
    ba。
    解:如圖:以點(diǎn)c為坐標(biāo)原點(diǎn),分別以cd、cb所在。
    o
    cdx。
    由cd長為6,cb長為4,可得d,b,a的坐標(biāo)分別為d(6,0),b(0,4),a(,4)。
    思考:(還可以建立直角坐標(biāo)系嗎?與同學(xué)交流)。
    例4對(duì)于邊長為4的正三角形abc,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各個(gè)頂點(diǎn)的坐標(biāo)。
    a
    bc。
    三:小結(jié)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求的坐標(biāo)要注意以下幾點(diǎn)?
    1)要找出坐標(biāo)原點(diǎn)。
    2)要說明橫軸與縱軸的位置。
    3)要求出必要的線段的長度。
    四:練習(xí)p161(議一議)與隨堂練習(xí)。
    p162習(xí)題的第一題。
    五:作業(yè)p162習(xí)題的第二題。
    六:課外練習(xí)p162(試一試)。
    魚的變化第二課時(shí)。
    一:復(fù)習(xí)點(diǎn)的坐標(biāo)的特征。
    1)關(guān)于橫軸對(duì)稱的兩點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)相反。
    2)關(guān)于縱軸對(duì)稱的兩點(diǎn)縱坐標(biāo)相等,橫坐標(biāo)相反。
    3)關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)橫坐標(biāo)相反,縱坐標(biāo)相反。
    二:看圖確定點(diǎn)的坐標(biāo)。
    ac。
    bd。
    y
    ad
    bc。
    x
    三;練習(xí)。
    1)p142做一做。
    2)p143隨堂練習(xí)。
    四:小結(jié)p143議一議。
    五:作業(yè)p144習(xí)題(做在書上)。
    第五章回顧與思考。
    一:學(xué)生看書回答問題。
    1)在平面內(nèi),確定點(diǎn)的位置一般需要幾個(gè)數(shù)據(jù)?舉例說明。
    2)在直角坐標(biāo)系中,如何確定給定點(diǎn)的坐標(biāo)?舉例說明。
    3)在直角坐標(biāo)系中,橫、縱坐標(biāo)系軸上點(diǎn)的坐標(biāo)各有什么特點(diǎn)?舉例說明。
    4)在直角坐標(biāo)系中,將圖形沿坐標(biāo)軸方向平移,變化前后的對(duì)應(yīng)點(diǎn)的坐標(biāo)有什么異同?舉例說明。
    5)在直角坐標(biāo)系中,將圖形上各點(diǎn)的橫坐標(biāo)或縱坐標(biāo)加上一個(gè)數(shù)(或乘-1),變化前后的`圖形有什么關(guān)系?舉例說明。
    二:練習(xí)。
    p145復(fù)習(xí)題a組。
    三:小結(jié)點(diǎn)的坐標(biāo)。
    平面直角坐標(biāo)系教案篇七
    2、教師展示知識(shí)結(jié)構(gòu)圖。
    活動(dòng)2:知識(shí)落實(shí)。
    1、基礎(chǔ)訓(xùn)練。
    復(fù)習(xí)各個(gè)知識(shí)點(diǎn)及平時(shí)解題應(yīng)注意的地方,進(jìn)行鞏固各知識(shí)點(diǎn)的基礎(chǔ)題訓(xùn)練。
    2、能力提高。
    把本章內(nèi)容和以前的知識(shí)點(diǎn)聯(lián)系起來,解決問題。
    3應(yīng)用拓展(合作探究)。
    春天到了,七年級(jí)二班組織同學(xué)們到公園春游,張明王麗李華三位同學(xué)和其他同學(xué)走散了,同學(xué)們已經(jīng)到了中心廣場,而他們?nèi)栽谀档@賞花,他們對(duì)著景區(qū)示意圖在電話中向老師說明了他們的位置。
    活動(dòng)3:知識(shí)檢測。
    游戲環(huán)節(jié)(快樂之旅)。
    活動(dòng)4:小結(jié)提升。
    通過本節(jié)復(fù)習(xí)課,你對(duì)本章知識(shí)是否有了更深的認(rèn)識(shí)呢?談?wù)勀愕捏w會(huì)。
    活動(dòng)5:布置作業(yè)。
    1、必做題:p96—3、4、7。
    2、選做題:p97—9、10。
    3、探究題。
    利用本章的基礎(chǔ)知識(shí)分析問題,解決問題。
    學(xué)生思考交流。
    提出解決問題的策略。
    學(xué)生先讀題獨(dú)立思考,再通過合作探究,分析問題,得到問題的解決方案,利用已學(xué)的知識(shí)分析問題,闡述解題的思路,進(jìn)而完善問題的答案。
    平面直角坐標(biāo)系教案篇八
    《平面直角坐標(biāo)系》是八年級(jí)上冊第五章《位置與坐標(biāo)》第二節(jié)內(nèi)容。本章是“圖形與坐標(biāo)”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標(biāo)系”等內(nèi)容,而且也從坐標(biāo)的角度使學(xué)生進(jìn)一步體會(huì)圖形平移、軸對(duì)稱的數(shù)學(xué)內(nèi)涵,同時(shí)又是一次函數(shù)的重要基礎(chǔ)?!镀矫嬷苯亲鴺?biāo)系》反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。因此,教學(xué)過程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問題情境,會(huì)引起學(xué)生的極大關(guān)注,會(huì)有利于學(xué)生對(duì)內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究。
    二、教學(xué)任務(wù)分析。
    教學(xué)目標(biāo)設(shè)計(jì):
    知識(shí)目標(biāo):
    1.理解平面直角坐標(biāo)系以及橫軸、縱軸、原點(diǎn)、坐標(biāo)等概念;。
    3.能在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。
    能力目標(biāo):
    1.通過畫坐標(biāo)系、由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識(shí)、合作交流意識(shí);。
    2.通過對(duì)一些點(diǎn)的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn),縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識(shí)和能力。
    情感目標(biāo):
    由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點(diǎn)找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。
    教學(xué)重點(diǎn):
    2.在給定的平面直角坐標(biāo)系中,會(huì)根據(jù)點(diǎn)的位置寫出它的坐標(biāo);。
    3.由觀察點(diǎn)的坐標(biāo)、縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,說明坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
    教學(xué)難點(diǎn):
    1.橫(或縱)坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系的探究;。
    2.坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)的總結(jié)。
    三、教學(xué)過程設(shè)計(jì)。
    第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課。
    同學(xué)們,你們喜歡旅游嗎?假如你到了某一個(gè)城市旅游,那么你應(yīng)怎樣確定旅游景點(diǎn)的位置呢?下面給出一張某市旅游景點(diǎn)的示意圖,根據(jù)示意圖(圖5-6),回答以下問題:
    (1)你是怎樣確定各個(gè)景點(diǎn)位置的?
    第二環(huán)節(jié)分類討論,探索新知。
    1.平面直角坐標(biāo)系、橫軸、縱軸、橫坐標(biāo)、縱坐標(biāo)、原點(diǎn)的定義和象限的劃分。
    學(xué)生自學(xué)課本,理解上述概念。
    2.例題講解。
    (出示投影)例1。
    例1寫出圖中的多邊形abcdef各頂點(diǎn)的坐標(biāo)。
    平面直角坐標(biāo)系教案篇九
    2、滲透對(duì)應(yīng)關(guān)系,提高學(xué)生的數(shù)感。
    [教學(xué)重點(diǎn)與難點(diǎn)]。
    難點(diǎn):正確畫坐標(biāo)和找對(duì)應(yīng)點(diǎn)。
    [教學(xué)設(shè)計(jì)]。
    [設(shè)計(jì)說明]。
    一、利用已有知識(shí),引入。
    1.如圖,怎樣說明數(shù)軸上點(diǎn)a和點(diǎn)b的位置,
    2.根據(jù)下圖,你能正確說出各個(gè)象棋子的位置嗎?
    二、明確概念。
    由數(shù)軸的表示引入,到兩個(gè)數(shù)軸和有序數(shù)對(duì)。
    點(diǎn)的坐標(biāo):我們用一對(duì)有序數(shù)對(duì)表示平面上的點(diǎn),這對(duì)數(shù)叫坐標(biāo)。表示方法為(a,b)。a是點(diǎn)對(duì)應(yīng)橫軸上的數(shù)值,b是點(diǎn)在縱軸上對(duì)應(yīng)的數(shù)值。
    例1寫出圖中a、b、c、d點(diǎn)的坐標(biāo)。
    建立平面直角坐標(biāo)系后,平面被坐標(biāo)軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
    你能說出例1中各點(diǎn)在第幾象限嗎?
    a(3,4);b(—1,2);c(—3,—2);d(2,—2)。
    問題1:各象限點(diǎn)的坐標(biāo)有什么特征?
    練習(xí):教材49頁:練習(xí)1,2、
    三。深入探索。
    教材48頁:探索:
    識(shí)別坐標(biāo)和點(diǎn)的位置關(guān)系,以及由坐標(biāo)判斷兩點(diǎn)的關(guān)系以及兩點(diǎn)所確定的直線的位置關(guān)系。
    [鞏固練習(xí)]。
    1.教材49頁習(xí)題6。1——第1題。
    2.教材50頁——第2,4,5,6。
    [小結(jié)]。
    2.點(diǎn)的坐標(biāo)及其表示。
    3.各象限內(nèi)點(diǎn)的坐標(biāo)的特征。
    4.坐標(biāo)的簡單應(yīng)用。
    [作業(yè)]。
    必做題:教科書50頁:3題。
    (教材51頁綜合運(yùn)用7,8,9,10為練習(xí)課內(nèi)容)。
    明確點(diǎn)的坐標(biāo)的表示法。
    仿照例題,畫坐標(biāo)軸,描點(diǎn),要求能正確畫平面直角坐標(biāo)系。
    通過探究,發(fā)現(xiàn)坐標(biāo)不但能代表點(diǎn)的位置,而且能反映他所在的直線的特征。
    平面直角坐標(biāo)系教案篇十
    復(fù)習(xí)各個(gè)知識(shí)點(diǎn)及平時(shí)解題應(yīng)注意的地方,進(jìn)行鞏固各知識(shí)點(diǎn)的'基礎(chǔ)題訓(xùn)練。
    2、能力提高
    把本章內(nèi)容和以前的知識(shí)點(diǎn)聯(lián)系起來,解決問題。
    3應(yīng)用拓展(合作探究)
    春天到了,七年級(jí)二班組織同學(xué)們到公園春游,張明王麗李華三位同學(xué)和其他同學(xué)走散了,同學(xué)們已經(jīng)到了中心廣場,而他們?nèi)栽谀档@賞花,他們對(duì)著景區(qū)示意圖在電話中向老師說明了他們的位置。
    游戲環(huán)節(jié)(快樂之旅)
    7個(gè)金蛋你可以任選一個(gè),如果出現(xiàn)“恭喜你”的字樣,你將直接過關(guān);否則將有考驗(yàn)?zāi)愕臄?shù)學(xué)問題,當(dāng)然你可以自己作答,也可以求助你周圍的老師或同學(xué).
    通過本節(jié)復(fù)習(xí)課,你對(duì)本章知識(shí)是否有了更深的認(rèn)識(shí)呢?談?wù)勀愕捏w會(huì)。
    1、必做題:p96—3、4、7
    2、選做題:p97—9、10
    3、探究題
    利用本章的基礎(chǔ)知識(shí)分析問題,解決問題。
    學(xué)生思考交流
    提出解決問題的策略。
    學(xué)生先讀題獨(dú)立思考,再通過合作探究,分析問題,得到問題的解決方案,
    利用已學(xué)的知識(shí)分析問題,闡述解題的思路,進(jìn)而完善問題的答案。
    平面直角坐標(biāo)系教案篇十一
    作為一位優(yōu)秀的人民教師,總不可避免地需要編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。我們應(yīng)該怎么寫說課稿呢?下面是小編為大家收集的平面直角坐標(biāo)系的說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
    1、教材的地位和作用。
    “平面直角坐標(biāo)系”作為“數(shù)軸”的進(jìn)一步發(fā)展,實(shí)現(xiàn)了認(rèn)識(shí)上從一維空間到二維空間的跨越,構(gòu)成更廣范圍內(nèi)的數(shù)形結(jié)合、數(shù)形互相轉(zhuǎn)化的理論基礎(chǔ)。是今后學(xué)習(xí)函數(shù)、函數(shù)與方程、函數(shù)與不等式關(guān)系的必要知識(shí)。所以平面直角坐標(biāo)系是溝通代數(shù)和幾何的橋梁,是今后學(xué)習(xí)的一個(gè)重要的數(shù)學(xué)工具。
    2、學(xué)情分析。
    學(xué)生在學(xué)習(xí)了數(shù)軸的概念后,已經(jīng)有了一定的數(shù)形結(jié)合的意識(shí),積累了一定的由數(shù)軸坐標(biāo)描出數(shù)軸上點(diǎn)及由數(shù)軸上的點(diǎn)寫出數(shù)軸上坐標(biāo)的經(jīng)驗(yàn),同時(shí)經(jīng)過上一節(jié)《怎樣確定平面內(nèi)點(diǎn)的位置》的學(xué)習(xí),對(duì)平面上的點(diǎn)由一個(gè)有序數(shù)對(duì)表示,有了一定的認(rèn)識(shí)。
    如何從一維數(shù)軸點(diǎn)與實(shí)數(shù)之間的對(duì)應(yīng)關(guān)系過渡到二維坐標(biāo)平面中的點(diǎn)與有序數(shù)對(duì)之間關(guān)系,限于初中的學(xué)習(xí)范圍與學(xué)生的接受能力,學(xué)生理解起來有一定的困難,如:不理解有序?qū)崝?shù)對(duì),不能很好地理解一一對(duì)應(yīng),不能正確認(rèn)識(shí)橫、縱坐標(biāo)的意義,有的只限于機(jī)械地記憶,這樣會(huì)影響對(duì)數(shù)形結(jié)合思想的形成。同時(shí)本節(jié)內(nèi)容中概念較多,比較瑣碎,如何熟練運(yùn)用對(duì)學(xué)生來說也有一定困難。
    3、教學(xué)重難點(diǎn)及突破。
    基于對(duì)本節(jié)課的認(rèn)識(shí)和學(xué)生的學(xué)情分析,我將本節(jié)課的重點(diǎn)確定為:理解平面直角坐標(biāo)系及相關(guān)概念,能由點(diǎn)寫出它的坐標(biāo)及相關(guān)特征,難點(diǎn)確定為:平面直角坐標(biāo)系中點(diǎn)與有序數(shù)對(duì)之間的一一對(duì)應(yīng)與數(shù)形結(jié)合意識(shí)的培養(yǎng)。要達(dá)到本節(jié)課的.目標(biāo)我認(rèn)為除了要加強(qiáng)學(xué)生多練多探索來認(rèn)識(shí)有關(guān)的知識(shí)外,還必須在“激發(fā)學(xué)生的學(xué)習(xí)興趣”上下功夫,盡量調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
    4、教學(xué)目標(biāo)。
    根據(jù)新課標(biāo)要求和學(xué)生現(xiàn)有知識(shí)水平,從三個(gè)方面提出本節(jié)課的教學(xué)目標(biāo):
    知識(shí)與技能:
    2、能在給定的直角坐標(biāo)系中根據(jù)點(diǎn)的坐標(biāo)描出點(diǎn)的位置,由點(diǎn)的位置寫出點(diǎn)的坐標(biāo)。
    過程與方法:
    經(jīng)歷畫坐標(biāo)系、描點(diǎn)、看圖等過程,讓學(xué)生感受“數(shù)形結(jié)合”的數(shù)學(xué)思想,體會(huì)數(shù)學(xué)源于生活,初步體驗(yàn)將實(shí)際問題數(shù)學(xué)化的過程和方法。
    情感態(tài)度與價(jià)值觀:
    揭示人類認(rèn)識(shí)世界是由特殊到一般,由具體到抽象的認(rèn)知規(guī)律,激發(fā)學(xué)生勇于探索的精神。
    教法:
    1、自主探索法。用創(chuàng)設(shè)情景引導(dǎo)學(xué)生從生活實(shí)踐自主探索新知識(shí)。
    2、講練討論法。教師講練引導(dǎo)學(xué)生從坐標(biāo)系概念獲得由點(diǎn)求坐標(biāo)。
    3、游戲激趣法。組織學(xué)生進(jìn)行游戲活動(dòng),鞏固提高獲得的知識(shí),調(diào)動(dòng)學(xué)習(xí)積極性。
    教學(xué)媒體的使用上,用多媒體課件與傳統(tǒng)教學(xué)方式相結(jié)合,對(duì)本節(jié)課的教學(xué)是非常必要的,充分應(yīng)用多媒體教學(xué)直觀、形象的優(yōu)勢,在展示坐標(biāo)平面的建立、坐標(biāo)的確定上加快了課堂節(jié)奏,增大了課堂容量。同時(shí)為克服多媒體教學(xué)的局限性,利用黑板進(jìn)行必要的板書,進(jìn)行適當(dāng)?shù)难菔疽龑?dǎo)學(xué)生正確使用作圖工具進(jìn)行嚴(yán)謹(jǐn)作圖,并幫助解決課堂中的突發(fā)問題。
    學(xué)法:按新課標(biāo)理念,倡導(dǎo)學(xué)生自主主動(dòng)探索、學(xué)習(xí)知識(shí),盡可能把“鑰匙”交給學(xué)生自啟知識(shí)之門,大膽把課堂交給學(xué)生;用討論探索知識(shí),培養(yǎng)創(chuàng)新意識(shí);培養(yǎng)學(xué)生自學(xué)能力。
    (一)創(chuàng)設(shè)情景,引入新課。
    課件展示某城市旅游景點(diǎn)示意圖,導(dǎo)入:假如你是導(dǎo)游,你是如何確定各個(gè)景點(diǎn)的位置的?這就是本節(jié)課要研究的問題。
    設(shè)計(jì)意圖:通過提供現(xiàn)實(shí)背景吸引學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。
    (二)學(xué)生自學(xué),提出疑問。
    指導(dǎo)學(xué)生自學(xué)課本第49頁和50頁,并回答問題。
    2、水平的數(shù)軸稱為軸或軸,習(xí)慣上取向?yàn)檎较?;豎直的數(shù)軸稱為軸或軸,取向?yàn)檎较颉?BR>    4、直角坐標(biāo)系分為幾個(gè)象限?如何區(qū)分?
    回到剛開始的圖形,學(xué)生自主思考:
    2、你能分別用有序數(shù)對(duì)表示它們的位置嗎?
    設(shè)計(jì)意圖:鍛煉學(xué)生的自主學(xué)習(xí)能力,帶著問題閱讀課本,經(jīng)歷自主探索的過程,可以讓學(xué)生加深記憶。以旅游景點(diǎn)為背景,讓學(xué)生思考身邊熟悉景點(diǎn)位置及其表示方法,自然親切,學(xué)生容易接受。
    (三)小組討論,探索新知。
    讓學(xué)生依據(jù)對(duì)平面直角坐標(biāo)系的理解,畫出平面直角坐標(biāo)系,并結(jié)合圖形確定點(diǎn)的位置。
    (1)已知平面內(nèi)一點(diǎn)q,如何確定它的坐標(biāo)呢?
    (2)若已知點(diǎn)p的坐標(biāo)為(a,b),如何確定點(diǎn)p的位置呢?
    (為了學(xué)生更好地?cái)⑹鲎鴺?biāo)的產(chǎn)生,教師可把這種敘述方式固定下來“過點(diǎn)a作橫軸的垂線,垂足對(duì)應(yīng)的數(shù)字是3,3叫作點(diǎn)a的橫坐標(biāo),過點(diǎn)a作縱軸的垂線,垂足對(duì)應(yīng)的數(shù)字是2,2叫作點(diǎn)a的縱坐標(biāo),因此點(diǎn)a的坐標(biāo)是a(3,2),記憶用一句話表示:先橫后縱,逗號(hào)隔開,加上括號(hào)。)。
    設(shè)計(jì)意圖:通過學(xué)生自主探究,培養(yǎng)其自學(xué)能力和科學(xué)探究能力。
    (四)操作演練,培養(yǎng)技能。
    完成例1,例2,教師講解。
    (五)拓展提升。
    參照?qǐng)D形,回答:各象限內(nèi)的點(diǎn)的坐標(biāo)有何特征?
    坐標(biāo)軸上的點(diǎn)的坐標(biāo)有何特征?
    學(xué)生分組交流、合作,以小組為單位總結(jié)發(fā)言。
    設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析問題、解決問題的能力和口語表達(dá)的能力。
    (六)反思總結(jié),布置作業(yè)。
    1、通過本節(jié)課的學(xué)習(xí),你收獲到了什么?
    作業(yè):必做題:課本第52頁習(xí)題11、2a組2、3。
    選做題:課本第52頁習(xí)題11、2b組2。
    平面直角坐標(biāo)系教案篇十二
    這節(jié)課“平面直角坐標(biāo)系”是華東師大版八年級(jí)(下)數(shù)學(xué)第十八章第二節(jié)第一課時(shí)的內(nèi)容。是在學(xué)習(xí)了“變量與函數(shù)”的基礎(chǔ)上提出來的,是學(xué)習(xí)函數(shù)圖象的重要基礎(chǔ),下面就這節(jié)課的教學(xué)設(shè)計(jì)作如下說明:
    從學(xué)生最熟悉的環(huán)境(教室)入手,抽象出用“一對(duì)有序?qū)崝?shù)”來表示平面上點(diǎn)的位置的數(shù)學(xué)問題,顯得非常自然。這時(shí)老師也不要急于給出直角坐標(biāo)系的概念,而是給學(xué)生一段時(shí)間去思考、去交流。把學(xué)生的思想和法國著名數(shù)學(xué)家---笛卡爾當(dāng)時(shí)的思法進(jìn)行自然結(jié)合,讓學(xué)生體會(huì)成功的喜悅感,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,提高學(xué)習(xí)的信心和興趣。
    既有教師的講解,又有獨(dú)立分析、分組討論交流、游戲活動(dòng)等。教學(xué)的全過程都是圍繞學(xué)生這個(gè)主體開展活動(dòng)的,和學(xué)生一起探究概念的形成,知識(shí)的拓展,讓學(xué)生參與知識(shí)形成的全過程,拓展學(xué)生學(xué)習(xí)空間,充分發(fā)揮學(xué)生的主體作用。
    設(shè)計(jì)上注重了數(shù)學(xué)思想方法在課堂中的滲透,領(lǐng)悟數(shù)學(xué)知識(shí)發(fā)生與發(fā)展過程中的思想方法;注重知識(shí)“結(jié)構(gòu)化”的形成,幫助學(xué)生形成了知識(shí)體系,完善了認(rèn)知結(jié)構(gòu)。有效培養(yǎng)學(xué)生的發(fā)散思維能力和對(duì)知識(shí)的分析、歸納能力。
    本課采用了“學(xué)習(xí)單”的形式, 不僅體現(xiàn)了學(xué)生學(xué)習(xí)的全過程,還能比較全面地、及時(shí)地反映每個(gè)學(xué)生的學(xué)習(xí)情況,以便老師及時(shí)發(fā)現(xiàn)問,及時(shí)調(diào)整教學(xué),對(duì)學(xué)有余力的學(xué)生及時(shí)給予激勵(lì)和指導(dǎo),對(duì)學(xué)習(xí)有困難的學(xué)生及時(shí)給予幫助和鼓勵(lì)。
    18.2.1平面直角坐標(biāo)系
    1、平面直角坐標(biāo)系 2.由點(diǎn)寫坐標(biāo):
    (1)橫(x)軸、縱()軸、坐標(biāo)原點(diǎn) 各象限內(nèi)點(diǎn)的坐標(biāo)特征:
    (2)象限:
    (3)一、二、三、四 坐標(biāo)軸上點(diǎn)的坐標(biāo)特征:
    2、點(diǎn)的坐標(biāo):p(x,) 平面上的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng)
    (1)由坐標(biāo)描點(diǎn):
    (2)點(diǎn)的坐標(biāo)是:
    (3)一對(duì)有序?qū)崝?shù)對(duì)點(diǎn)的對(duì)稱關(guān)系:
    平面直角坐標(biāo)系教案篇十三
    二)新課。
    1:我們可以以“中心廣場”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右和向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長看做一個(gè)單位長度,你能表示出“碑林”的位置嗎?“大成殿”的位置嗎?(學(xué)生回答,老師小結(jié))。
    2:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。(通常兩條數(shù)軸成水平位置與鉛直位置,取向上或向右為正方向,水平位置的'數(shù)軸叫橫軸,鉛直位置的數(shù)軸叫縱軸,它們的公共原點(diǎn)叫直角坐標(biāo)系的原點(diǎn)。)。
    3:兩條坐標(biāo)軸把平面分成四部分:右上部分叫第一象限,其它三部分按逆時(shí)針方向依次叫第二象限、第三象限、第四象限。
    4:怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?
    對(duì)于平面內(nèi)任意一點(diǎn),過該點(diǎn)分別向橫軸、縱軸作垂線,垂足在橫軸、縱軸上對(duì)應(yīng)的數(shù)分別叫該點(diǎn)的橫坐標(biāo)、縱坐標(biāo)。
    例1寫出多邊形abcdef各頂點(diǎn)的坐標(biāo)。
    y
    ab。
    focx。
    ed。
    5:想一想。
    (1)點(diǎn)a與b的縱坐標(biāo)相同,線段ab的位置有什么特點(diǎn)?
    (2)線段db的位置有什么特點(diǎn)?
    (3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
    6:練習(xí)p131做一做。
    三:小結(jié)。
    (2)怎樣求平面內(nèi)點(diǎn)的坐標(biāo)?
    (4)知道點(diǎn)的坐標(biāo)怎樣描出點(diǎn)?
    平面直角坐標(biāo)系教案篇十四
    1、理解有序數(shù)對(duì)的概念,了解平面內(nèi)的點(diǎn)與有序數(shù)對(duì)的關(guān)系。
    2、利用有序數(shù)對(duì)確定物體的位置。
    重點(diǎn):有序數(shù)對(duì)難點(diǎn):用有序數(shù)對(duì)表示具體位置。
    一、閱讀教材p39~p40的內(nèi)容,回答下面問題:二、獨(dú)立思考:
    (1)確定直線上某一點(diǎn)的位置一般需要_________個(gè)數(shù)據(jù),確定平面內(nèi)某一點(diǎn)的位置一般需要_________個(gè)數(shù)據(jù)。
    (2)某賓館第四樓第1個(gè)房間的門牌為4-1,那么第五樓第10個(gè)房間門牌號(hào)應(yīng)為_____。
    (3)七年級(jí)3班座位有7排8列,王燕同學(xué)的座位是第3排第4列,簡記作(3,4),張波同學(xué)的座位簡記作(5,2),則張波坐在第______排第______列。
    (4)如果影劇院的座位10排2號(hào)用(10,2)表示,那么(8,3)表示_______________。
    例1:“怪獸吃豆豆”是一種計(jì)算機(jī)游戲,如圖所。
    示的標(biāo)志“”表示“怪獸”先后經(jīng)過的幾個(gè)位置,如。
    果用(1,2)表示“怪獸”按圖中箭頭所指的路線經(jīng)過。
    的第三個(gè)位置,那么請(qǐng)你用同樣的方法表示圖中“怪獸”
    經(jīng)過的其他幾個(gè)位置。
    例2:螞蟻從a點(diǎn)出發(fā),經(jīng)過通道線爬回蟻巢b點(diǎn),若用(0,0)(1,0)。
    (1,1)(2,1)(2,2)表示它的一種爬法,請(qǐng)列出其他所有不同的爬法(必須是最短的線路)。
    一、課堂練習(xí)1、課本p40練習(xí)題。
    二、作業(yè)布置:1、課本p44習(xí)題6.1第1題。
    2、北京位于東經(jīng)116.4°、北緯39.9°,我們用有序數(shù)。
    對(duì)(116.4,39.9)表示。某地的位置用有序數(shù)對(duì)(108,
    19.1)表示,則地理位置位于東經(jīng)____度,北緯_____度。
    3、如圖(3)所示,如果點(diǎn)a的位置為(3,2),那么點(diǎn)b。
    的位置為______,點(diǎn)c的位置為______,點(diǎn)d和點(diǎn)e的。
    位置分別為______,_______.
    4、中心五樓第一個(gè)房間的門牌號(hào)是0501,那么六樓第10個(gè)房間的門牌號(hào)應(yīng)為_________.
    三、自我測評(píng)。
    (一)選擇題。
    1、下列數(shù)據(jù)不能確定物體位置的是。
    a、4樓8號(hào)b、北偏東30°。
    c、希望路25號(hào)d、東經(jīng)118°、北緯40°。
    2、如圖所示,一方隊(duì)正沿箭頭所指的方向前進(jìn),a。
    的位置為三列四行,表示為(3,4),那么b的位置是()。
    a.(4,5)b.(5,4)c.(4,2)d.(4,3)。
    3、如圖所示,b左側(cè)第二個(gè)人的位置是()。
    a.(2,5)b.(5,2)c.(2,2)d.(5,5)。
    4、如圖所示,如果隊(duì)伍向西前進(jìn),那么a北側(cè)第二個(gè)。
    人的位置是()。
    a.(4,1)b.(1,4)c.(1,3)d.(3,1)。
    5、如圖所示,(4,3)表示的位置是()。
    d
    (二)填空題。
    6、如圖所示,是小剛畫的一張臉,他對(duì)妹妹說:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。”
    __________________________。
    (三)解答題。
    8、如圖是某教室學(xué)生座位平面圖。
    (1)請(qǐng)說出王明和張強(qiáng)的座位位置;。
    (3)請(qǐng)說出(3,3)和(4,8)表示哪兩位同學(xué)的座位位置;。
    10、如圖是某次海戰(zhàn)中敵我雙方艦艇對(duì)峙示意圖,
    對(duì)我方艦艇來說:(1)北偏東方向上有哪些目標(biāo)?
    要想確定敵艦b的位置,還需要什么數(shù)據(jù)?
    (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
    (3)要確定每艘敵艦的位置,各需要幾個(gè)數(shù)據(jù)?
    平面直角坐標(biāo)系教案篇十五
    本章需要理解掌握的知識(shí)點(diǎn)有:
    1、平面直角坐標(biāo)系的建立(原點(diǎn)重合且互相垂直的兩條數(shù)軸)。
    2、由點(diǎn)找坐標(biāo)(從已知點(diǎn)分別向橫軸、縱軸作垂線,垂足對(duì)應(yīng)的數(shù)分別是該點(diǎn)的橫縱坐標(biāo))。
    3、由坐標(biāo)找點(diǎn)(例p(a,b),先在橫軸上找到點(diǎn)的橫坐標(biāo)a,然后過橫坐標(biāo)所在的點(diǎn)作橫軸的垂線,則這條垂線上的所有點(diǎn)的橫坐標(biāo)都為a,再在縱軸上找到縱坐標(biāo)b,然后過縱坐標(biāo)所在的點(diǎn)作縱軸的垂線,則這條垂線上的所有點(diǎn)的縱坐標(biāo)都為b,兩條直線的交點(diǎn)則為要找的點(diǎn)p)。
    4、坐標(biāo)平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)關(guān)系。
    坐標(biāo)軸上的點(diǎn)不屬于任一象限。
    6、橫軸上的點(diǎn)縱坐標(biāo)為0,縱軸上的點(diǎn)橫坐標(biāo)為0.
    7、點(diǎn)到橫軸的距離是縱坐標(biāo)的絕對(duì)值;
    點(diǎn)到縱軸的距離是橫坐標(biāo)的絕對(duì)值。
    若ab與y軸平行,則a等于m,且b不等于n。
    點(diǎn)a(a,b),b(m,n)關(guān)于y軸對(duì)稱,則b等于n,且a與m互為相反數(shù)。
    點(diǎn)a(a,b),b(m,n)關(guān)于原點(diǎn)對(duì)稱,則a與m互為相反數(shù),且b與n互為相反數(shù)。
    10、數(shù)軸上兩點(diǎn)間的距離等于它們坐標(biāo)差的絕對(duì)值;
    平面內(nèi)兩點(diǎn)間的距離等于它們橫、縱坐標(biāo)分別作差的平方的和的算術(shù)平方根。
    11、點(diǎn)a(a,b),b(m,n),則線段ab中點(diǎn)的坐標(biāo)分別是a、b兩點(diǎn)橫、縱坐標(biāo)的平均數(shù)。
    12、橫、縱坐標(biāo)相等的點(diǎn)在一、三象限夾角平分線上,反之亦然。
    橫、縱坐標(biāo)互為相反數(shù)的點(diǎn)在二、四象限夾角平分線上,反之亦然。
    如沒有邊在坐標(biāo)軸上或與坐標(biāo)軸平行,則分別過三個(gè)頂點(diǎn)作坐標(biāo)軸的平行線,得到一個(gè)矩形。用矩形的面積減去周邊直角三角形的面積即可得到要求三角形面積。
    如求四邊形的面積,一般都是采用分割的方法,也可考慮補(bǔ)的方法。
    14、圖形的平移有兩個(gè)要素:平移方向和平移距離。
    圖形在坐標(biāo)系中的平移,可采用坐標(biāo)的變化來描述。
    圖形左、右平移,橫坐標(biāo)減、加;
    圖形上、下平移,縱坐標(biāo)加、減。
    平面直角坐標(biāo)系教案篇十六
    根據(jù)教學(xué)設(shè)計(jì)本節(jié)課主要從以下幾個(gè)方面進(jìn)行反思:
    一、教材分析和學(xué)情分析。
    從整套教材及本章兩個(gè)方面分析了本節(jié)的知識(shí)不僅是后面坐標(biāo)方法的簡單應(yīng)用的基礎(chǔ),也是后繼學(xué)習(xí)函數(shù)的圖像,函數(shù)與方程和不等式的關(guān)系等知識(shí)的堅(jiān)實(shí)基礎(chǔ)。從學(xué)生的。認(rèn)知規(guī)律來看,初一學(xué)生主要以形象思維為主,數(shù)形結(jié)合思想意識(shí)的形成是本節(jié)的重點(diǎn)和難點(diǎn)。在此基礎(chǔ)上,制訂了合理的教學(xué)目標(biāo)及教學(xué)重點(diǎn)和難點(diǎn),在制訂教學(xué)目標(biāo)時(shí),不僅有知識(shí)與技能目標(biāo),更注重過程與方法目標(biāo)和情感態(tài)度與價(jià)值觀目標(biāo),同時(shí),注重?cái)?shù)形結(jié)合思想的形成這一難點(diǎn)的突破。
    二、教法與學(xué)法分析。
    根據(jù)本節(jié)課的特點(diǎn)主要運(yùn)用了情景教學(xué)法和發(fā)現(xiàn)教學(xué)法,激發(fā)學(xué)生的探索欲望,激活學(xué)生的思維,充分體現(xiàn)教師主導(dǎo)與學(xué)生主體相結(jié)合。呈現(xiàn)學(xué)生獨(dú)立思考、自主探究、合作交流的學(xué)習(xí)模式。
    三、教過程學(xué)。
    1、創(chuàng)設(shè)情境,孕育新知。
    情境1:引導(dǎo)學(xué)生借助數(shù)軸來解決問題,使學(xué)生將新舊知識(shí)聯(lián)系起來,符合學(xué)生的認(rèn)知規(guī)律,體現(xiàn)了數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上這一新課程理念。
    情景2:從學(xué)生熟知的生活情境入手,讓學(xué)生思維實(shí)現(xiàn)從一維向二維的過渡,同時(shí)讓學(xué)生感受數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,激發(fā)學(xué)生的興趣與探究欲望。
    2、引導(dǎo)發(fā)現(xiàn),探索新知。
    通過情景設(shè)置和問題的提出,讓學(xué)生對(duì)數(shù)學(xué)家以及他的貢獻(xiàn)有所了解,從而對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化方面的熏陶和理想教育,并為下一步介紹平面直角坐標(biāo)系做好鋪墊,同時(shí),在活動(dòng)中培養(yǎng)學(xué)生的探究、合作、交流的能力。
    問題3、4的解決,是本節(jié)課的核心環(huán)節(jié)。教師的講解配以多媒體的直觀演示,能更好的突破難點(diǎn),將枯燥的知識(shí)趣味化,同時(shí),及時(shí)的反饋練習(xí),讓學(xué)生將知識(shí)轉(zhuǎn)化成自身的技能,從而更好的實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo)。
    3、分層練習(xí),鞏固新知。
    通過分層練習(xí),讓每一位學(xué)生都能運(yùn)用自己在本節(jié)課所掌握的知識(shí)解決問題,體驗(yàn)成功的喜悅,同時(shí),根據(jù)新課標(biāo)“讓每個(gè)學(xué)生都獲得自己力所能及的數(shù)學(xué)知識(shí)”這一理念,讓不同的學(xué)生有不同的收獲與發(fā)展。
    4、知識(shí)小結(jié),收獲新知。
    一方面對(duì)本節(jié)課的知識(shí)點(diǎn)作一個(gè)復(fù)習(xí)與小結(jié),另一方面,讓學(xué)生學(xué)會(huì)梳理自己的思路,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。整個(gè)教學(xué)過程中,我通過設(shè)計(jì)以上四個(gè)教學(xué)活動(dòng),引導(dǎo)學(xué)生從已有的知識(shí)出發(fā),主動(dòng)探索具體的生活情境問題,積極參與合作交流,獲取知識(shí),發(fā)展思維,形成技能,同時(shí)也讓學(xué)生感受數(shù)學(xué)學(xué)習(xí)的樂趣。
    四、板書設(shè)計(jì)。
    本節(jié)的板書設(shè)計(jì)突出了兩個(gè)重點(diǎn):構(gòu)成平面直角坐標(biāo)系的三要素,點(diǎn)的坐標(biāo)的特點(diǎn)。
    五、評(píng)價(jià)分析。
    本節(jié)課的教學(xué)過程,立足于問題情境的創(chuàng)設(shè),將原本枯燥的知識(shí)興趣化,教師在教學(xué)中做好引導(dǎo)者,讓學(xué)生在自主探究,合作交流中獲取知識(shí),體現(xiàn)出教師為主導(dǎo),學(xué)生為主體,練習(xí)為主線的教學(xué)理念和教學(xué)規(guī)律,注重學(xué)生能力的培養(yǎng)和情感教育,多方位地體現(xiàn)新課標(biāo)的理念。
    平面直角坐標(biāo)系教案篇十七
    20xx年10月21日上午,第四節(jié)課,在七年級(jí)六班,我執(zhí)教了一節(jié)公開課,接受大家的考核。課題是《平面直角坐標(biāo)系》、《平面直角坐標(biāo)系》是人教版《數(shù)學(xué)》七年級(jí)下冊第六章的內(nèi)容,是本章中繼《有序數(shù)對(duì)》之后的第2課時(shí)。下面我從教材分析、目標(biāo)分析、問題診斷與教法特點(diǎn)、不足這五方面來反思這節(jié)課的教學(xué)設(shè)計(jì)。
    《平面直角坐標(biāo)系》是在學(xué)生學(xué)習(xí)了“有序數(shù)對(duì)”,初步認(rèn)識(shí)了用有序數(shù)對(duì)可以確定物體的位置之后,為進(jìn)一步探討是否可以用有序數(shù)對(duì)表示平面內(nèi)點(diǎn)的位置問題而引入的。在備課中,我翻看了整章的教學(xué)內(nèi)容,細(xì)讀了多遍本節(jié)課的教材和教學(xué)參考。
    認(rèn)識(shí)到學(xué)生初學(xué)坐標(biāo)系,一定要搞懂它的作用。即利用平面直角坐標(biāo)系可以確定平面內(nèi)任一點(diǎn)的位置;有了坐標(biāo)系,就建立了點(diǎn)與有序?qū)崝?shù)對(duì)(坐標(biāo))的對(duì)應(yīng),于是有了函數(shù)(數(shù)量關(guān)系)與它的圖象(幾何圖形)之間的對(duì)應(yīng),進(jìn)而可以通過圖象來研究和解決函數(shù)的有關(guān)問題;有了坐標(biāo)系,就可以把代數(shù)問題轉(zhuǎn)化成幾何問題,也可以把幾何問題轉(zhuǎn)化成代數(shù)問題??梢?,平面直角坐標(biāo)系是溝通代數(shù)和幾何的橋梁,是非常重要的數(shù)學(xué)工具。
    在本章學(xué)習(xí)中,平面直角坐標(biāo)系是學(xué)生從數(shù)的角度進(jìn)一步認(rèn)識(shí)平移變換的基礎(chǔ),也是后續(xù)學(xué)習(xí)函數(shù)、平面解析幾何等必備的知識(shí)。平面直角坐標(biāo)系是數(shù)軸的發(fā)展,它的建立和應(yīng)用過程,實(shí)現(xiàn)了認(rèn)識(shí)上從一維到二維的發(fā)展,體現(xiàn)了類比方法、滲透著數(shù)形結(jié)合等數(shù)學(xué)思想,因此學(xué)平面直角坐標(biāo)系這一內(nèi)容是發(fā)展學(xué)生思維,提高能力的極好時(shí)機(jī)。
    閱讀教材之后,我翻看了教學(xué)大綱,根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中關(guān)于“平面直角坐標(biāo)系”的相關(guān)教學(xué)要求,結(jié)合教材特點(diǎn)和學(xué)生的實(shí)際情況,從而確定了“知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀”的三維教學(xué)目標(biāo)。
    【目標(biāo)1】。
    初步掌握平面直角坐標(biāo)系及相關(guān)概念;能由坐標(biāo)描點(diǎn),由點(diǎn)寫出坐標(biāo)。
    學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)具有借助數(shù)軸用一個(gè)數(shù)表示直線上點(diǎn)的位置的經(jīng)驗(yàn),了解了直線上的點(diǎn)與坐標(biāo)之間的對(duì)應(yīng);也學(xué)習(xí)了用有序數(shù)對(duì)確定物體的位置。這些均是本節(jié)課學(xué)習(xí)新知識(shí)、完成知識(shí)目標(biāo)的基礎(chǔ)。
    【目標(biāo)2】。
    經(jīng)歷知識(shí)的形成過程,引導(dǎo)學(xué)生用類比的方法思考和解決問題,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想,認(rèn)識(shí)平面內(nèi)的點(diǎn)與坐標(biāo)的對(duì)應(yīng)。
    新課程標(biāo)準(zhǔn)指出:“展現(xiàn)數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程,使學(xué)生能夠從中發(fā)現(xiàn)問題、提出問題,經(jīng)歷數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,了解知識(shí)的來龍去脈?!?BR>    遵循新課標(biāo)的這一理念,我確立本節(jié)課教學(xué)目標(biāo)的第2點(diǎn)。為了實(shí)現(xiàn)這一教學(xué)目標(biāo),幫助學(xué)生真正經(jīng)歷知識(shí)的形成過程,我以東二路附近的四中西門和樂購和偉浩廣場為背景,通過表示幾個(gè)相對(duì)位置來設(shè)計(jì)情境,逐一展開;并將此環(huán)節(jié)分為四個(gè)階段:獨(dú)立思考—共同討論—類比建系—解決問題。
    首先,學(xué)生經(jīng)過獨(dú)立思考提出:可以利用兩個(gè)數(shù)表示平面內(nèi)點(diǎn)的位置。為了讓學(xué)生更好地體會(huì)這一點(diǎn),教師追問:只用一個(gè)數(shù)可以嗎?引發(fā)學(xué)生討論,并進(jìn)一步感受只用一個(gè)數(shù)表示的點(diǎn)很多,具有不確定性。在此基礎(chǔ)上,明確用有序數(shù)對(duì)描述。但由于沒有約定順序與方向,對(duì)于同一位置學(xué)生提出了用不同的有序數(shù)對(duì)描述,怎樣才能用一個(gè)統(tǒng)一的標(biāo)準(zhǔn)表示呢?學(xué)生類比數(shù)軸的建立提出再引入一條數(shù)軸,并約定數(shù)對(duì)的順序,至此建立了平面直角坐標(biāo)系。為了體會(huì)這種表示方法具有一般性,設(shè)計(jì)表示平面內(nèi)勝東醫(yī)院相對(duì)位置的點(diǎn),在解決問題的同時(shí),加深對(duì)平面直角坐標(biāo)系的理解,實(shí)現(xiàn)對(duì)學(xué)生能力的培養(yǎng)。