高中數(shù)學(xué)說課稿要點解析(優(yōu)質(zhì)23篇)

字號:

    被總結(jié)的過去是我們?nèi)松适轮兄匾囊豁摚档梦覀兓匚逗涂偨Y(jié)。充分了解運動的歷史和文化背景,可以更好地理解和欣賞這項運動。以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
    高中數(shù)學(xué)說課稿要點解析篇一
    奇偶性是人教a版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。
    奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。所以,本節(jié)課起著承上啟下的重要作用。
    2、學(xué)情分析。
    從學(xué)生的認知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。
    3、教學(xué)目標。
    基于以上對教材和學(xué)生的分析,以及新課標理念,我設(shè)計了這樣的教學(xué)目標:
    【知識與技能】。
    1、能確定一些簡單函數(shù)的奇偶性。
    2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。
    【過程與方法】。
    經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。
    【情感、態(tài)度與價值觀】。
    經(jīng)過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。
    從課堂反應(yīng)看,基本上到達了預(yù)期效果。
    4、教學(xué)重點和難點。
    重點:函數(shù)奇偶性的概念和幾何意義。
    幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
    難點:奇偶性概念的數(shù)學(xué)化提煉過程。
    由于,學(xué)生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。
    1、教法。
    根據(jù)本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維本事。從課堂反應(yīng)看,基本上到達了預(yù)期效果。
    2、學(xué)法。
    讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學(xué)生掌握知識。
    具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、構(gòu)成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下頭我對這六個環(huán)節(jié)進行說明。
    (一)設(shè)疑導(dǎo)入、觀圖激趣。
    由于本節(jié)資料相對獨立,專題性較強,所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的資料,使學(xué)生的思維迅速定向,到達開始就明確目標突出重點的效果。
    用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。
    (二)指導(dǎo)觀察、構(gòu)成概念。
    在這一環(huán)節(jié)中共設(shè)計了2個探究活動。
    探究1、2數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學(xué)生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于y軸(原點)對稱。之后學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性,()然后經(jīng)過解析式給出嚴格證明,進一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。
    在這個過程中,學(xué)生把對圖形規(guī)律的感性認識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。
    (三)學(xué)生探索、領(lǐng)會定義。
    探究3下列函數(shù)圖象具有奇偶性嗎?
    設(shè)計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)。
    (四)知識應(yīng)用,鞏固提高。
    在這一環(huán)節(jié)我設(shè)計了4道題。
    例1確定下列函數(shù)的奇偶性。
    選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下頭完成。
    例1設(shè)計意圖是歸納出確定奇偶性的步驟:
    (1)先求定義域,看是否關(guān)于原點對稱;
    (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
    例2確定下列函數(shù)的奇偶性:
    例3確定下列函數(shù)的奇偶性:
    例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?
    例4(1)確定函數(shù)的奇偶性。
    (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
    例4設(shè)計意圖加強函數(shù)奇偶性的幾何意義的應(yīng)用。
    在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。經(jīng)過這些問題的解決,學(xué)生對函數(shù)的奇偶性認識、理解和應(yīng)用都能提升很大一個高度,到達當(dāng)堂消化吸收的效果。
    (五)總結(jié)反饋。
    在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。
    在本節(jié)課的最終對知識點進行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用本事、增強錯誤的預(yù)見本事是提高數(shù)學(xué)綜合本事的很重要的策略。
    (六)分層作業(yè),學(xué)以致用。
    必做題:課本第36頁練習(xí)第1-2題。
    選做題:課本第39頁習(xí)題1、3a組第6題。
    思考題:課本第39頁習(xí)題1、3b組第3題。
    設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強作業(yè)的針對性,對學(xué)生進行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進一步到達不一樣的人在數(shù)學(xué)上得到不一樣的發(fā)展。
    高中數(shù)學(xué)說課稿要點解析篇二
    各位老師:
    大家好!我叫周婷婷,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教a版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:
    1.教材所處的地位和作用
    現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進入高中數(shù)學(xué)正是反映了時代的需要,它是當(dāng)今社會必備的基礎(chǔ)知識,算法的學(xué)習(xí)是使用計算機處理問題前的一個必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實踐能力。
    2.教學(xué)的重點和難點
    重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉(zhuǎn)化為算法語言。
    1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。
    2.能力目標:讓學(xué)生感悟人們認識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達能力和邏輯思維能力。
    3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。
    采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。
    算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。
    1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計算機科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".
    「設(shè)計意圖」是為了充分挖掘章頭圖的教學(xué)價值,體現(xiàn)
    1)算法概念的由來;
    2)我們將要學(xué)習(xí)的算法與計算機有關(guān);
    3)展示中國古代數(shù)學(xué)的成就;
    4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)
    2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗計算機直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。
    之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學(xué)生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
    3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實際解決問題中去,而不只是單純的對數(shù)學(xué)思想的領(lǐng)悟。
    這兩道例題均選自課本的例1和例2.
    例1是讓我們設(shè)定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學(xué)生認識到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計算法一定要做到以下要求:
    (1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。
    (2)要使算法盡量簡單、步驟盡量少。
    (3)要保證算法正確,且計算機能夠執(zhí)行。
    在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們設(shè)計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學(xué)生進一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學(xué)生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
    4.課堂小結(jié):
    (1)算法的概念和算法的基本特征
    (2)算法的描述方法,算法可以用自然語言描述。
    (3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點,對所學(xué)知識有一個系統(tǒng)整體的認識。(約6分鐘)
    5.布置作業(yè):課本練習(xí)1、2題
    課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
    高中數(shù)學(xué)說課稿要點解析篇三
    1、地位、作用和特點:
    《》是高中數(shù)學(xué)課本第冊(修)的第章“”的第節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。
    特點之二是:。
    根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認知能力,確定以下教學(xué)目標:
    (1)知識目標:a、b、c。
    (2)能力目標:a、b、c。
    (3)德育目標:a、b。
    教學(xué)的重點和難點:
    (1)教學(xué)重點:
    (2)教學(xué)難點:
    基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點和認知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序:
    導(dǎo)入新課新課教學(xué)。
    反饋發(fā)展。
    學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進行的,是通過優(yōu)化教學(xué)程序來增強學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的'教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。
    1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依。
    據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。
    演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養(yǎng)成認真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    (一)、課題引入:
    教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。c、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。
    (二)、新課教學(xué):
    1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學(xué)生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。
    的認識,使學(xué)生的認知活動逐步深化,既掌握了知識,又學(xué)會了方法。
    總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
    高中數(shù)學(xué)說課稿要點解析篇四
    知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導(dǎo)。
    過程與方法目標:通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。
    情感、態(tài)度與價值觀目標:通過經(jīng)歷橢圓方程的化簡,增強學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美,通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。
    重點是橢圓的定義及標準方程,難點是推導(dǎo)橢圓的標準方程。
    教學(xué)環(huán)節(jié)。
    教學(xué)內(nèi)容和形式。
    設(shè)計意圖。
    復(fù)習(xí)。
    提問:
    (1)圓的定義是什么?圓的標準方程的形式怎樣?
    (2)如何推導(dǎo)圓的標準方程呢?
    激活學(xué)生已有的認知結(jié)構(gòu),為本課推導(dǎo)橢圓標準方程提供了方法與策略。
    (略)。
    操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活。
    在動手過程中,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。
    在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的'觀點看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。
    教學(xué)環(huán)節(jié)。
    注:1、平面內(nèi)。
    2、若,則點p的軌跡為橢圓。
    若,則點p的軌跡為線段。
    若,則點p的軌跡不存在。
    情境1.生活中,你見過哪些類似橢圓的圖形或物體?
    情境2.讓學(xué)生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學(xué)模型.(教師用多媒體演示)。
    情境3.觀看天體運行的軌道圖片。
    準確理解橢圓的定義。
    滲透數(shù)學(xué)源于生活,圓錐曲線在生產(chǎn)和技術(shù)中有著廣泛的應(yīng)用。
    例:已知點、為橢圓的兩個焦點,p為橢圓上的任意一點,且,其中,求橢圓的方程。
    點撥-----板演-----點評。
    (1)建系設(shè)點。
    (2)寫出點的集合。
    (3)寫出代數(shù)方程。
    (4)化簡方程:
    1請一位基礎(chǔ)較好,書寫規(guī)范的同學(xué)板演。
    (5)證明:討論推導(dǎo)的等價性。
    掌握橢圓標準方程及推導(dǎo)方法。
    培養(yǎng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學(xué)的簡潔美、對稱美。
    養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。
    應(yīng)用。
    舉例。
    教學(xué)環(huán)節(jié)。
    例1.(1)橢圓的焦點坐標為:
    (2)橢圓的焦距為4,則m的值為:
    活動過程:思考-----解答-----點評。
    活動過程:思考-----解答-----點評。
    變式1已知橢圓焦點的坐標分別是(-4,0)(4,0),且經(jīng)過點,求橢圓的標準方程。
    求橢圓的標準方程。
    思考-----解答-----點評。
    認清橢圓兩種標準方程形式上的特征。
    提問:本節(jié)課學(xué)習(xí)的主要知識是什么?你學(xué)會了哪些數(shù)學(xué)思想與方法?
    活動過程:教師提問-----學(xué)生小結(jié)-----師生補充完善。
    讓學(xué)生回顧本節(jié)所學(xué)知識與方法,以逐步提高學(xué)生自我獲取知識的能力。
    作業(yè):教材第95頁,練習(xí)2、4,第96頁習(xí)題8-1,1、2、3、
    分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;為學(xué)有余力的學(xué)生留有進一步探索、發(fā)展的空間。
    8.1橢圓及其標準方程。
    本節(jié)課的設(shè)計力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導(dǎo),學(xué)生為主體"的現(xiàn)代教學(xué)思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學(xué)原則和教學(xué)途徑,通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現(xiàn)在學(xué)生面前,更有助于學(xué)生理解橢圓的內(nèi)涵和外延。對本課另一難點標準方程推導(dǎo)的講授中,在關(guān)鍵處設(shè)疑,以疑導(dǎo)思,讓學(xué)生先從目的、再從方法上考慮,引導(dǎo)學(xué)生對比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡,增強了學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美.通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。設(shè)計的例題及變式練習(xí),充分利用新知識解決問題,使所學(xué)內(nèi)容得以鞏固。變式(2)的設(shè)計讓學(xué)生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學(xué)生的思維提升到了一個新的高度。課后分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;課后探索更為學(xué)有余力的學(xué)生留有進一步探索、發(fā)展的空間。在教學(xué)中借助多媒體生動、直觀、形象的特點來突出教學(xué)重點。自始至終很好地調(diào)動學(xué)生的積極性,挖掘他們的內(nèi)在潛能,提高學(xué)生的綜合素質(zhì)。
    高中數(shù)學(xué)說課稿要點解析篇五
    1、進一步熟練掌握求動點軌跡方程的基本方法。
    2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。
    (二)過程與方法
    1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
    2、體會感性到理性、形象到抽象的思維過程。
    3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
    (三)情感態(tài)度價值觀
    1、感受動點軌跡的動態(tài)美、和諧美、對稱美。
    2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。
    教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。
    教學(xué)難點:圖形、文字、符號三種語言之間的過渡。
    教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學(xué)思維。
    教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
    教學(xué)模式:重點中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
    1、創(chuàng)設(shè)情景,引入課題
    生活中我們四處可見軌跡曲線的影子。
    演示:這是美麗的城市夜景圖。
    演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。
    演示建筑中也有許多美麗的軌跡曲線。
    設(shè)計意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。
    2、激發(fā)情感,引導(dǎo)探索
    靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。
    高中數(shù)學(xué)說課稿要點解析篇六
    二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關(guān)系的一個匯集點。搞好本節(jié)課的學(xué)習(xí),對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
    2、教學(xué)目標。
    根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認知水平和思維特點,確定本節(jié)課的教學(xué)目標:
    認知目標:
    (1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
    (2)進一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
    能力目標:以培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力為重點。
    (1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
    (2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。
    教育目標:
    (1)使學(xué)生認識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,從而增強學(xué)生應(yīng)用數(shù)學(xué)的意識。
    (2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。
    3、本節(jié)課教學(xué)的重、難點是兩個過程的教學(xué):
    (1)二面角的平面角概念的形成過程。
    (2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。
    其理由如下:
    (1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認識產(chǎn)生的辯證過程,與學(xué)生的認知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨立思考能力以及動手能力的培養(yǎng)。
    (2)現(xiàn)代認知學(xué)認為,揭示知識的形成過程,對學(xué)生學(xué)習(xí)新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個教學(xué)過程中始終處于積極的`思維狀態(tài),進而培養(yǎng)他們獨立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學(xué)目標。
    在設(shè)計本教學(xué)時,主要貫徹了以下兩個思想:
    1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動手操作的機會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。
    首先是教材創(chuàng)新。
    (1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。
    (2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。
    (3)重新編排例題。
    其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。
    這組教學(xué)方法的特點是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程,使教學(xué)活動真正建立在學(xué)生自主活動和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。
    這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強調(diào)動腦思考,而且強調(diào)動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質(zhì)的整體發(fā)展。
    教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強直觀教學(xué),教師可預(yù)先做好一些模型。
    最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會創(chuàng)新地學(xué)。
    1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
    2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認知結(jié)構(gòu)。
    3、會學(xué):通過自已親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新。
    (一)、二面角。
    1、揭示概念產(chǎn)生背景。
    心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
    問題情境1、我們是如何定量研究兩平行平面的相對位置的?
    問題情境3、我們應(yīng)如何定量研究兩個相交平面之間的相對位置呢?
    通過這三個問題,打開了學(xué)生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。
    2、展現(xiàn)概念形成過程。
    高中數(shù)學(xué)說課稿要點解析篇七
    1.教材所處的地位和作用:
    本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學(xué)教材第冊第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
    2.教育教學(xué)目標:
    根據(jù)上述教材分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標:
    (1)知識目標:
    (2)能力目標:通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標:通過的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
    3.重點,難點以及確定依據(jù):
    下面,為了講清重難上點,使學(xué)生能達到本節(jié)課設(shè)定的目標,再從教法和學(xué)法上談?wù)劊?BR>    1.教學(xué)手段:
    如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法?;诒竟?jié)課的特點:應(yīng)著重采用的教學(xué)方法。
    2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
    3.學(xué)情分析:(說學(xué)法)。
    (2)知識障礙上:知識掌握上,學(xué)生原有的知識,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙,知識學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
    最后我來具體談?wù)勥@一堂課的教學(xué)過程:
    4.教學(xué)程序及設(shè)想:
    (1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
    (2)由實例得出本課新的知識點。
    (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學(xué)生的思維能力。
    (4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
    (5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標。
    (6)變式延伸,進行重構(gòu),重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
    (7)板書。
    (8)布置作業(yè)。
    (一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分。
    集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實際教學(xué)時,由于對學(xué)生的實際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實際教學(xué)時,首先要求學(xué)生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實例體會這三個性質(zhì)。
    第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關(guān)系和運算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
    第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。
    第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
    高中數(shù)學(xué)說課稿要點解析篇八
    導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。
    2、教學(xué)的重點、難點、關(guān)鍵
    教學(xué)重點:導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。
    教學(xué)難點:理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵
    1) 從割線到切線的過程中采用的逼近方法;
    2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導(dǎo)數(shù)是曲線上某點切線的斜率,等等.
    根據(jù)新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下:
    1、知識與技能 :
    通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
    過程與方法:
    通過逼近、數(shù)形結(jié)合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。
    3、情感態(tài)度與價值觀:
    對于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法:
    學(xué)法:為了發(fā)揮學(xué)生的主觀能動性,提高學(xué)生的綜合能力,本節(jié)課采取了
    自主 、合作、探究的學(xué)習(xí)方法。
    教具: 幾何畫板、幻燈片
    1.創(chuàng)設(shè)情境
    學(xué)生活動——問題系列
    問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
    問題2 如圖直線l是曲線c的切線嗎?
    (1)與 (2)與 還有直線與雙曲線的位置關(guān)系
    問題3 那么對于一般的曲線,切線該如何定義呢?
    【設(shè)計意圖】:通過類比構(gòu)建認知沖突。
    學(xué)生活動——復(fù)習(xí)回顧
    導(dǎo)數(shù)的定義
    【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。
    2.探索求知
    學(xué)生活動——試驗探究
    問一;求導(dǎo)數(shù)的步驟是怎樣的?
    第一步:求平均變化率;第二步:當(dāng)趨近于0時,平均變化率無限趨近于的常數(shù)就是。
    【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準備。
    問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
    【設(shè)計意圖】:通過學(xué)生動手實踐得到平均變化率表示割線pq的斜率。
    問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。
    【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看, 的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
    探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。
    【設(shè)計意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點;學(xué)生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學(xué)生對導(dǎo)數(shù)概念的理解。
    問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?
    【設(shè)計意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線pq切線pt,所以割線
    pq的斜率切線pt的斜率。因此,=切線pt的斜率。
    1、通過學(xué)生參加活動是否積極主動,能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價;
    2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價;
    3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價.
    5、本節(jié)課設(shè)計目標力求使學(xué)生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.
    高中數(shù)學(xué)說課稿要點解析篇九
    各位領(lǐng)導(dǎo)和教師,大家好!我說課的資料是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下頭我想談?wù)勎覍@節(jié)課的教學(xué)構(gòu)想:
    與傳統(tǒng)的教材處理不一樣,本章在學(xué)生經(jīng)過觀察具體集合得到集合的補集的概念后,上升到數(shù)學(xué)內(nèi)部,將"補"理解為集合間的一種"運算".在此基礎(chǔ)上,經(jīng)過實例,使學(xué)生感受和掌握集合之間的另外兩種運算—交和并。設(shè)計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。所以,在教學(xué)過程中要針對具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語言、圖形語言和集合語言來描述相應(yīng)的數(shù)學(xué)資料。有了集合的語言,能夠更清晰的表達我們的思想。所以,集合是整個數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。
    基于以上的分析制定以下的教學(xué)目標。
    1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語和符號,并會用它們正確表示一些簡單的集合。能用venn圖表示集合之間的關(guān)系;掌握兩個集合的交集、并集的求法。
    2、經(jīng)過對交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的本事,使學(xué)生認識由具體到抽象的思維過程。
    3、經(jīng)過對集合符號語言的學(xué)習(xí),培養(yǎng)學(xué)生符號表達本事,培養(yǎng)嚴謹?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
    針對以上的分析我把教學(xué)重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生經(jīng)過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點。
    針對我們師范學(xué)校學(xué)生的特點,我本著低起點、高要求、循序漸進,充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則,采用"五環(huán)節(jié)教學(xué)法".同時利用多媒體輔助教學(xué)。
    下頭我重點說一說教學(xué)過程。
    第一個環(huán)節(jié):問題情境。
    經(jīng)過實例:學(xué)校舉辦了排球賽,08小教(2)56名同學(xué)中有12名同學(xué)參賽,之后又舉辦了田徑賽,這個班有20名同學(xué)參賽。已知兩項都參賽的有6名同學(xué)。兩項比賽中,這個班共有多少名同學(xué)沒有參加過比賽?讓學(xué)生感受到數(shù)學(xué)與我們的生活息息相關(guān),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
    學(xué)生思考后回答,然后教師加以引導(dǎo),讓學(xué)生的回答到達這樣三個層次:
    層次一:發(fā)現(xiàn)要求沒有參加比賽的人數(shù),首先應(yīng)當(dāng)算出參加比賽的人數(shù),并且明白參加比賽的人數(shù)是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。
    層次二:教師引導(dǎo)學(xué)生利用集合的觀點再來研究這個問題。先設(shè)利用venn圖來表示集合a,b,c.發(fā)現(xiàn)集合a,b的公共部分就是集合c.
    層次三:引導(dǎo)學(xué)生發(fā)現(xiàn)集合c的元素的構(gòu)成與集合a,b的元素的關(guān)系。學(xué)生能夠發(fā)現(xiàn)集合c中的元素是由既參加排球比賽又參加田徑比賽的同學(xué)構(gòu)成的,更進一步集合c的元素是由既屬于集合a的元素又屬于集合b的元素構(gòu)成的。
    經(jīng)過對三個層次的探究和分析讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
    第二環(huán)節(jié):最終抽象、歸納出交集的文字敘述的定義。
    定義給出后,讓學(xué)生利用數(shù)學(xué)符號語言寫出的集合表示。充分體現(xiàn)使用集合語言,能夠簡潔、準確地表達數(shù)學(xué)的一些資料。
    第三環(huán)節(jié):經(jīng)過兩個例子鞏固定義。
    例1是較為簡單的不用動筆,同學(xué)直接口答即可;例2是必須動筆計算的,并且還要經(jīng)過數(shù)軸輔助解決,充分體現(xiàn)了數(shù)形結(jié)合的思想。經(jīng)過這兩個例子的解決,使學(xué)生不僅僅掌握數(shù)學(xué)基礎(chǔ)知識和基本技能,同時也體現(xiàn)出了數(shù)學(xué)的思想方法,發(fā)展學(xué)生的應(yīng)用意識和創(chuàng)新意識。
    第四環(huán)節(jié):最終對交集進行再認識,并利用venn圖歸納、總結(jié)出交集的性質(zhì)。
    在這一環(huán)節(jié)中教師只是引導(dǎo)著,學(xué)生是主體,充分發(fā)揮學(xué)生的積極主動性,使學(xué)生在學(xué)習(xí)的過程中成為在教師引導(dǎo)下的"再創(chuàng)造"過程。應(yīng)當(dāng)準備預(yù)案。
    第五環(huán)節(jié):經(jīng)過綜合性較強的例子進一步鞏固定義和性質(zhì)。
    這樣的五個環(huán)節(jié)不僅僅充分研究到學(xué)生的認知規(guī)律,并且為學(xué)生和教師的積極活動供給了空間和可能。更印證了低起點、高要求、循序漸進,充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則。
    交集的定義、性質(zhì)研究清楚之后,并集的定義、性質(zhì)就順理成章了,仿照交集的研究方法去研究。這樣不僅僅讓學(xué)生學(xué)到了知識,并且學(xué)會了探究問題的方法。
    交集、并集的定義、性質(zhì)研究完了以后,設(shè)計"感受理解、思考運用、拓展探究"三個不一樣層次的練習(xí)題進行檢測本節(jié)課的學(xué)習(xí)效果,同時要研究到不一樣水平,不一樣興趣學(xué)生的學(xué)習(xí)需要。
    小結(jié)應(yīng)先由學(xué)生總結(jié),然后教師強調(diào)兩點:一是交集與并集的區(qū)別與聯(lián)系;二是對本節(jié)課進行科學(xué)的評價,既要關(guān)注學(xué)生學(xué)習(xí)數(shù)學(xué)的結(jié)果,又要關(guān)注它們在數(shù)學(xué)活動中所表現(xiàn)出的情感態(tài)度的變化,關(guān)注學(xué)生個性與潛能的發(fā)展,關(guān)注學(xué)生數(shù)學(xué)地提出、分析、解決問題的過程的評價,以及在過程中華表現(xiàn)出來的與人合作的態(tài)度,表達與交流的意識和探索精神。
    作業(yè)、板書設(shè)計。
    以上就是我說課的資料,多謝大家!
    高中數(shù)學(xué)說課稿要點解析篇十
    《數(shù)學(xué)課程標準》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實際問題。
    基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。
    (一)教材的地位和作用。
    有關(guān)統(tǒng)計圖的認識,小學(xué)階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖。考慮到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標準》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實用價值。
    (二)教學(xué)目標。
    1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用。
    2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。
    3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。
    (三)教學(xué)重點:
    1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。
    2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。
    (四)教學(xué)難點:
    1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。
    2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。
    本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。
    1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。
    2、運用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。
    《數(shù)學(xué)課程標準》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。
    本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。
    (一)復(fù)習(xí)引新。
    1、復(fù)習(xí)舊知。
    提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?
    2、引入新課。
    (二)自主探索,學(xué)習(xí)新知。
    新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。
    三、課堂總結(jié)。
    四、布置作業(yè)。
    五、板書設(shè)計:
    高中數(shù)學(xué)說課稿要點解析篇十一
    開始:各位專家領(lǐng)導(dǎo), 好!
    今天我將要為大家講的課題是
    首先,我對本節(jié)教材進行一些分析
    ,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。
    數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生:
    

轉(zhuǎn)載自 xUeFEn.com.cn
    根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標:
    1 基礎(chǔ)知識目標:
    2 能力訓(xùn)練目標:
    3 創(chuàng)新素質(zhì)目標:
    4 個性品質(zhì)目標:
    本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點
    重點: 通過 突出重點
    難點: 通過 突破難點
    關(guān)鍵:
    下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?BR>    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生
    “知其然”而且要使學(xué)生“知其所以然”,
    我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程?;诒竟?jié)課的特點:
    ,應(yīng)著重采用 的教學(xué)方法。即:
    我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
    1、理論:
    2、實踐:
    3、能力:
    最后我來具體談一談這一堂課的教學(xué)過程:
    1、由 引入:
    把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的'問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。
    在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
    對于本題:
    2、由實例得出本課新的知識點是:
    3、講解例題。
    我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
    4、能力訓(xùn)練。
    課后練習(xí)
    使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
    5、總結(jié)結(jié)論,強化認識。
    知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標。
    6、變式延伸,進行重構(gòu)。
    重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
    7、板書。
    8、布置作業(yè)。
    針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
    結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見。
    注意時間掌握
    電腦課件
    使用投影
    根據(jù)時間進行增刪
    高中數(shù)學(xué)說課稿要點解析篇十二
    本節(jié)課是《普通高中課程標準實驗教科書數(shù)學(xué)》(人民教育出版社、課程教材研究所a版教材)選修2-2中第§節(jié).作為導(dǎo)數(shù)概念的下位概念課,它是在學(xué)生學(xué)習(xí)了上位概念——平均變化率,瞬時變化率,及剛剛學(xué)習(xí)了用極限定義導(dǎo)數(shù)基礎(chǔ),進一步從幾何意義的基礎(chǔ)上理解導(dǎo)數(shù)的含義與價值,是可以充分應(yīng)用信息技術(shù)進行概念教學(xué)與問題探究的內(nèi)容.導(dǎo)數(shù)的幾何意義的學(xué)習(xí)為下位內(nèi)容——常見函數(shù)導(dǎo)數(shù)的計算,導(dǎo)數(shù)是研究函數(shù)中的應(yīng)用及研究函數(shù)曲線與直線的位置關(guān)系的基礎(chǔ).因此,導(dǎo)數(shù)的幾何意義有承前啟后的重要作用.
    【知識與技能目標】。
    (1)知道曲線的切線定義,理解導(dǎo)數(shù)的幾何意義;。
    ——讓學(xué)生感知和初步理解函數(shù)在處的導(dǎo)數(shù)的幾何意義就是函數(shù)的圖像在處的切線的斜率,即=切線的斜率.
    (2)導(dǎo)數(shù)幾何意義簡單的應(yīng)用.
    ——用導(dǎo)數(shù)的幾何意義解釋實際生活問題,初步體會“逼近”和“以直代曲”的數(shù)學(xué)思想方法.
    【過程與方法目標】。
    (1)回顧圓錐曲線的切線的概念,復(fù)習(xí)導(dǎo)數(shù)概念,尋找在處的瞬時變化率的幾何意義;。
    (3)通過學(xué)生經(jīng)歷或觀察感知由割線逼近“變成”切線的過程,理解導(dǎo)數(shù)的幾何意義;。
    (5)通過分析導(dǎo)數(shù)的幾何意義,研究在實際生活問題中,用區(qū)間較小的范圍的平均變化率,來解決實際問題的瞬時變化率.
    【情感態(tài)度價值觀目標】。
    (3)增強學(xué)生問題應(yīng)用意識教育,讓學(xué)生獲得學(xué)習(xí)數(shù)學(xué)的興趣與信心.
    重點:導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的實際應(yīng)用,“以直代曲”數(shù)學(xué)思想方法.
    難點:對導(dǎo)數(shù)幾何意義的理解與掌握,在每處“附近”變化率與瞬時變化率的近似關(guān)系的理解.
    關(guān)鍵:由割線趨向切線動態(tài)變化效果,由割線“逼近”成切線的理解.
    略
    高中數(shù)學(xué)說課稿要點解析篇十三
    (1)本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容。
    (2)包含知識點:點到直線的距離公式和兩平行線的距離公式。
    1-2教材所處地位、作用和前后聯(lián)系。
    本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復(fù)習(xí),又是為后面計算點線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。
    可見,本課有承前啟后的作用。
    1-3教學(xué)大綱要求。
    掌握點到直線的距離公式。
    1-4高考大綱要求及在高考中的顯示形式。
    掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。
    1-5教學(xué)目標及確定依據(jù)。
    教學(xué)目標。
    (1)掌握點到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點線距離和線線距離。
    (2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
    (3)認識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識的能力。
    (4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
    確定依據(jù):
    中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)。
    1-6教學(xué)重點、難點、關(guān)鍵。
    (1)重點:點到直線的距離公式。
    確定依據(jù):由本節(jié)在教材中的地位確定。
    (2)難點:點到直線的距離公式的推導(dǎo)。
    確定依據(jù):根據(jù)定義進行推導(dǎo),思路自然,但運算繁瑣;用等積法推導(dǎo),運算較簡單,但思路不自然,學(xué)生易被動,主體性得不到體現(xiàn)。
    分析“嘗試性題組”解題思路可突破難點。
    (3)關(guān)鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點線距離轉(zhuǎn)化為定點到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點的距離。
    2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標,在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
    確定依據(jù):
    (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動學(xué)習(xí)原則,最佳動機原則,階段漸進性原則。
    (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
    2-2教具:多媒體和黑板等傳統(tǒng)教具。
    3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動,學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運用所得理論和方法去解決問題。
    一句話:還課堂以生命力,還學(xué)生以活力。
    3-2學(xué)情:
    (1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認識和對兩線相交的定量認識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學(xué)生對解析幾何的實質(zhì)中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數(shù)形結(jié)合的思想正逐漸趨于成熟。
    (2)心理特點:又見“點到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。
    (3)生活經(jīng)驗:數(shù)學(xué)源于生活,生活中的點線距隨處可見,怎樣將實際問題數(shù)學(xué)化,是每個追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。
    3-3學(xué)具:直尺、三角板。
    學(xué)生完成反思性學(xué)習(xí)報告,書寫要求:
    (1)整理知識結(jié)構(gòu)。
    (2)總結(jié)所學(xué)到的基本知識,技能和數(shù)學(xué)思想方法。
    (3)總結(jié)在學(xué)習(xí)過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因。
    (4)談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
    作用:
    (1)通過反思使學(xué)生對所學(xué)知識系統(tǒng)化。反思的過程實際上是學(xué)生思維內(nèi)化,知識深化和認知牢固化的`一個心理活動過程。
    (2)報告的寫作本身就是一種創(chuàng)造性活動。
    (3)及時了解學(xué)生學(xué)習(xí)過程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進行補償性教學(xué)。
    5.板書設(shè)計。
    (略)。
    6.教學(xué)的反思總結(jié)。
    心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
    高中數(shù)學(xué)說課稿要點解析篇十四
    導(dǎo)過程;能根據(jù)條件確定橢圓的標準方程,掌握用待定系數(shù)法求橢圓的標準方程。
    (2)過程與方法目標:通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探。
    索能力;通過對橢圓標準方程的推導(dǎo),使學(xué)生進一步掌握求曲線方程的一般方法,提高學(xué)生運用坐標法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
    (3)情感、態(tài)度與價值觀目標:通過讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
    (1)教學(xué)重點:橢圓的定義及橢圓標準方程,用待定系數(shù)法和定義法求曲線方程。
    (2)教學(xué)難點:橢圓標準方程的建立和推導(dǎo)。
    1、動畫演示,描繪出橢圓軌跡圖形。
    2、實驗演示。
    思考:橢圓是滿足什么條件的點的軌跡呢?
    1、動手實驗:學(xué)生分組動手畫出橢圓。
    實驗探究:
    保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
    思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
    2、概括橢圓定義。
    引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點距離的和等于常數(shù)(大于)的點的軌跡叫橢圓。
    教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
    思考:焦點為的橢圓上任一點m,有什么性質(zhì)?
    令橢圓上任一點m,則有。
    1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?
    2、研討探究。
    問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點m,有。
    嘗試推導(dǎo)橢圓的方程。
    思考:如何建立坐標系,使求出的方程更為簡單?
    將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點、列式、化簡。
    方案一方案二。
    按方案一建立坐標系,師生研討探究得到橢圓標準方程。
    =1(),其中b2=a2-c2(b0);
    選定方案二建立坐標系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b0)。
    教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。
    1、觀察橢圓圖形及其標準方程,師生共同總結(jié)歸納。
    (1)橢圓標準方程對應(yīng)的橢圓中心在原點,以焦點所在軸為坐標軸;
    (2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;
    (3)橢圓標準方程中三個參數(shù)a,b,c關(guān)系:;
    (4)橢圓焦點的位置由標準方程中分母的大小確定;
    (5)求橢圓標準方程時,可運用待定系數(shù)法求出a,b的值。
    2、在歸納總結(jié)的基礎(chǔ)上,填下表。
    標準方程。
    圖形a,b,c關(guān)系焦點坐標焦點位置。
    在x軸上。
    在y軸上。
    例1、求適合下列條件的橢圓的標準方程。
    (1)兩個焦點的坐標分別是,橢圓上一點p到兩焦點距離和等于10。
    (2)兩焦點坐標分別是,并且橢圓經(jīng)過點。
    例2、(1)若橢圓標準方程為及焦點坐標。
    (2)若橢圓經(jīng)過兩點求橢圓標準方程。
    (3)若橢圓的一個焦點是,則k的值為。
    (a)(b)8(c)(d)32。
    例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點p向x軸作垂線段,求線段中點m的軌跡。
    1、寫出適合下列條件的橢圓標準方程。
    (1),焦點在x軸上;
    (2)焦點在x軸上,焦距等于4,并且經(jīng)過點p;
    2、若方程表示焦點在y軸上的橢圓,則k的范圍。
    3、已知b,c是兩個定點,周長為16,求頂點a的軌跡方程。
    4、已知橢圓的焦距相等,求實數(shù)m的值。
    5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
    6、已知p是橢圓上一點,其中為其焦點且,求三解形面積。
    師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。
    課本第96頁習(xí)題§8。1第3題、第5題、第6題。
    課后思考題:
    1、知是橢圓的兩個焦點,ab是過的弦,則周長是。
    (a)2a(b)4a(c)8a(d)2a2b。
    2、的兩個頂點a,b的坐標分別是邊ac,bc所在直線的斜。
    率之積等于,求頂點c的軌跡方程。
    2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
    橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計的始終。
    橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
    橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨立主動獲取知識的能力。
    設(shè)計例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學(xué)生大膽實踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。
    將本文的word文檔下載到電腦,方便收藏和打印。
    高中數(shù)學(xué)說課稿要點解析篇十五
    開始:各位專家領(lǐng)導(dǎo),好!
    今天我將要為大家講的課題是。
    首先,我對本節(jié)教材進行一些分析。
    一、教材結(jié)構(gòu)與內(nèi)容簡析。
    本節(jié)內(nèi)容在全書及章節(jié)的地位:《》是高中數(shù)學(xué)新教材第冊()第章第節(jié)。在此之前,學(xué)生已學(xué)習(xí)了,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是部分,因此,在中,占據(jù)的地位。
    數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生:
    

轉(zhuǎn)載自 xUeFEn.com.cn
    二、教學(xué)目標。
    根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標:
    1基礎(chǔ)知識目標:
    2能力訓(xùn)練目標:
    3創(chuàng)新素質(zhì)目標:
    4個性品質(zhì)目標:
    三、教學(xué)重點、難點、關(guān)鍵。
    本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點。
    重點:通過突出重點。
    難點:通過突破難點。
    關(guān)鍵:
    下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?BR>    四、教法。
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生。
    “知其然”而且要使學(xué)生“知其所以然”,我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程?;诒竟?jié)課的特點:,應(yīng)著重采用的教學(xué)方法。即:
    五、學(xué)法。
    我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
    1、理論:
    2、實踐:
    3、能力:
    最后我來具體談一談這一堂課的教學(xué)過程:
    六、教學(xué)程序及設(shè)想。
    1、由引入:
    把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。
    在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
    對于本題:
    2、由實例得出本課新的知識點是:
    3、講解例題。
    我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
    4、能力訓(xùn)練。
    課后練習(xí)。
    使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
    5、總結(jié)結(jié)論,強化認識。
    知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標。
    6、變式延伸,進行重構(gòu)。
    重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
    7、板書。
    8、布置作業(yè)。
    針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
    結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見。
    注意時間掌握。
    六、注意靈活導(dǎo)入新知識點。
    電腦課件。
    使用投影。
    根據(jù)時間進行增刪。
    高中數(shù)學(xué)說課稿要點解析篇十六
    二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個圖形。“二面角”是新編教材《數(shù)學(xué)》第二冊(下a)中的內(nèi)容,它在學(xué)生學(xué)過空間中異面角、線面角之后,又要重點研究的一種空間的角,它也是學(xué)生進一步研究多面體和旋轉(zhuǎn)體的基礎(chǔ)。因此,它起著承上啟下的作用。同時,通過本節(jié)課的學(xué)習(xí)也可以培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力,為培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新能力提供了一個良好的契機。
    2.教學(xué)目標。
    (1)知識目標:使學(xué)生掌握二面角的概念,二面角的平面角的定義、作法以及這些知識的初步應(yīng)用。
    (2)能力目標:培養(yǎng)學(xué)生的空間想象能力、邏輯思維能力、知識遷移能力及運用數(shù)學(xué)知識和數(shù)學(xué)方法觀察、研究現(xiàn)實現(xiàn)象的能力。
    (3)德育目標:通過對實際問題的分析、探究,激發(fā)學(xué)生的學(xué)習(xí)興趣,并讓學(xué)生明白:數(shù)學(xué)和生活是密不可分的。
    (4)情感目標:在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。
    3.重點、難點及關(guān)鍵。
    重點:二面角的平面角的定義及其作法。
    難點:面角的平面角的作法。
    關(guān)鍵:求作二面角的平面角。
    二、教學(xué)方法和手段。
    培養(yǎng)學(xué)生數(shù)學(xué)素質(zhì),首先數(shù)學(xué)課堂教學(xué)要素質(zhì)化,即在課堂教學(xué)過程中,加強知識發(fā)生過程的教學(xué),充分調(diào)動學(xué)生思維的主動性、積極性;有效地滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性品質(zhì),從而達到提高學(xué)生整體的數(shù)學(xué)素養(yǎng)的目的。根據(jù)這樣的原則和所要完成的教學(xué)目標,我采用如下的教學(xué)方法和手段:
    (1)教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、探索相結(jié)合的教學(xué)方法。啟發(fā)、引導(dǎo)學(xué)生積極的思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程;在此基礎(chǔ)上,提供給學(xué)生交流的機會,學(xué)生學(xué)會對自己的數(shù)學(xué)思想進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學(xué)思想;能通過對其他人的思維和策略的考察擴展自己的數(shù)學(xué)知識和使用數(shù)學(xué)語言的能力。學(xué)生會自覺地、主動地、積極地學(xué)習(xí)。
    (2)教學(xué)手段:利用多媒體教學(xué)手段。多媒體以聲音、動畫等多種形式強化對學(xué)生感官的刺激,這一點是粉筆和黑板所不能比擬的,采用這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標體現(xiàn)的更完美。
    三、學(xué)法指導(dǎo):觀察分析、猜想證明及類比聯(lián)想是學(xué)法指導(dǎo)的重點。讓學(xué)生觀察、思考后,總結(jié)、概括、歸納的知識更有利于學(xué)生掌握;為了加深知識理解、掌握和更靈活地運用,運用類比聯(lián)想去主動的發(fā)現(xiàn)問題、解決問題,從而更系統(tǒng)地掌握所學(xué)知識,形成新的認知結(jié)構(gòu)和知識網(wǎng)絡(luò),讓學(xué)生真正地體會到在問題解決中學(xué)習(xí),在交流中學(xué)習(xí)。這樣,可以增進熱愛數(shù)學(xué)的情感,應(yīng)用數(shù)學(xué)的自信心和形成新的學(xué)習(xí)動力。
    略
    高中數(shù)學(xué)說課稿要點解析篇十七
    拋物線焦點性質(zhì)的探索(說課)。
    一、
    1教材的地位與作用“拋物線焦點的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。
    2教學(xué)目的全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁“重視現(xiàn)代教育技術(shù)的運用”中明確提出:在數(shù)學(xué)教學(xué)過程中,應(yīng)有意識地利用計算機網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動,支持和鼓勵學(xué)生運用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開展課題研究,改進學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗修訂本·必修)數(shù)學(xué)第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計了一堂《拋物線焦點性質(zhì)的探索》,具體目標如下:
    (2)能力目標:使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運動與靜止)培養(yǎng)學(xué)生通過計算機來自主學(xué)習(xí)的能力與創(chuàng)新的能力。
    (3)情感目標:培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。
    3教學(xué)內(nèi)容、重點、難點及關(guān)鍵本節(jié)安排兩節(jié)課,
    第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);
    第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。
    重點:
    (1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質(zhì);
    (2)如何證明這些性質(zhì)。
    難點;
    (1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的'性質(zhì);
    (2)如何證明這些性質(zhì)。
    學(xué)生在網(wǎng)絡(luò)教室(每人一機),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個學(xué)生的窗口,其他學(xué)生及教師都可以通過教師機切換,從而和其他學(xué)生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。
    學(xué)生在網(wǎng)絡(luò)教室(每人一機)中有幾何畫板軟件,學(xué)生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。
    4.1使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型問題1回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。由于創(chuàng)設(shè)了一個創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過網(wǎng)絡(luò)學(xué)習(xí),得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質(zhì)的基本圖形。
    高中數(shù)學(xué)說課稿要點解析篇十八
    敬的各位專家、評委:
    下午好!
    我的抽簽序號是____,今天我說課的課題是《_______》第__課時。
    我嘗試利用新課標的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
    (一)地位與作用
    ______是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面______;另一方面______。同時,__________________。
    (二)學(xué)情分析
    (1)學(xué)生已熟練掌握_________________。
    (2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
    (3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。
    (4) 學(xué)生層次參次不齊,個體差異比較明顯。
    新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標指出教學(xué)的主體是學(xué)生,因此目標的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標:
    (一)教學(xué)目標
    (1)知識與技能
    使學(xué)生理解_______,初步掌握______。
    (2)過程與方法
    引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,______;能運用____解決簡單的問題;使學(xué)生領(lǐng)會______的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
    (3)情感態(tài)度與價值觀
    在______的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
    (二)重點難點
    本節(jié)課的教學(xué)重點是________________________,教學(xué)難點是_____________________。
    (一)教法
    基于本節(jié)課的內(nèi)容特點和__學(xué)生的年齡特征,按照__市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標,在教法上我采取了:
    (二)學(xué)法
    在學(xué)法上我重視了:
    1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。
    2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
    (一)教學(xué)過程設(shè)計
    教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學(xué)。
    (1)創(chuàng)設(shè)情境,提出問題。
    新課標指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
    (2)引導(dǎo)探究,建構(gòu)概念。
    (3)自我嘗試,初步應(yīng)用。
    (4)當(dāng)堂訓(xùn)練,鞏固深化。
    通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
    (5)小結(jié)歸納,回顧反思。
    (二)作業(yè)設(shè)計
    我設(shè)計了以下作業(yè):
    (1)必做題
    (2)選做題
    (三)板書設(shè)計
    板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
    學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對____是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。
    以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
    謝謝!
    高中數(shù)學(xué)說課稿要點解析篇十九
    2、教材所處地位、作用。
    3、教學(xué)目標。
    (1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性。
    的方法;
    4、重點與難點。
    教學(xué)重點(1)函數(shù)單調(diào)性的概念;
    (2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.。
    教學(xué)難點(1)函數(shù)單調(diào)性的知識形成;
    (2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.。
    二、教法分析與學(xué)法指導(dǎo)。
    本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
    4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.。
    在學(xué)法上:
    教學(xué)。
    環(huán)節(jié)。
    設(shè)計意圖。
    問題。
    情境。
    (播放中央電視臺天氣預(yù)報的音樂)。
    滿足在定義域上的單調(diào)性的討論.。
    3、重視學(xué)生的動手實踐過程.通過對定義的解讀、鞏固,讓學(xué)生動手去實踐運用定義.。
    4、重視課堂問題的設(shè)計.通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題.。
    高中數(shù)學(xué)說課稿要點解析篇二十
    是必修章第節(jié)的內(nèi)容,我將以新課程標準的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價四個方面加以說明。
    是在學(xué)習(xí)了基礎(chǔ)上進一步研究并為后面學(xué)習(xí)做準備,在整個。
    高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。
    根據(jù)新課標要求和學(xué)生實際水平我制定以下教學(xué)目標。
    1、知識能力目標:使學(xué)生理解掌握。
    2、過程方法目標:通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟數(shù)學(xué)思想,培養(yǎng)能力。
    3、情感態(tài)度價值觀目標:通過學(xué)習(xí)體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)善于。
    觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
    根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。
    1、由……引入:
    把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
    對于本題:……。
    2、由實例得出本課新的知識點是:……。
    3、講解例題。
    我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
    4、能力訓(xùn)練。
    課后練習(xí)……。
    使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
    5、總結(jié)結(jié)論,強化認識。
    知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標。
    6、變式延伸,進行重構(gòu)。
    重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
    學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價,教師應(yīng)。
    當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團隊精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。
    高中數(shù)學(xué)說課稿要點解析篇二十一
    期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟統(tǒng)計,風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠的影響。
    教學(xué)重點與難點。
    重點:離散型隨機變量期望的概念及其實際含義。
    難點:離散型隨機變量期望的實際應(yīng)用。
    [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的.抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點。此外,學(xué)生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點。
    [知識與技能目標]。
    通過實例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實際含義。
    會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
    [過程與方法目標]。
    經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進一步體會從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。
    通過實際應(yīng)用,培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。
    [情感與態(tài)度目標]。
    通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴謹治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
    引導(dǎo)發(fā)現(xiàn)法。
    “授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
    高中數(shù)學(xué)第三冊《離散型隨機變量的期望》。
    高中數(shù)學(xué)說課稿要點解析篇二十二
    1、進一步熟練掌握求動點軌跡方程的基本方法。
    2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。
    1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
    2、體會感性到理性、形象到抽象的思維過程。
    3、強化類比、聯(lián)想的'方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
    1、感受動點軌跡的動態(tài)美、和諧美、對稱美。
    教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。
    教學(xué)難點:圖形、文字、符號三種語言之間的過渡。
    【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學(xué)思維。
    【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
    【教學(xué)模式】重點中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
    高中數(shù)學(xué)說課稿要點解析篇二十三
    新課標指出,高中數(shù)學(xué)課程的教學(xué)要能提高學(xué)生的“四基、四能”,根據(jù)這一課程目標,本節(jié)課我將從教材分析、教學(xué)目標、教學(xué)過程等幾個方面來展開我的說課。
    本節(jié)課選自人教a版高中數(shù)學(xué)必修3第三章。本節(jié)課的內(nèi)容是在古典概型基礎(chǔ)上的進一步發(fā)展,是等可能事件的概念從有限向無限的延伸。通過本節(jié)課的學(xué)習(xí),學(xué)生能進一步體會實驗結(jié)果的隨機性與規(guī)律性,并體會到對事物的看法不應(yīng)該持絕對化的觀點。
    高中生智力發(fā)育已趨于成熟,對于未知事物有著很強的探究欲望,且此前古典概型的學(xué)習(xí)為本節(jié)課打下了良好的基礎(chǔ)。但基本事件有無數(shù)多個的發(fā)現(xiàn)以及此種情況下概率該如何計算,學(xué)生并不容易想到。因此我會從具體的生活、實踐問題入手,組織學(xué)生開展活動,在觀察、思考中抽象、概括本節(jié)課的要點。
    結(jié)合以上分析,我制定本節(jié)課教學(xué)目標如下:
    (一)知識與技能。
    初步體會幾何概型的意義,掌握幾何概型的概率計算公式,并能進行簡單應(yīng)用。
    (二)過程與方法。
    在通過幾何概型特點概括出幾何概型概率計算公式的過程中,進一步發(fā)展合情推理能力,學(xué)會運用數(shù)形結(jié)合的思想解決概率計算問題。
    (三)情感、態(tài)度與價值觀。
    通過貼近生活的素材,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,體會用科學(xué)的態(tài)度、辯證的思想去觀察、分析、研究客觀世界。
    同時,本節(jié)課教學(xué)重點為:幾何概型的意義及概率計算公式。教學(xué)難點為:幾何概型概率計算公式的推導(dǎo)。
    教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點,根據(jù)這一教學(xué)理念,本節(jié)課我將采用講授法、自主探究法、練習(xí)法等教學(xué)方法。
    下面說說我的教學(xué)過程。
    (一)引入新課。
    首先我會帶領(lǐng)學(xué)生復(fù)習(xí)確定隨機事件發(fā)生的概率的兩種方法,一是通過頻率估算概率,二是用古典概型的概率公式來計算事件發(fā)生的概率。但古典概型是基于試驗的所有結(jié)果是有限個,當(dāng)試驗的所有可能結(jié)果有無窮多個時,無法利用之前的方法進行計算,進而進入本節(jié)課的學(xué)習(xí)。
    利用復(fù)習(xí)導(dǎo)入,一來可以鞏固之前所學(xué),二來將等可能事件從有限拓展到無限,引發(fā)學(xué)生的認知沖突,體現(xiàn)出學(xué)習(xí)本節(jié)課的必要性。
    (二)講解新知。
    接下來是新知講解。為了讓學(xué)生初步感知幾何概型的基本特點,我會舉例:
    (1)一個人到單位的時間可能是8:00~9:00之間任一時刻。
    (2)往一方格中投一個石子。并請學(xué)生說說此人到達單位的時間點以及石子落在方格的哪個位置,會不會在某一時間點到達或落在某一位置的概率比較大。學(xué)生結(jié)合生活經(jīng)驗?zāi)軌虬l(fā)現(xiàn),此時基本事件有無數(shù)多個,且基本事件發(fā)生是等可能的。
    僅僅知道特點還是不夠的,還要知道相應(yīng)概率的求法。為了讓學(xué)生有更直觀的感知,我會出示具體問題:如圖,甲、乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向b區(qū)域時,甲獲勝,否則乙獲勝。請學(xué)生思考在兩種情況下甲獲勝的概率分別是多少。