2012中考數(shù)學(xué)熱點(diǎn)知識(shí)歸納 67

字號(hào):


    4.溶液(混合物)問題
    ?
    溶液(混合物)問題有四個(gè)基本量:溶質(zhì)(純凈物)、溶劑(雜質(zhì))、溶液(混合物)、濃度(含量)。其關(guān)系式為:①溶液=溶質(zhì)+溶劑(混合物=純凈物+雜質(zhì));②濃度=×100%=×100%【純度(含量)=×100%=
    ×100%】;③由①②可得到:溶質(zhì)=濃度×溶液=濃度×(溶質(zhì)+溶劑)。在溶液問題中關(guān)鍵量是“溶質(zhì)”:“溶質(zhì)不變”,混合前溶質(zhì)總量等于混合后的溶質(zhì)量,是很多方程應(yīng)用題中的主要等量關(guān)系。
    ?
    例11.把1000克濃度為80%的酒精配成濃度為60%的酒精,某同學(xué)未經(jīng)考慮先加了300克水。⑴試通過計(jì)算說明該同學(xué)加水是否過量?⑵如果加水不過量,則應(yīng)加入濃度為20%的酒精多少克?如果加水過量,則需再加入濃度為95%的酒精多少克?
    ?
    講評(píng):溶液問題中濃度的變化有稀釋(通過加溶劑或濃度低的溶液,將濃度高的溶液的濃度降低)、濃化(通過蒸發(fā)溶劑、加溶質(zhì)、加濃度高的溶液,將低濃度溶液的濃度提高)兩種情況。在濃度變化過程中主要要抓住溶質(zhì)、溶劑兩個(gè)關(guān)鍵量,并結(jié)合有關(guān)公式進(jìn)行分析,就不難找到相等關(guān)系,從而列出方程。
    ?
    本題中,⑴加水前,原溶液1000克,濃度為80%,溶質(zhì)(純酒精)為1000×80%克;設(shè)加x克水后,濃度為60%,此時(shí)溶液變?yōu)椋?000+x)克,則溶質(zhì)(純酒精)為(1000+x)×60%克。由加水前后溶質(zhì)未變,有(1000+x)×60%=1000×80%
    ?
    ????? ∴x = >300???? ∴該同學(xué)加水未過量。
    ?
    ⑵設(shè)應(yīng)加入濃度為20%的酒精y克,此時(shí)總?cè)芤簽椋?000+300+y)克,濃度為60%,溶質(zhì)(純酒精)為(1000+300+y)×60%;原兩種溶液的濃度分別為1000×80%、20%y,由混合前后溶質(zhì)量不變,有(1000+300+y)×60%=1000×80%+20%?? ∴ y=50
    ?
    5.數(shù)字問題
    ?
    數(shù)字問題是常見的數(shù)學(xué)問題。一元一次方程應(yīng)用題中的數(shù)字問題多是整數(shù),要注意數(shù)位、數(shù)位上的數(shù)字、數(shù)值三者間的關(guān)系:任何數(shù)=∑(數(shù)位上的數(shù)字×位權(quán)),如兩位數(shù)=10a+b;三位數(shù)=100a+10b+c。在求解數(shù)字問題時(shí)要注意整體設(shè)元思想的運(yùn)用。
    ?
    例12. 一個(gè)三位數(shù),三個(gè)數(shù)位上的和是17,百位上的數(shù)比十位上的數(shù)大7,個(gè)位上的數(shù)是十位上的數(shù)的3倍。求這個(gè)數(shù)。
    ?
    講評(píng):設(shè)這個(gè)數(shù)十位上的數(shù)字為x,則個(gè)位上的數(shù)字為3x,百位上的數(shù)字為(x+7),這個(gè)三位數(shù)則為100(x+7)+10x+3x。依題意有(x+7)+x+3x=17? ∴x=2
    ?
    ∴100(x+7)+10x+3x=900+20+6=926
    ?
    例13. 一個(gè)六位數(shù)的最高位上的數(shù)字是1,如果把這個(gè)數(shù)字移到個(gè)位數(shù)的右邊,那么所得的數(shù)等于原數(shù)的3倍,求原數(shù)。
    ?
    講評(píng):這個(gè)六位數(shù)最高位上的數(shù)移到個(gè)位后,后五位數(shù)則相應(yīng)整體前移1位,即每個(gè)數(shù)位上的數(shù)字被擴(kuò)大10倍,可將后五位數(shù)看成一個(gè)整體設(shè)未知數(shù)。設(shè)除去最高位上數(shù)字1后的5位數(shù)為x,則原數(shù)為10
    +x,移動(dòng)后的數(shù)為10x+1,依題意有? 10x+1=10+x
    ?
    ???????? ???∴x = 42857???????? 則原數(shù)為142857
    ?
      6.調(diào)配(分配)與比例問題
    ?
    調(diào)配與比例問題在日常生活中十分常見,比如合理安排工人生產(chǎn),按比例選取工程材料,調(diào)劑人數(shù)或貨物等。調(diào)配問題中關(guān)鍵是要認(rèn)識(shí)清楚部分量、總量以及兩者之間的關(guān)系。在調(diào)配問題中主要考慮“總量不變”;而在比例問題中則主要考慮總量與部分量之間的關(guān)系,或是量與量之間的比例關(guān)系。
    ?
    例14.甲、乙兩書架各有若干本書,如果從乙架拿100本放到甲架上,那么甲架上的書比乙架上所剩的書多5倍,如果從甲架上拿100本書放到乙架上,兩架所有書相等。問原來每架上各有多少書?
    ?
    講評(píng):本題難點(diǎn)是正確設(shè)未知數(shù),并用含未知數(shù)的代數(shù)式將另一書架上書的本數(shù)表示出來。在調(diào)配問題中,調(diào)配后數(shù)量相等,即將原來多的一方多出的數(shù)量進(jìn)行平分。由題設(shè)中“從甲書架拿100本書到乙書架,兩架書相等”,可知甲書架原有的書比乙書架上原有的書多200本。故設(shè)乙架原有x本書,則甲架原有(x+200)本書。從乙架拿100本放到甲架上,乙架剩下的書為(x-100)本,甲架書變?yōu)椋▁+200)+100本。又甲架的書比乙架多5倍,即是乙架的六倍,有????? (x+200)+100=6(x-100) ∴x=180???? x+200=380
    ?
    例15.教室內(nèi)共有燈管和吊扇總數(shù)為13個(gè)。已知每條拉線管3個(gè)燈管或2個(gè)吊扇,共有這樣的拉線5條,求室內(nèi)燈管有多少個(gè)?
    ?
    講評(píng):這是一道對(duì)開關(guān)拉線的分配問題。設(shè)燈管有x支,則吊扇有(13-x)個(gè),燈管拉線為條,吊扇拉線為條,依題意“共有5條拉線”,有+
    =5∴x=9
    ?
    例16.某車間22名工人參加生產(chǎn)一種螺母和螺絲。每人每天平均生產(chǎn)螺絲120個(gè)或螺母200個(gè),一個(gè)螺絲要配兩個(gè)螺母,應(yīng)分配多少名工人生產(chǎn)螺絲,多少名工人生產(chǎn)螺母,才能使每天生產(chǎn)的產(chǎn)品剛好配套?
    ?
    講評(píng):產(chǎn)品配套(工人調(diào)配)問題,要根據(jù)產(chǎn)品的配套關(guān)系(比例關(guān)系)正確地找到它們間得數(shù)量關(guān)系,并依此作相等關(guān)系列出方程。本題中,設(shè)有x名工人生產(chǎn)螺母,生產(chǎn)螺母的個(gè)數(shù)為200x個(gè),則有(22-x)人生產(chǎn)螺絲,生產(chǎn)螺絲的個(gè)數(shù)為120(22-x)個(gè)。由“一個(gè)螺絲要配兩個(gè)螺母”即“螺母的個(gè)數(shù)是螺絲個(gè)數(shù)的2倍”,有???? 200x=2×120(22-x)
    ?
    ?∴x=12???? 22-x=10
    ?
    例17. 地板磚廠的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制攪拌而成。現(xiàn)已將前三種料稱好,公5600千克,應(yīng)加多少千克的水?dāng)嚢??前三種料各稱了多少千克?
    ?
    講評(píng):解決比例問題的一般方法是:按比例設(shè)未知數(shù),并根據(jù)題設(shè)中的相等關(guān)系列出方程進(jìn)行求解。本題中,由四種坯料比例25∶2∶1∶6,設(shè)四種坯料分別為25x、2x、x、6x千克,由前三種坯料共5600千克,有? 25x+2x+x=5600
    ?
    ∴ x=200 25x=5000?????????????????? 2x=400?? x=200?? 6x=1200?
    ?
    例18. 蘋果若干個(gè)分給小朋友,每人m個(gè)余14個(gè),每人9個(gè),則最后一人得6個(gè)。問小朋友有幾人?
    ?
    講評(píng):這是一個(gè)分配問題。設(shè)小朋友x人,每人分m個(gè)蘋果余14個(gè),蘋果總數(shù)為mx+14,每人9個(gè)蘋果最后一人6個(gè),則蘋果總數(shù)為9(x-1)+6。蘋果總數(shù)不變,有      
    ?
    mx+14=9(x-1)+6 ∴x= ∵x、m均為整數(shù) ∴9-m=1 x=17
    ?
    例19. 出口1噸豬肉可以換5噸鋼材,7噸豬肉價(jià)格與4噸砂糖的價(jià)格相等,現(xiàn)有288噸砂糖,把這些砂糖出口,可換回多少噸鋼材?
    ?
    講評(píng):本題可轉(zhuǎn)換成一個(gè)比例問題。由豬肉∶鋼材=1∶5,豬肉∶砂糖=7∶4,得豬肉∶鋼材∶砂糖=7∶35∶4,設(shè)可換回鋼材x噸,則有??? x∶288=35∶4??? ∴x=2620
    ?
    7.需設(shè)中間(間接)未知數(shù)求解的問題
    ?
    一些應(yīng)用題中,設(shè)直接未知數(shù)很難列出方程求解,而根據(jù)題中條件設(shè)間接未知數(shù),卻較容易列出方程,再通過中間未知數(shù)求出結(jié)果。
    ?
    例
    20.甲、乙、丙、丁四個(gè)數(shù)的和是43,甲數(shù)的2倍加8,乙數(shù)的3倍,丙數(shù)的4倍,丁數(shù)的5倍減去4,得到的4個(gè)數(shù)卻相等。求甲、乙、丙、丁四個(gè)數(shù)。
    ?
    講評(píng):本題中要求4個(gè)量,在后面可用方程組求解。若用一元一次方程求解,如果設(shè)某個(gè)數(shù)為未知數(shù),其余的數(shù)用未知數(shù)表示很麻煩。這里由甲、乙、丙、丁變化后得到的數(shù)相等,故設(shè)這個(gè)相等的數(shù)為x,則甲數(shù)為,乙數(shù)為,丙數(shù)為,丁數(shù)為
    ,由四個(gè)數(shù)的和是43,有 ???+++=43??????? ∴x = 36
    ?
    ?∴? =14?????
    =12??????? =9??????? =8
    ?
    例21.某縣中學(xué)生足球聯(lián)賽共賽10輪(即每隊(duì)均需比賽10場(chǎng)),其中勝1場(chǎng)得3分,平1場(chǎng)得1分,負(fù)1場(chǎng)得0分。向明中學(xué)足球隊(duì)在這次聯(lián)賽中所負(fù)場(chǎng)數(shù)比平場(chǎng)數(shù)少3場(chǎng),結(jié)果公得19分。向明中學(xué)在這次聯(lián)賽中勝了多少場(chǎng)?
    ?
    講評(píng):本題中若直接將勝的場(chǎng)次設(shè)為未知數(shù),無法用未知數(shù)的式子表示出負(fù)的場(chǎng)數(shù)和平的場(chǎng)數(shù),但設(shè)平或負(fù)的場(chǎng)數(shù),則可表示出勝的場(chǎng)數(shù)。故設(shè)平
    x場(chǎng),則負(fù)x-3場(chǎng),勝10-(x+x-3)場(chǎng),依題意有 3[10-(x+x-3)]+x=19? ∴x=4? ∴ 10-(x+x-3)=5
    ?
    8.設(shè)而不求(設(shè)中間參數(shù))的問題
    ?
    一些應(yīng)用題中,所給出的已知條件不夠滿足基本量關(guān)系式的需要,而且其中某些量不需要求解。這時(shí),我們可以通過設(shè)出這個(gè)量,并將其看成已知條件,然后在計(jì)算中消去。這將有利于我們對(duì)問題本質(zhì)的理解。
    ?
    例22.一艘輪船從重慶到上海要5晝夜,從上海駛向重慶要7晝夜,問從重慶放竹牌到上海要幾晝夜?(竹排的速度為水的流速)
    ?
    分析:航行問題要抓住路程、速度、時(shí)間三個(gè)基本量,一般有兩種已知量才能求出第三種未知量。本題中已知時(shí)間量,所求也是時(shí)間量,故需在路程和速度兩個(gè)量中設(shè)一個(gè)中間參數(shù)才能列出方程。本題中考慮到路程量不變,故設(shè)兩地路程為a公里,則順?biāo)俣葹?sub>,逆水速度為,設(shè)水流速度為x,有-x=
    +x ∴x=,又設(shè)竹排從重慶到上海的時(shí)間為y晝夜,有?? ·x=a?? ∴x=35
    ?
    例23. 某校兩名教師帶若干名學(xué)生去旅游,聯(lián)系兩家標(biāo)價(jià)相同的旅行社,經(jīng)洽談后,甲旅行社的優(yōu)惠條件是:1名教師全部收費(fèi),其余7.5折收費(fèi);乙旅行社的優(yōu)惠條件是:全部師生8折優(yōu)惠。
    ?
    ⑴當(dāng)學(xué)生人數(shù)等于多少人時(shí),甲旅行社與乙旅行社收費(fèi)價(jià)格一樣?
    ?
    ⑵若核算結(jié)果,甲旅行社的優(yōu)惠價(jià)相對(duì)乙旅行社的優(yōu)惠價(jià)要便宜,問學(xué)生人數(shù)是多少?
    ?
    講評(píng):在本題中兩家旅行社的標(biāo)價(jià)和學(xué)生人數(shù)都是未知量,又都是列方程時(shí)不可少的基本量,但標(biāo)價(jià)不需求解。⑴中設(shè)標(biāo)價(jià)為a元,學(xué)生人數(shù)x人,甲旅行社的收費(fèi)為a+0.75a(x+1)元,乙旅行社收費(fèi)為0.8a(x+2)元,有??? a+0.75a(x+1)=0.8a(x+2)??? ∴ x=3
    ?
    ⑵中設(shè)學(xué)生人數(shù)為y人,甲旅行社收費(fèi)為a+0.75a(x+1)元,乙旅行社收費(fèi)為0.8a(x+2)元,有? 0.8a(x+2)-[a+0.75a(x+1)]=×0.8a(x+2) ∴x=8。
    
中考政策 中考狀元 中考飲食 中考備考輔導(dǎo) 中考復(fù)習(xí)資料