作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫呢?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
新人教版七年級數(shù)學(xué)上冊教案篇一
讓學(xué)生通過獨(dú)立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結(jié)合思想的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):通過分析圖形問題中的數(shù)量關(guān)系,建立方程解決問題。
2.難點(diǎn):找出“等量關(guān)系”列出方程。
教學(xué)過程
一、復(fù)習(xí)提問
1.列一元一次方程解應(yīng)用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應(yīng)用題都是直接設(shè)元,要認(rèn)真分析題意,找出能表示整個題意的等量關(guān)系,再根據(jù)這個等量關(guān)系,確定如何設(shè)未知數(shù)。
(3)當(dāng)長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當(dāng)長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗(yàn)證。
實(shí)際上,如果兩個正數(shù)的和不變,當(dāng)這兩個數(shù)相等時,它們的積,通過以后的學(xué)習(xí),我們就會知道其中的道理。
三、鞏固練習(xí)
教科書第14頁練習(xí)1、2。
第l題等量關(guān)系是:圓柱的體積=長方體的體積。
第2題等量關(guān)系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。
四、小結(jié)
運(yùn)用方程解決問題的關(guān)鍵是抓住等量關(guān)系,有些等量關(guān)系是隱藏的,不明顯,要聯(lián)系實(shí)際,積極探索,找出等量關(guān)系。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1第1、2、3。
新人教版七年級數(shù)學(xué)上冊教案篇二
教學(xué)目的
1.理解用一元一次方程解工程問題的本質(zhì)規(guī)律;通過對“工程問題”的分析進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法解決實(shí)際問題的能力。
2.理解和掌握基本的數(shù)學(xué)知識、技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn),提高解決問題的能力。
重點(diǎn)、難點(diǎn)
重點(diǎn):工程中的工作量、工作的效率和工作時間的關(guān)系。
難點(diǎn):把全部工作量看作“1”。
教學(xué)過程
一、復(fù)習(xí)提問
1.一件工作,如果甲單獨(dú)做2小時完成,那么甲獨(dú)做i小時完成全
部工作量的多少?
2.一件工作,如果甲單獨(dú)做。小時完成,那么甲獨(dú)做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關(guān)系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關(guān)于工程問題的實(shí)際問題,在這個問題中,已經(jīng)知道了什么? 已知:制作一塊廣告牌,師傅單獨(dú)完成需4天,徒弟單獨(dú)做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關(guān)系是什么?
[等量關(guān)系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數(shù),因此,設(shè)師傅做了x天,則徒弟做(x+1)天,根據(jù)等量關(guān)系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習(xí)
一件工作,甲獨(dú)做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨(dú)做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨(dú)做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨(dú)做5小時,然后甲、乙合做,還需多少小時完成?
四、小結(jié)
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關(guān)系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨(dú)完成工作量和合作完成工作量的一個等量關(guān)系列方程。
五、作業(yè)
教科書習(xí)題6.3.3第1、2題。
新人教版七年級數(shù)學(xué)上冊教案篇三
教學(xué)目的
借助“線段圖”分析復(fù)雜的行程問題中的數(shù)量關(guān)系,從而建立方程解決實(shí)際問題,發(fā)展分析問題,解決問題的能力,進(jìn)一步體會方程模型的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):列一元一次方程解決有關(guān)行程問題。
2.難點(diǎn):間接設(shè)未知數(shù)。
教學(xué)過程
一、復(fù)習(xí)
1.列一元一次方程解應(yīng)用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間 速度=路程 / 時間
二、新授
例1.小張和父親預(yù)定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計(jì)繼續(xù)乘公共汽車將會在火車開車后半小時到達(dá)火車站,隨即下車改乘出租車,車速提高了一倍,結(jié)果趕在火車開車前15分鐘到達(dá)火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠(yuǎn)?
畫“線段圖”分析, 若直接設(shè)元,設(shè)小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關(guān)系是什么?
如果設(shè)乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設(shè)公共汽車從小張家到火車站要x小時。
設(shè)未知數(shù)的方法不同,所列方程的復(fù)雜程度一般也不同,因此在設(shè)未知數(shù)時要有所選擇。
三、鞏固練習(xí)
教科書第17頁練習(xí)1、2。
四、小結(jié)
有關(guān)行程問題的應(yīng)用題常見的一個數(shù)量關(guān)系:路程=速度×?xí)r間,以及由此導(dǎo)出的其他關(guān)系。如何選擇設(shè)未知數(shù)使方程較為簡單呢?關(guān)鍵是找出較簡捷地反映題目全部含義的等量關(guān)系,根據(jù)這個等量關(guān)系確定怎樣設(shè)未知數(shù)。
四、作業(yè)
教科書習(xí)題6.3.2,第1至5題。
新人教版七年級數(shù)學(xué)上冊教案篇四
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×x×2,利息稅為2.43%x×2×20%
根據(jù)等量關(guān)系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折 (即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價為:(1+40%)x
每件服裝的實(shí)際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關(guān)系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時,首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
新人教版七年級數(shù)學(xué)上冊教案篇五
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、多項(xiàng)式除以單項(xiàng)式在整式的運(yùn)算中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力,在解決問題的過程中了解數(shù)學(xué)的價值,發(fā)展“用數(shù)學(xué)”的信心。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。多項(xiàng)式除以單項(xiàng)式作為整式的運(yùn)算的一部分,它是整式運(yùn)算的重要內(nèi)容之一,它是整個初中代數(shù)的重要部分。
2、就第一章而言, 多項(xiàng)式除以單項(xiàng)式是本章的一個重點(diǎn)。整式的運(yùn)算這一章,多項(xiàng)式除以單項(xiàng)式是很重要的一塊,整式的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在整式范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此乘法的運(yùn)算是本章的關(guān)鍵,而除法又是學(xué)生接觸到的較復(fù)雜的整式的運(yùn)算,學(xué)生能否接受和形成在整式的運(yùn)算中轉(zhuǎn)化思考方式及推理的方法等,都在本節(jié)中。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。
新課程標(biāo)準(zhǔn)是我們確定教學(xué)目標(biāo) ,重點(diǎn)和難點(diǎn)的依據(jù)。重點(diǎn)是多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用。多項(xiàng)式除以單項(xiàng)式,其基本方法與步驟是化歸為單項(xiàng)式除以單項(xiàng)式,因此多項(xiàng)式除以單項(xiàng)式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項(xiàng)式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。
難點(diǎn)是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算。由于 ,故多項(xiàng)式除以單項(xiàng)式的法則也可以看做是乘法對加法的分配律的應(yīng)用。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)掌握同底數(shù)冪的乘法、冪的乘方、積的乘方、同底數(shù)冪的除法等知識,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的課件引例,讓學(xué)生自主參與,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程 的設(shè)計(jì)中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程 中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程 中在掌握知識同時、發(fā)展智力、受到教育。
四、教學(xué)過程 的設(shè)計(jì)。
1、回顧與思考,通過單項(xiàng)式除以單項(xiàng)式法則的復(fù)習(xí),完成四道單項(xiàng)式除以單項(xiàng)式的練習(xí)題,為本節(jié)課探索規(guī)律,概括多項(xiàng)式除以單項(xiàng)式的法則做好鋪墊。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個嘗試練習(xí)啟發(fā)學(xué)生自主解答,使學(xué)生該過程中體會多項(xiàng)式除以單項(xiàng)式規(guī)律。由于采用了較靈活的教學(xué)手段,學(xué)生能夠積極的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出多項(xiàng)式除以單項(xiàng)式的法則。
3、例題解析,通過課件生動形象的課件,引導(dǎo)學(xué)生嘗試完成例題,加深對多項(xiàng)式除以單項(xiàng)式的法則的理解與應(yīng)用。
4、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進(jìn)的過程,所以習(xí)題的配備由易而難,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用小組合作交流形式,使課堂氣氛活躍,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
5、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對本節(jié)的課進(jìn)行說明。
以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個人教學(xué)能力的目的。教學(xué)目標(biāo) :
1.理解和掌握多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
2.運(yùn)用多項(xiàng)式除以單項(xiàng)式的法則,熟練、準(zhǔn)確地進(jìn)行計(jì)算.
3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力.
4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).
重點(diǎn)、難點(diǎn):
(1)多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用.
(2)理解法則導(dǎo)出的根據(jù)。
課時安排: 一課時.
教具學(xué)具: 多媒體課件.
授課人及時間:關(guān)龍 二〇〇七年三月二十九日
教學(xué)過程 :
1.復(fù)習(xí)導(dǎo)入
(l)單項(xiàng)式除以單項(xiàng)式法則是什么?
(2)計(jì)算:
1)–12a5b3c÷(–4a2b)=
2)(–5a2b)2÷5a3b2 =
3)4(a+b)7 ÷ (a+b)3 =
4)(–3ab2c)3÷(–3ab2c)2 =
找規(guī)律:怎樣尋找多項(xiàng)式除以單項(xiàng)式的法則?
嘗試練習(xí)引入分析
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加.
2.例題解析
例3 計(jì)算:見課本p49
(1) 嘗試練習(xí)
(2) 提問:哪個等號是用到了法則?
(3) 在計(jì)算多項(xiàng)式除以單項(xiàng)式時,要注意什么?
注意:(l)先定商的符號;
(2)注意把除式(?后的式子)添括號;
要求學(xué)生說出式子每步變形的依據(jù).
(3)讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,利用乘除逆運(yùn)算,檢驗(yàn)除的對不對.
練習(xí)設(shè)計(jì):
(1)隨堂練習(xí)p50
(2)聯(lián)系拓廣p51
3.小結(jié)
你在本節(jié)課學(xué)到了什么?
(1)單項(xiàng)式除以單項(xiàng)式的法則
(2)多項(xiàng)式除以單項(xiàng)式的法則
正確地把多項(xiàng)式除以單項(xiàng)式問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式問題。計(jì)算不可丟項(xiàng),分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項(xiàng);“消掉”對加減法而言,減項(xiàng)。
4.作業(yè)
p50 知識技能
5.綜合練習(xí)(課件)
新人教版七年級數(shù)學(xué)上冊教案篇一
讓學(xué)生通過獨(dú)立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結(jié)合思想的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):通過分析圖形問題中的數(shù)量關(guān)系,建立方程解決問題。
2.難點(diǎn):找出“等量關(guān)系”列出方程。
教學(xué)過程
一、復(fù)習(xí)提問
1.列一元一次方程解應(yīng)用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應(yīng)用題都是直接設(shè)元,要認(rèn)真分析題意,找出能表示整個題意的等量關(guān)系,再根據(jù)這個等量關(guān)系,確定如何設(shè)未知數(shù)。
(3)當(dāng)長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當(dāng)長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗(yàn)證。
實(shí)際上,如果兩個正數(shù)的和不變,當(dāng)這兩個數(shù)相等時,它們的積,通過以后的學(xué)習(xí),我們就會知道其中的道理。
三、鞏固練習(xí)
教科書第14頁練習(xí)1、2。
第l題等量關(guān)系是:圓柱的體積=長方體的體積。
第2題等量關(guān)系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。
四、小結(jié)
運(yùn)用方程解決問題的關(guān)鍵是抓住等量關(guān)系,有些等量關(guān)系是隱藏的,不明顯,要聯(lián)系實(shí)際,積極探索,找出等量關(guān)系。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1第1、2、3。
新人教版七年級數(shù)學(xué)上冊教案篇二
教學(xué)目的
1.理解用一元一次方程解工程問題的本質(zhì)規(guī)律;通過對“工程問題”的分析進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法解決實(shí)際問題的能力。
2.理解和掌握基本的數(shù)學(xué)知識、技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn),提高解決問題的能力。
重點(diǎn)、難點(diǎn)
重點(diǎn):工程中的工作量、工作的效率和工作時間的關(guān)系。
難點(diǎn):把全部工作量看作“1”。
教學(xué)過程
一、復(fù)習(xí)提問
1.一件工作,如果甲單獨(dú)做2小時完成,那么甲獨(dú)做i小時完成全
部工作量的多少?
2.一件工作,如果甲單獨(dú)做。小時完成,那么甲獨(dú)做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關(guān)系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關(guān)于工程問題的實(shí)際問題,在這個問題中,已經(jīng)知道了什么? 已知:制作一塊廣告牌,師傅單獨(dú)完成需4天,徒弟單獨(dú)做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關(guān)系是什么?
[等量關(guān)系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數(shù),因此,設(shè)師傅做了x天,則徒弟做(x+1)天,根據(jù)等量關(guān)系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習(xí)
一件工作,甲獨(dú)做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨(dú)做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨(dú)做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨(dú)做5小時,然后甲、乙合做,還需多少小時完成?
四、小結(jié)
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關(guān)系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨(dú)完成工作量和合作完成工作量的一個等量關(guān)系列方程。
五、作業(yè)
教科書習(xí)題6.3.3第1、2題。
新人教版七年級數(shù)學(xué)上冊教案篇三
教學(xué)目的
借助“線段圖”分析復(fù)雜的行程問題中的數(shù)量關(guān)系,從而建立方程解決實(shí)際問題,發(fā)展分析問題,解決問題的能力,進(jìn)一步體會方程模型的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):列一元一次方程解決有關(guān)行程問題。
2.難點(diǎn):間接設(shè)未知數(shù)。
教學(xué)過程
一、復(fù)習(xí)
1.列一元一次方程解應(yīng)用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間 速度=路程 / 時間
二、新授
例1.小張和父親預(yù)定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計(jì)繼續(xù)乘公共汽車將會在火車開車后半小時到達(dá)火車站,隨即下車改乘出租車,車速提高了一倍,結(jié)果趕在火車開車前15分鐘到達(dá)火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠(yuǎn)?
畫“線段圖”分析, 若直接設(shè)元,設(shè)小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關(guān)系是什么?
如果設(shè)乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設(shè)公共汽車從小張家到火車站要x小時。
設(shè)未知數(shù)的方法不同,所列方程的復(fù)雜程度一般也不同,因此在設(shè)未知數(shù)時要有所選擇。
三、鞏固練習(xí)
教科書第17頁練習(xí)1、2。
四、小結(jié)
有關(guān)行程問題的應(yīng)用題常見的一個數(shù)量關(guān)系:路程=速度×?xí)r間,以及由此導(dǎo)出的其他關(guān)系。如何選擇設(shè)未知數(shù)使方程較為簡單呢?關(guān)鍵是找出較簡捷地反映題目全部含義的等量關(guān)系,根據(jù)這個等量關(guān)系確定怎樣設(shè)未知數(shù)。
四、作業(yè)
教科書習(xí)題6.3.2,第1至5題。
新人教版七年級數(shù)學(xué)上冊教案篇四
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×x×2,利息稅為2.43%x×2×20%
根據(jù)等量關(guān)系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折 (即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價為:(1+40%)x
每件服裝的實(shí)際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關(guān)系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時,首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
新人教版七年級數(shù)學(xué)上冊教案篇五
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、多項(xiàng)式除以單項(xiàng)式在整式的運(yùn)算中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力,在解決問題的過程中了解數(shù)學(xué)的價值,發(fā)展“用數(shù)學(xué)”的信心。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。多項(xiàng)式除以單項(xiàng)式作為整式的運(yùn)算的一部分,它是整式運(yùn)算的重要內(nèi)容之一,它是整個初中代數(shù)的重要部分。
2、就第一章而言, 多項(xiàng)式除以單項(xiàng)式是本章的一個重點(diǎn)。整式的運(yùn)算這一章,多項(xiàng)式除以單項(xiàng)式是很重要的一塊,整式的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在整式范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此乘法的運(yùn)算是本章的關(guān)鍵,而除法又是學(xué)生接觸到的較復(fù)雜的整式的運(yùn)算,學(xué)生能否接受和形成在整式的運(yùn)算中轉(zhuǎn)化思考方式及推理的方法等,都在本節(jié)中。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。
新課程標(biāo)準(zhǔn)是我們確定教學(xué)目標(biāo) ,重點(diǎn)和難點(diǎn)的依據(jù)。重點(diǎn)是多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用。多項(xiàng)式除以單項(xiàng)式,其基本方法與步驟是化歸為單項(xiàng)式除以單項(xiàng)式,因此多項(xiàng)式除以單項(xiàng)式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項(xiàng)式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。
難點(diǎn)是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算。由于 ,故多項(xiàng)式除以單項(xiàng)式的法則也可以看做是乘法對加法的分配律的應(yīng)用。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)掌握同底數(shù)冪的乘法、冪的乘方、積的乘方、同底數(shù)冪的除法等知識,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的課件引例,讓學(xué)生自主參與,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程 的設(shè)計(jì)中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程 中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程 中在掌握知識同時、發(fā)展智力、受到教育。
四、教學(xué)過程 的設(shè)計(jì)。
1、回顧與思考,通過單項(xiàng)式除以單項(xiàng)式法則的復(fù)習(xí),完成四道單項(xiàng)式除以單項(xiàng)式的練習(xí)題,為本節(jié)課探索規(guī)律,概括多項(xiàng)式除以單項(xiàng)式的法則做好鋪墊。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個嘗試練習(xí)啟發(fā)學(xué)生自主解答,使學(xué)生該過程中體會多項(xiàng)式除以單項(xiàng)式規(guī)律。由于采用了較靈活的教學(xué)手段,學(xué)生能夠積極的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出多項(xiàng)式除以單項(xiàng)式的法則。
3、例題解析,通過課件生動形象的課件,引導(dǎo)學(xué)生嘗試完成例題,加深對多項(xiàng)式除以單項(xiàng)式的法則的理解與應(yīng)用。
4、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進(jìn)的過程,所以習(xí)題的配備由易而難,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用小組合作交流形式,使課堂氣氛活躍,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
5、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對本節(jié)的課進(jìn)行說明。
以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個人教學(xué)能力的目的。教學(xué)目標(biāo) :
1.理解和掌握多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
2.運(yùn)用多項(xiàng)式除以單項(xiàng)式的法則,熟練、準(zhǔn)確地進(jìn)行計(jì)算.
3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力.
4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).
重點(diǎn)、難點(diǎn):
(1)多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用.
(2)理解法則導(dǎo)出的根據(jù)。
課時安排: 一課時.
教具學(xué)具: 多媒體課件.
授課人及時間:關(guān)龍 二〇〇七年三月二十九日
教學(xué)過程 :
1.復(fù)習(xí)導(dǎo)入
(l)單項(xiàng)式除以單項(xiàng)式法則是什么?
(2)計(jì)算:
1)–12a5b3c÷(–4a2b)=
2)(–5a2b)2÷5a3b2 =
3)4(a+b)7 ÷ (a+b)3 =
4)(–3ab2c)3÷(–3ab2c)2 =
找規(guī)律:怎樣尋找多項(xiàng)式除以單項(xiàng)式的法則?
嘗試練習(xí)引入分析
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加.
2.例題解析
例3 計(jì)算:見課本p49
(1) 嘗試練習(xí)
(2) 提問:哪個等號是用到了法則?
(3) 在計(jì)算多項(xiàng)式除以單項(xiàng)式時,要注意什么?
注意:(l)先定商的符號;
(2)注意把除式(?后的式子)添括號;
要求學(xué)生說出式子每步變形的依據(jù).
(3)讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,利用乘除逆運(yùn)算,檢驗(yàn)除的對不對.
練習(xí)設(shè)計(jì):
(1)隨堂練習(xí)p50
(2)聯(lián)系拓廣p51
3.小結(jié)
你在本節(jié)課學(xué)到了什么?
(1)單項(xiàng)式除以單項(xiàng)式的法則
(2)多項(xiàng)式除以單項(xiàng)式的法則
正確地把多項(xiàng)式除以單項(xiàng)式問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式問題。計(jì)算不可丟項(xiàng),分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項(xiàng);“消掉”對加減法而言,減項(xiàng)。
4.作業(yè)
p50 知識技能
5.綜合練習(xí)(課件)