日本東京工業(yè)大學基本概況

字號:


    日本的東京工業(yè)大學是日本東京建立的首個國立大學,是日本頂尖的理工類的院校,你是否有申請該校的打算呢?那么跟著出國留學網(wǎng)一起來了解下日本東京工業(yè)大學基本概況吧,歡迎閱讀。
    一、關于東京工業(yè)大學
    Tokyo university of Technology (Tokyo Institute of Technology), hereinafter referred to as DongGong big (Tokyo Tech), is a school-based area east of Kyoto black area, mainly engineering and natural science research of Japan's top, and the world first-class university of science Technology.University of Tokyo University of technology is the super international program (Top Global University Project) class A Top school, one of the eight University department of labor union and Japan, RU11 academic communion service and important member of the association of research universities and other academic organization in east Asia.The university of Tokyo has three academic departments and six research institutes, and more than 150 schools, such as the institute of resource chemistry and the institute of precision engineering, are also involved in the education research facilities.There are about 5,000 undergraduates, about 5,000 masters and doctoral students, about 10,000 students, and about 1,200 international students from all over the world.About 1, 200 teachers and 600 staff came to the school for education and research.As a research university, the university of Tokyo has a reputation for academic research, research results and education teaching in many aspects, not only in Japan but also in the world.
    東京工業(yè)大學(Tokyo Institute of Technology),簡稱東工業(yè)大((Tokyo Tech),位于京都目黑區(qū)東校本區(qū),是一所主要以工程技術類和日本頂尖的自然科學研究類并行的大學,東京工業(yè)大學是世界一流的科技大學。東京工業(yè)大學是超級國際計劃(全球頂級大學項目)一流的學校之一,是工會和日本八大學部之一,RU11學術交流服務和研究的大學和東亞洲的其他學術組織協(xié)會重要成員。東京大學有三個學術部門和六個研究所,150多所公共的教育研究的設施,其中包括資源化學研究所、精密工程研究所,教育科研設施等等。大學內大約有5000名本科生,5000碩士和博士研究生,總結大概為10000名學生,約1200的國際學生來自所有世界各地。大約1, 200名教師和600名工作人員都獲得了良好的學術聲譽和研究成果。
    二、歷史沿革
    Tokyo university of Technology (と う き ょ う こ う ぎ ょ う だ い が く, Tokyo Institute of Technology) is a national university in Tokyo, Japan, the school location in Kyoto okayama eye black area.Founded in 1929, the university is referred to as "donggong da", or "Tokyo Tech".Its predecessor was , a Tokyo staff school founded in 1881。There are three campuses, which are located in the main campus of daokokayshan campus in the great okanshan district of dongkyoki district.The two other campuses are located at the chiura campus in the port area of Tokyo, and the bell-hanging campus in the green district of yokohama.In the post-war reconstruction in the 1950 s, Japan's economic growth in the 1960 s, from an era of rapid economic development to the bubble economy appears in the 1980 s, the school constantly for Japan cultivate excellent engineers, researchers, business people, etc.Since April 2004, the university has become a member of the national university of Japan, according to the new education regulation applicable to all state universities.
    1.概述
    東京工業(yè)大學(とうきょうこうぎょうだいがく,東京工業(yè)大學)在東京,是一所日本國立大學,京都岡山黑眼圈地區(qū)學校定位。成立于1929,大學被稱為“東大”,或“東京工業(yè)”。它的前身是東京職工學校,東京職工學校成立于1881。有三個校區(qū),分別位于大岡山校園主校區(qū)在大岡山大岡山區(qū)。其他兩校區(qū)位于東京港區(qū)的田町校園與鈴懸臺校區(qū)在橫濱的綠區(qū)。在戰(zhàn)后重建在1950年代,在1960年代日本的經(jīng)濟增長,從經(jīng)濟快速發(fā)展的時代,經(jīng)濟泡沫出現(xiàn)在1980年代,學校不斷為日本培養(yǎng)出優(yōu)秀的工程師、研究人員、業(yè)務人員等。自2004年4月以來,大學已成為國家大學的一員員,根據(jù)新規(guī)定適用于所有國家的大學教育。
    chronology
    In May 1881, the Tokyo staff school was established.
    In May 1901, the name was renamed Tokyo higher industrial school.
    In April 1929, it was renamed Tokyo university of technology.
    Set up eight disciplines of dyestuff chemistry, textiles, ceramics, applied chemistry, electrical chemistry, mechanical engineering, electrical engineering, and architecture.Set up mathematics, physics, physical chemistry, analytical chemistry 4 classrooms.
    In May 1949, the state school setting law was published, setting up the national Tokyo university of technology.
    In April 1953, the institute of technology of the college of science and technology was set up to set up seven majors in applied physics, chemistry and chemical engineering, mechanical engineering, electrical engineering, metal engineering, textile engineering and architecture.
    In July 1955, the company renamed department of science, mathematics, physics, chemistry, chemical engineering, mechanical engineering, electrical engineering, project engineering, construction, construction engineering and management technology of 10 disciplines.
    In April 1960, the department of science and technology set up the mathematical sciences, physical discipline, discipline, fiber engineering discipline, chemical engineering discipline, chemical engineering, industrial disciplines, mechanical engineering, engineering, electrical engineering, electronic engineering disciplines and building 14 disciplines.
    In April 1962, the department of science and technology set up the macromolecule engineering division and applied the electrification discipline and the production machinery engineering division.
    In April 1964, the department of science and technology set up the soil woodworking discipline.
    Institute of science and technology of the college of science and technology, majored in engineering, electronics, engineering and management.
    In June 1967, the department of science and technology was opened to the department of science and engineering.
    Science has successively set up the physical, material, chemical engineering program 4 disciplines, mechanics department three disciplines, electrical electronics 2 subjects, and soil carpenter discipline, social work discipline, information science, planet earth science, after our company set up information engineering disciplines.
    In June 1990, the department of life science and technology was set up, and the department of life sciences, biology, biology, engineering, and biology were transferred
    In April 1994, the institute set up the research division of information science.
    In April 1996, the university established the social science research division.
    In April 2004, the national university of Tokyo was established as a legal person of the university of Tokyo.
    In April 2005, the college set up innovation management research division.
    In April 2016, education reform was implemented to unify the school and college, and reorganize the college
    2.年表
    1881年5月,東京職員學校成立。
    1901年5月,更名為東京高級工業(yè)學校。
    1929年4月,更名為東京工業(yè)大學。
    開設染料化學、紡織、陶瓷、應用化學、電氣化學、機械工程、電氣工程、建筑學八門學科,開設數(shù)學、物理、物理化學、分析化學4個專業(yè)。
    1949年5月,頒布了《國家學校設置法》,成立了國立東京技術大學。
    1953年4月,科學技術學院成立了應用物理、化學化工、機械工程、電氣工程、金屬工程、紡織工程和建筑七大專業(yè)。
    1955年7月,公司更名為科學、數(shù)學、物理、化學、化工、機械工程、電氣工程、工程工程、建筑、建筑工程和管理技術10個學科。
    1960年4月,在科技部設立了數(shù)學科學,物理學科,學科、纖維工程學科、化學工程學科、化學工程、工業(yè)工程、機械工程學科、電氣工程、電子工程學科、建筑學科的14。
    1962年4月,科技部成立了高分子工程司,并應用了電氣化學科和生產(chǎn)機械工程部。
    1964年4月,科技部成立了土壤木工學科。
    理工學院理工學院,工程、電子、工程、管理專業(yè)。
    1967年6月,科技部向理工科開放。
    科學已經(jīng)先后建立了物理、材料、化學工程4個學科,力學系三學科、電氣電子2個學科,土木工學科,社會工作專業(yè),信息科學,地球科學,在我們公司成立信息工程學科。
    1990年6月,生命科學系成立,生命科學系、生物系、生物學系、工程系和生物系被調校。
    1994年4月,研究所成立了信息科學研究司。
    1996年4月,該大學成立了社會科學研究司。
    2004年4月,國立東京大學成立為東京大學法人。
    2005年4月,學院成立了創(chuàng)新管理研究部。
    2016年4月,實施了統(tǒng)一學校和學院的教育改革,改組了學院。
    三、學術優(yōu)勢
    What kind of future will we create? What is the societal impact of the path we choose? Following the extensive reforms that took effect in April 2016, members of the Tokyo Tech community held workshops to reflect on these questions and formulate the "Tokyo Tech 2030" statement. Assured by our unfading commitment to teaching, learning, and research, Tokyo Tech confidently moves towards future challenges with strong intentions.Four workshops were held between fall 2016 and early spring 2017 to brainstorm Tokyo Tech’s unique strengths and societal impact. A total of 123 participants of all ages, including students, faculty, staff, and executive management, held small group discussions facilitated by Institute for Liberal Arts Professor Tamio Nakano. The creative dialogue resulted in a shared vision of the present and future of Tokyo Tech, which was condensed into the "Tokyo Tech 2030" statement — consisting of spirit and action — while taking into account external perspectives.
    Pursue
    Tokyo Tech knowledge is born from our creative vanguard and individual diversity. High aspirations and integrity are at the core of our vision. We value divergence in the pursuit of discovery and research excellence in fundamental and applied fields. The student-centered Tokyo Tech model prioritizes proactive learning and aims to develop professionals active on the world stage.Transcending conventional borders, Tokyo Tech’s teaching and research in new and interdisciplinary fields never cease to progress. We acknowledge and engage the expertise of each individual, and when united form a fountain of perpetual knowledge. Tokyo Tech’s open environment, together with increased international and public engagement, will bring about a new learning and research hub ahead of its time.To benefit people’s lives through novel ideas, Tokyo Tech must transfer the various forms of knowledge it creates. Increased joint research with businesses, science and technology consulting, entrepreneurship training, and startup support and development will preserve and promote the "creation of new industry," the unfading commitment of the Institute.
    1.概述
    我們將創(chuàng)造什么樣的未來?我們選擇的道路的社會影響是什么?在2016年4月生效的大規(guī)模改革之后,東京工業(yè)社區(qū)的成員舉辦了研討會,以反映這些問題,并制定了“東京工業(yè)2030”的聲明。在我們對教學、學習和研究的堅定承諾的保證下,東京工業(yè)集團自信地走向未來的挑戰(zhàn)。在2016年秋季至2017年春季之間,我們一共舉辦了四次研討會,以對東京工業(yè)的獨特優(yōu)勢和社會影響進行頭腦風暴。涵蓋所有年齡的123名參與者,包括學生、教師、員工和執(zhí)行管理人員,舉行了由自由藝術教授Tamio Nakano主持的小組討論。這種創(chuàng)造性的對話產(chǎn)生了對東京工業(yè)的當前和未來的共同愿景,并將其濃縮為“東京工業(yè)2030”的聲明——以全面的視角來探索精神和行動。
    東京的科技知識來源于我們的創(chuàng)新先鋒和個人多樣性。高抱負和正直是我們愿景的核心。我們重視在基礎和應用領域尋求發(fā)現(xiàn)和研究卓越的差異。以學生為中心的東京工業(yè)模式,優(yōu)先考慮主動學習,并致力于培養(yǎng)活躍在世界舞臺上的專業(yè)人士。在超越傳統(tǒng)邊界的同時,東京工業(yè)在新的和跨學科領域的教學和研究從未停止前進。我們承認并參與每一個人的專業(yè)知識,當聯(lián)合形成一個永久知識的源泉。東京工業(yè)的開放環(huán)境,加上國際和公眾參與度的提高,將會帶來一個新的學習和研究中心。為了使人們的生活受益于新奇的想法,東京工業(yè)必須轉移它所創(chuàng)造的各種形式的知識。加強與企業(yè)、科技咨詢、創(chuàng)業(yè)培訓、創(chuàng)業(yè)支持與發(fā)展的聯(lián)合研究,將維護和促進“新產(chǎn)業(yè)的創(chuàng)建”,這是研究所的不褪色承諾。
    2.特色研究項目
    Tweaking thermoelectric voltage across atomic-scale gold junction by mechanical forceScientists at Tokyo Institute of Technology (Tokyo Tech) achieved precise and fully reversible switching of the polarity of voltage produced by the thermoelectric effect across a gold junction with an atomic-scale contact. The control of thermoelectric voltage was achieved by mechanically elongating the contact. This technology is expected to find applications in thermopower generation, measurement techniques in materials science, and solid-state electronic devices.A voltage difference is created across a junction of two wires held at different temperatures. This phenomenon, called thermoelectric effect, has been widely studied and used in various applications such as thermoelectric power generators, thermoelectric refrigerators, and temperature measurement. When the cross section of the junction contact is reduced to a few atoms, quantum-mechanical effects or, specifically, quantum interferences among electrons affect the transport of electrons across the junction. These interferences are strongly dependent on the structure, including minute defects, of the atomic-scale contact and surrounding material, which determine electrical properties such as conductance and thermoelectric voltage. So far, quantum interference effect in atomic-scale metal contacts has not found much application, because of the difficulty in precisely controlling atomic structures.
    通過機械力在原子尺度的黃金結上調整熱電動勢
    東京理工學院(東京理工大學)的科學家們,在一個與原子尺度接觸的金接點上,實現(xiàn)了由熱電效應產(chǎn)生的電壓極性的精確而完全可逆的轉換。熱電動勢的控制是通過機械地拉伸接觸來實現(xiàn)的。該技術有望在熱發(fā)電、材料科學和固態(tài)電子設備等領域找到應用。電壓差是在不同溫度下的兩根導線的交叉處產(chǎn)生的。這種被稱為熱電效應的現(xiàn)象已經(jīng)被廣泛地應用于各種應用場合,如熱電發(fā)電機、熱電冰箱和溫度測量等。當交接點的橫截面減少到幾個原子時,量子力學效應,或者,特別是在電子之間的量子干涉,會影響到在交叉處的電子的傳輸。這些干擾強烈地依賴于結構,包括微小的缺陷,原子尺度的接觸和周圍的材料,這些物質決定了電導和熱電電壓等電學性質。迄今為止,原子級金屬接觸的量子干涉效應因為在精確控制原子結構方面存在困難并沒有得到多少應用。
    High-speed switching for ultrafast electromechanical switches and sensors
    Scientists at Tokyo Tech, Nagoya University, Japan Synchrotron Radiation Research Institute (JASRI), National Institute for Materials Science (NIMS) and University of New South Wales have observed high-speed switching in Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses. Unlike the slow ferroelastic domain switching expected for ceramics, high-speed sub-microsecond ferroelastic domain switching and simultaneous lattice deformation are directly observed for the Pb(Zr0.4Ti0.6)O3 thin films. This exciting finding paves the way for high-frequency ultrafast electromechanical switches and sensors.Piezo micro electro mechanical systems (piezoMEMS) are miniaturized devices exhibiting piezoelectricity, i.e., the appearance of an electric charge under applied mechanical stress. These devices have many diverse applications in energy harvesters, micropumps, sensors, inkjet printer heads, switches, and so on. In permanently polarized (ferroelectric) materials, ferroelastic domain switching affects the piezoelectric properties significantly, and this behavior can be exploited for piezoMEMS applications.Pb(Zr1-xTix)O3 (PZT) thin films have excellent piezoelectric and ferroelectric properties; therefore, they are potential candidates for MEMS applications. Under an applied electric field, both lattice elongation and 90° ferroelastic domain switching are observed in tetragonal PZT thin films. In particular, non-180° ferroelastic domain switching has important implications for the future realization of high-performance piezoMEMS devices.
    超高頻機電開關和傳感器的高速開關
    東京理工大學、名古屋大學、日本同步輻射研究所(JASRI)、國家材料科學研究所(NIMS)和新南威爾士大學的科學家們已經(jīng)觀測到在應用矩形電場脈沖下的Pb(Zr0.0.4.Ti0.1.6)O3薄膜的高速切換。與陶瓷的慢鐵彈性領域交換不同,在Pb(Zr0.0.4 Ti0.6)O3薄膜上直接觀察到高速亞微秒鐵彈性域切換和同步晶格變形。這一令人興奮的發(fā)現(xiàn)為高頻的超高頻機電開關和傳感器鋪平了道路。壓電微電子機械系統(tǒng)(壓電)是微型化的器件,顯示壓電現(xiàn)象。在機械應力的作用下,電荷的出現(xiàn)。這些設備在能源收獲機、微泵、傳感器、噴墨打印機頭、開關等方面有許多不同的應用。在永久極化(鐵電)材料中,鐵彈性領域開關對壓電性能的影響很大,這一行為可被用于壓電式的應用。Pb(z1-xtix)O3(PZT)薄膜具有優(yōu)良的壓電和鐵電性能;因此,它們是MEMS應用程序的潛在候選對象。在一個應用電場下,在正方PZT薄膜中觀察到晶格伸長和90鐵彈性域切換。特別是,非180鐵彈性域交換對高性能壓電器件的未來實現(xiàn)具有重要意義。
    Biophysics explains how immune cells kill bacteria
    A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. These biophysical descriptions are expected to clarify the TCR microcluster, an essential assembly for a T cell to initiate its attack on a pathogen.To kill a pathogen invading the human body, T cells, or lymphocytes, bind to it through T cell receptors (TCR). One of the first events this binding initiates is the formation of a microcluster that includes tens or hundreds of TCR molecules. These microclusters are deemed essential to initiate and sustain the immune signal. A new analysis technique by scientists at School of Life Sciences at Tokyo Institute of Technology provides a quantitative description of the molecules that form these microclusters. The study can be read in Scientific Reports.
    Imaging technologies have visualized the generation and dynamics of microclusters, but there is no quantitative data. We developed ‘moving subtrajectory (MST) analysis' using single-molecule tracking to quantitatively study the dynamics and kinetics of CD3 and CD45 around the microcluster," explains Prof. Makio Tokunaga, whose lab designed the new method.TCR function by forming a complex (TCR/CD3) with CD3. CD45, on the other hand, is not part of the complex, but is believed to regulate the formation of the cluster.Single molecule imaging was used to trace the movement of CD3 and CD45 around the microclusters. Yuma Ito, an Assistant Professor in the lab, shows that MST analysis is superior to standard analysis methods by revealing details on the temporal and spatial variation of the movement."Standard methods analyze the mean square displacement of the whole trajectory. MST divides the trajectory into subtrajectories and calculates the mean square displacement of each subtrajectory. Using MST, we could analyze movement inside, outside and at the boundary of the TCR microclusters," he explains.
    生物物理學解釋了免疫細胞如何殺死細菌
    一項新的數(shù)據(jù)分析技術,由東京理工學院的研究人員設計的移動子軌跡分析,定義了免疫反應中關鍵分子的動力學和動力學。這些生物物理描述有望澄清TCR微簇,這是T細胞發(fā)起攻擊病原體的基本程序。為了殺死入侵人體的病原體,T細胞或淋巴細胞通過T細胞受體(TCR)與之結合。這個綁定啟動的第一個事件是形成一個包含數(shù)十或數(shù)百個TCR分子的微集群。這些微簇被認為是啟動和維持免疫信號的必要條件。東京理工學院生命科學學院的一項新的分析技術為形成這些微簇的分子提供了定量的描述。這項研究可以在科學報告中閱讀。
    “成像技術已經(jīng)可視化了微簇的生成和動態(tài),但沒有定量數(shù)據(jù)。我們開發(fā)了“移動子軌跡(MST)分析”,利用單分子跟蹤,定量研究了CD3和CD45在微簇周圍的動力學和動力學,”Makio Tokunaga教授解釋道,他的實驗室設計了這個新方法。TCR的功能是通過CD3建立一個復雜的(TCR/CD3)。另一方面,CD45并不是復雜的一部分,但它被認為是調節(jié)集群的形成。利用單分子成像技術追蹤CD3和CD45在微簇周圍的運動。Yuma Ito是實驗室的助理教授,他指出,MST分析比標準分析方法更優(yōu)秀,揭示了運動的時間和空間變化的細節(jié)。標準方法分析了整個軌跡的均方位移。MST將軌跡劃分為子軌跡,并計算每個子軌跡的平均平方位移。通過使用MST,我們可以分析在TCR微簇的內部、外部和邊界的運動?!彼忉尩馈?BR>    Tokyo Tech and Kawasaki City, combining forces in R&D on Computational Drug Discovery for Middle Molecules at KING SKYFRONT
    On July 31, Tokyo Institute of Technology (Tokyo Tech) and Kawasaki City announced that they are combining forces to conduct R&D, construct an infrastructure, and implement a business promotion program for the "Program to Industrialize an Innovative Middle Molecule Drug Discovery Flow through Fusion of Computational Drug Design and Chemical Synthesis Technology". This highly unique program incorporates computational drug design methods into the field of drug discovery for middle molecules. The program fuses computational drug design that utilizes molecular simulation and machine learning by the Super Computer TSUBAME of Tokyo Tech and unique chemical synthesis technology such as artificial peptides and artificial nucleic acids. Through industry-academia-government partnerships including corporations in Kawasaki City, the program seeks to form an innovation ecosystem that bridges basic/fundamental research and the drug discovery business, thus dramatically improving the efficiency of developing middle molecule drugs.
    In order to implement this research project, the Middle Molecule IT-based Drug Discovery Laboratory (MIDL) will be opened this fiscal year in Tonomachi KING SKYFRONT, an international strategic zone located in Kawasaki City. MIDL will possess enhanced research functions for middle molecules and will be the world's first dedicated facility in this field with state-of-the-art computational approaches. Tokyo Tech will also open a Middle Molecule IT-based Drug Discovery Laboratory (MIDL) core facility inside the university campus and establish a system in which faculty cooperate across research fields. This research program was selected for support by the FY2017 Regional Innovation and Ecosystem Formation Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). The MEXT program seeks to utilize regional technology seeds and to create a successful model of industrialization with significant social impact based on global expansion from that region. During the 5-year period until March 2022, the research program will receive annual grants-in-aid of 155 million JPY. The grants will be used to conduct R&D, to construct an infrastructure for creating a regional industrial ecosystem, and to implement a business promotion program.
    東京工業(yè)公司和川崎市,聯(lián)合研發(fā)力量在天空前線的中間分子的計算藥物發(fā)現(xiàn)
    7月31日東京理工學院(日本技術)和川崎市宣布他們是結合部隊進行研發(fā),建立一個基礎設施,并實現(xiàn)業(yè)務推廣計劃”項目工業(yè)化創(chuàng)新型中間分子藥物發(fā)現(xiàn)流過的融合計算藥物設計和化學合成技術”。這個高度獨特的程序將計算藥物設計方法融入到中分子藥物發(fā)現(xiàn)的領域中。該程序融合了利用分子模擬和機器學習的計算藥物設計,利用了東京工業(yè)的超級計算機TSUBAME和人工多肽和人工核酸等獨特的化學合成技術。通過與川崎市的企業(yè)合作,建立了一個創(chuàng)新的生態(tài)系統(tǒng),建立了基礎研究和藥物發(fā)現(xiàn)業(yè)務的橋梁,從而極大地提高了開發(fā)中分子藥物的效率。為了實施這個研究項目,中分子藥物研發(fā)實驗室(MIDL)將于本財年在位于川崎市的國際戰(zhàn)略區(qū)域“通omachi KING SKYFRONT”開幕。MIDL將為中分子提供增強的研究功能,并將成為世界上第一個在這一領域擁有先進計算方法的專用設備。東京工業(yè)公司還將在大學校園內開設一個中間分子藥物研發(fā)實驗室(MIDL)的核心設施,并建立一個系統(tǒng),在這個系統(tǒng)中,教師可以在研究領域進行合作。這個研究項目是由日本教育、文化、體育、科技(MEXT)的2017財年區(qū)域創(chuàng)新和生態(tài)系統(tǒng)形成計劃所選擇的。MEXT計劃尋求利用區(qū)域技術種子,并建立一個成功的工業(yè)化模式,并基于該地區(qū)的全球擴張而產(chǎn)生重大的社會影響。在截至2022年3月的5年期間,該研究項目將獲得每年1.55億日元的資助。贈款將用于開展研發(fā),為創(chuàng)建一個區(qū)域工業(yè)生態(tài)系統(tǒng)建立基礎設施,并實施一個商業(yè)促進計劃。
    One-Nanometer Trimetallic Alloy Particles Created
    A researcher group of Tokyo Institute of Technology succeeded in developing precisely controlled alloy nanoparticles "multimetallic nanoclusters (MNCs)" made of three metals: copper, platinum, and gold. They also discovered that MNCs show catalytic activity that is 24 times greater than commercially available carbon-supported platinum catalysts in the oxidization of hydrocarbons using oxygen in the air.The research group led by Kimihisa Yamamoto of Tokyo institute of Technology developed a method of synthesizing microscopic alloy nanoparticles using branched molecules "dendrimers" they themselves had developed in Yamamoto Atom Further, they evaluated the activity of this alloy nanoparticle as an oxidization catalyst for hydrocarbons under ordinary pressures when using oxygen in the air as the oxidizing agent, and found that its activity was 24 times greater than that of commercially available catalysts for oxidization of organic compounds. They also found that, by adding a catalytic amount of organic hydroperoxide, this catalyst promotes the oxidization of hydrocarbon into aldehydes and ketones under ordinary temperatures and pressures. Further, by comparing the changes in activity due to alloy catalysts of different metallic compositions and examining the composition and other characteristics of the intermediates, ketones and organic hydroperoxides, the group was able to observe the process of reaction promotion due to the alloying of the catalyst.
    一納米三金屬合金粒子
    東京理工學院的一個研究小組成功地開發(fā)了精確控制的合金納米粒子“多金屬納米簇(MNCs)”“由三種金屬制成:銅、鉑和黃金。他們還發(fā)現(xiàn),跨國公司的催化活性比在空氣中使用氧的碳氫化合物的氧化過程中獲得的碳支持的鉑催化劑的催化活性要高24倍。領導的研究小組Kimihisa山本東京理工學院開發(fā)的方法合成微合金納米粒子使用支化分子“樹枝狀分子”他們自己開發(fā)的山本原子混合Projectouter埃拉托程序,先進技術的探索性研究,研究資助計劃支持的日本科學技術振興機構(JST)。被稱為樹狀分子的分子有一個固定的分支結構,只有一個明確的分子量,盡管它們被歸類為大分子。研究小組為金屬離子和復合物的形成提供了許多協(xié)調場所。通過使用具有這種協(xié)調位點的樹枝作為納米粒子的模板,該小組能夠合成一種具有受控數(shù)量原子的納米粒子。此外,他們還對這種合金納米顆粒的活性進行了評價,認為它是一種氧化催化劑,在空氣中使用氧氣作為氧化劑,并發(fā)現(xiàn)它的活性是有機化合物氧化催化劑的24倍。他們還發(fā)現(xiàn),通過增加有機雙氧水的催化量,這種催化劑可以在常溫和壓力下促進碳氫化合物的氧化。此外,通過比較不同金屬成分的合金催化劑活性的變化,并考察了中間體、酮和有機氫氧化合物的組成及其它特性,該組織能夠觀察催化劑的合金化過程中反應促進的過程。
    五、校園環(huán)境
    Ookayama CampusIs a 1-minute walk from Ookayama Station
    Suzukakedai CampusIs a 5-minute walk from Suzukakedai Station
    Tamachi CampusIs a 2-minute walk from Tamachi Station
    大岡山校區(qū):東京都目黒區(qū)大岡山2-12-1, 郵編:152-8550(大岡山站徒步1分鐘)
    鈴懸臺校區(qū):神奈川縣橫浜市綠區(qū)長津田町 4259,郵編:226-8503 (鈴懸臺徒步5分鐘)
    田町校區(qū):東京都港區(qū)芝浦3-3-6,郵編:108-0023(田町站徒步2分鐘)[25]
    1.大岡山校區(qū)
    Main Building
    The Main Building maintains its value as an example of modern architecture from the early Showa period. It has witnessed much of the history of Tokyo Tech and has become a symbol of Ookayama Campus. (Not open to the public)
    Institute Library:The Ookayama library is a must-see sight for its architectural beauty and value. The Library makes its collection available to outside researchers under certain conditions.
    Wood Decking in front of the Main Building:This wood decking is lined with cherry trees, where you can sit and enjoy the changing seasons, including magnificent cherry blossom in spring.
    Mount Fuji Viewing Slope:The overpass in front of the Healthcare Center was designated as one of 100 spots in Kanto prefecture where you can appreciate beautiful views of Mount Fuji. This is reflected in its name, Toukyou fujimi zaka (Tokyo Fuji-viewing slopeouter ).
    Museum and Centennial Hall building:The science, typical research in the field of technology, and commemorative educational items related to the history of Tokyo Institute of Technology are displayed in this building.
    Environmental Energy Innovation Building:The Environmental Energy Innovation (EEI) Building incorporates the latest energy technology making the building like no other in the world. Designed to confront global warming, the EEI Building is nearly self-sufficient at producing the electricity it consumes and has reduced its carbon dioxide emissions by more than 60%.
    Registered Tangible Cultural Properties:In July 2013, three buildings on the Tokyo Tech Ookayama Campus were granted the status of Registered Tangible Cultural Properties by Japan's Agency for Cultural Affairs.
    Collaboration Center for Design and Manufacturingouter:The Collaboration Center for Design and Manufacturing is where student clubs make and exhibit homemade speakers, race-winning human-powered aircraft and other creations, including those made in creativity education classes
    Open weekdays, 10:00-16:00
     主要建筑
    從早期的展覽開始,主要的建筑作為現(xiàn)代建筑的典范保持著它的價值。它見證了東京工業(yè)的許多歷史,已經(jīng)成為了岡山校區(qū)的標志。(不向公眾開放)
    研究所圖書館:山岡圖書館是其建筑美和價值的必看景觀。在某些情況下,圖書館可以向外部研究人員提供它的收藏。
    主建筑前的甲板:這片木片上滿是櫻桃樹,你可以坐在那里欣賞變幻的季節(jié),包括春天盛開的櫻花。
    富士山坡:醫(yī)療中心前面的天橋被指定為關東縣的100個景點之一,你可以欣賞到富士山的美景。這反映在它的名字里,圖克你藤原真子(東京富士)。
    博物館和百年紀念館:科學、技術領域的典型研究,以及與東京理工學院歷史有關的紀念。
    環(huán)境能源創(chuàng)新建筑:環(huán)境能源創(chuàng)新(EEI)建筑結合了最新的能源技術,使建筑成為世界上獨一無二的建筑。為了應對全球變暖,EEI大廈幾乎可以自給自足,并將二氧化碳的排放量減少了60%以上。
    注冊有形的文化屬性:2013年7月,東京工業(yè)大學岡山校區(qū)的三棟建筑被日本文化廳授予了注冊有形文化財產(chǎn)的地位。
    設計和Manufacturingouter的合作中心:是學生俱樂部制作和展示自制揚聲器,種族取勝的人力飛行器和其他創(chuàng)造,包括那些在創(chuàng)意教育課程中制造的,工作日開放的時間:10:00-16:00
    2.鈴懸臺校區(qū)
    Exhibition SpaceouterResult:s of new research conducted at Tokyo Institute of Technology across the varied fields of earth sciences, biotechnology, material science, information science and mechanical engineering are displayed here.Coelacanth,An exhibition of the Coelacanth, known as a "living fossil", also sits in the Frontier Research Center. You are able to view resin-coated samples, replicas, eggs and other items not normally found in exhibitions of this type.Open weekdays, 12:00-17:00
    Peripatos Open Gallery:The Peripatos Open Gallery has two exhibition areas: an indoor display area for paintings and an outdoor area for sculptures. The latter area with its three-dimensional works of art was intentionally designed to catch the attention of students, staff and visitors as they stroll through the Suzukakedai Campus grounds encouraging both relaxation and inducing them to return to see future exhibitions.
    J2 Building:This building has a high resistance to earthquake activity. Inside the building you can see a wide range of technologies and mechanisms to strengthen high-rise buildings against earthquakes.
    Spaceouter展覽:東京理工大學在地球科學、生物技術、材料科學、信息科學和機械工程等各個領域進行了新的研究。腔棘魚,一種被稱為“活化石”的腔刺的展覽也坐落在前沿研究中心。你可以在這種類型的展覽中看到樹脂涂層的樣品、復制品、雞蛋和其他物品。工作日開放的時間:12:00-17:00
    Peripatos Open畫廊:帕皮諾畫廊的開放畫廊有兩個展區(qū):一個是室內的繪畫區(qū)域,一個是雕塑的室外區(qū)域。為了吸引學生、工作人員和游客的注意力,他們在蘇木城的校園里散步,鼓勵學生們放松,并引導他們回去看未來的展覽,這是為了吸引學生、工作人員和游客的注意。
    J2建筑:這座建筑對地震活動有很高的抵抗力。在建筑物內部,你可以看到各種各樣的技術和機制,以加強高層建筑抵御地震的能力。
    3.田町校區(qū)
    Tokyo Tech's Tamachi Campus is located in Minato City in the center of Tokyo, in the immediate vicinity of Tamachi Station. It is home to the Tokyo Tech High School of Science and Technology, the Graduate School of Innovation Management, the Career Advancement Professional School, and the Tokyo Tech Campus Innovation Center, which is also home to satellite offices of other national universities.
    東京工業(yè)大學的塔瑪奇校區(qū)位于東京市中心的米納托市,緊鄰塔瑪奇車站。它是東京工業(yè)大學科技學院、創(chuàng)新管理研究生院、職業(yè)發(fā)展專業(yè)學校和東京工業(yè)大學創(chuàng)新中心的所在地,也是其他國家大學的辦公室所在地。
    六、著名校友(源自網(wǎng)絡)
    政界
    菅直人: 第94任日本首相
    苫米地義三:第3任內閣官房長官
    小林英三:第28任厚生大臣
    齊藤鐵夫:第11、12任環(huán)境大臣
    池上徹彥:文部科學省宇宙開發(fā)委員會委員長
    本保芳明:初代國土交通省觀光廳長官
    曾小川久貴:原國土交通省都市·地域整備局下水道部長
    大村平:第18任航空幕僚長
    豬瀨直樹:原東京都知事
    石見利勝:兵庫縣姬路市市長
    商界·科技
    橋本卯太郎:日本啤酒公司原董事,日本首相橋本龍?zhí)傻淖娓?BR>    橋本增治郎:日產(chǎn)汽車的前身快進社創(chuàng)辦者
    巖田聰: 任天堂原社長
    土光敏夫:東芝原董事長,日本經(jīng)濟團體聯(lián)合會原主席
    山下徹:NTT DATA社長
    遠藤信博:NEC社長
    池田敏雄:富士通原專務,富士通計算機之父
    藤沼彰久:野村綜合研究所社長
    莊山悅彥:日立制作所原社長
    鈴木登夫:日立物流社長
    鈴木正一郎:王子制紙原社長橋本元一:日本放送協(xié)會(NHK)原會長
    河津秋敏:知名游戲開發(fā)者,代表作包括《最終幻想》系列
    大前研一:著名管理學家,經(jīng)濟評論家,世界商業(yè)及企業(yè)策略領導者之一,以其開發(fā)的3C模型而知名
    土井利忠:機器人科學家,世界首個雙足跑的機器人Qrio與Sony機器狗AIBO的開發(fā)者
    廣瀨茂男:仿生機器人領域的權威科學家
    教育·研究
    白川英樹:化學家,2000年諾貝爾化學獎得主
    細野秀雄:材料科學家,日本學士院獎東工大博士白川英樹獲得2000年諾貝爾化學獎
    茅誠司:東京大學原校長,日本學術會議原會長
    川上正光:東京工業(yè)大學原校長,長岡技術科學大學原校長
    田中壽一:物理學家,名城大學創(chuàng)辦者
    清家正:東京都立大學(現(xiàn)首都大學東京)工學部原部長
    古濱莊一:武藏工業(yè)大學(現(xiàn)東京都市大學)原校長
    倉田道夫:京都大學名譽教授·化學研究所所長
    陳建功:中國著名數(shù)學家,先后擔任浙江大學、復旦大學教授。
    陳群:華東師范大學校長
    建筑
    筱原一男:日本著名的建筑實踐家和建筑教育家,日本一批最有影響力的建筑師,例如伊東豐雄,長谷川逸子,都曾師從筱原一男
    劉敦楨:中國現(xiàn)代建筑家,中國科學院院士
    清家清:建筑師,1981年日本建筑學會會長,日本建筑學會獎獲得者,其子為慶應義塾大學校長清家篤
    坂本一成:建筑師,日本建筑學會獎獲得者
    仙田滿:建筑師,2001-2003年日本建筑學會會長,日本建筑學會獎獲得者
    平井圣:建筑師,昭和女子大學原校長,日本建筑學會獎獲得者
    白澤宏規(guī):建筑師,東京造形大學原校長
    藤岡通夫:建筑史學家,日本工業(yè)大學原校長
    演藝
    鈴木康博:歌手
    濱田莊司:日本國寶級陶藝家
    
      以上內容由出國留學網(wǎng)www.liuxue86.com獨家翻譯,版權歸出國留學網(wǎng)所有,未經(jīng)出國留學網(wǎng)授權許可,任何公司任何人不得轉載,違者必追究法律責任!
    日本留學費用準備細則
      日本留學本科申請詳細流程
      日本留學各階段學費最全解析