美國(guó)的德克薩斯大學(xué)奧斯汀分校創(chuàng)立于1883年,是北美頂尖的研究型大學(xué),也是德克薩斯州最頂尖的大學(xué)之一,跟著出國(guó)留學(xué)網(wǎng)一起來了解下美國(guó)德克薩斯大學(xué)奧斯汀分?;靖艣r吧,歡迎閱讀。
一、關(guān)于德克薩斯大學(xué)奧斯汀分校
Like the state it calls home, The University of Texas at Austin is a bold, ambitious leader. Ranked among the biggest and best research universities in the country, UT Austin is home to more than 51,000 students and 3,000 teaching faculty. Together we are working to change the world through groundbreaking research and cutting-edge teaching and learning techniques. Here, tradition and innovation blend seamlessly to provide students with a robust collegiate experience. Amid the backdrop of Austin, Texas, a city recognized for its creative and entrepreneurial spirit, the university provides a place to explore countless opportunities for tomorrow’s artists, scientists, athletes, doctors, entrepreneurs and engineers.Whether you're a scholar of the sciences, humanities or arts, we offer dozens of top-ranked programs with a proven record of success. But you don't have to take our word for it: The university is one of the top 20 public universities according to U.S. News & World Report, with the No. 1 accounting, Latin American history and petroleum engineering graduate programs in the country — plus more than 15 undergraduate programs and more than 40 graduate programs ranked in the top 10 nationally. No matter where you look, it's clear that academic excellence is an essential part of the UT Austin experience.
UT Austin is the flagship school of the University of Texas System, which includes nine academic universities and six health institutions statewide. As a public university, we take seriously our charge to serve the great state of Texas that supports us — and with billions of dollars in added state income every year, not to mention countless other benefits to local and statewide communities, The University of Texas at Austin provides an exceptional return on investment. An enduring symbol of the spirit of Texas, we drive economic and social progress, all while serving our city, state and nation as a leading center of knowledge and creativity.Our large student body, storied history, strong community and richness of tradition have given rise to a proud alumni base of more than 482,000, which includes industry leaders like Michael Dell and Rex Tillerson, entertainers like Oscar-winning actor Matthew McConaughey, Academy Award-winning actress Marcia Gay Harden and film director Robert Rodriguez, journalists like Bill Moyers and Walter Cronkite, and politicians like Sam Rayburn, James Baker and Kay Bailey Hutchison. In addition to providing great networking opportunities, our alumni connectedness ensures that you can find fellow Longhorns no matter where you go after graduation.
德克薩斯大學(xué)奧斯汀分校的國(guó)家就像一個(gè)叫做家鄉(xiāng)的國(guó)家,是一個(gè)勇敢而雄心勃勃的領(lǐng)導(dǎo)者。UT Austin是全國(guó)最大和最好的研究型大學(xué)之一,擁有超過51,000名學(xué)生和3,000名教學(xué)人員。我們一起努力通過開創(chuàng)性的研究和尖端的教學(xué)和技術(shù)來改變世界。在這里,傳統(tǒng)與創(chuàng)新無縫融合,為學(xué)生提供強(qiáng)大的大學(xué)生體驗(yàn)。在德克薩斯州奧斯汀市的背景下,這個(gè)城市以其創(chuàng)造性和創(chuàng)業(yè)精神而聞名,該大學(xué)是一個(gè)為未來的藝術(shù)家、科學(xué)家、運(yùn)動(dòng)員、醫(yī)生、企業(yè)家和工程師提供無數(shù)機(jī)會(huì)的地方。無論您是科學(xué)、人文、藝術(shù)學(xué)者,我們提供數(shù)十個(gè)排名最高的計(jì)劃,并幫助您取得成功。根據(jù)美國(guó)新聞與世界報(bào)道,我們大學(xué)是排名前20位的公立大學(xué)之一, 擁有該國(guó)第一大會(huì)計(jì),拉丁美洲歷史和石油工程研究生課程,加上超過15個(gè)本科課程,40多個(gè)研究生課程排均在全國(guó)前十名。無論你在哪里,很顯然,卓越的學(xué)位是UT Austin經(jīng)驗(yàn)的重要組成部分。
UT奧斯汀是德克薩斯大學(xué)系統(tǒng)的旗艦學(xué)校,其中包括全國(guó)9所學(xué)術(shù)大學(xué)和6所衛(wèi)生機(jī)構(gòu)。作為一所公立大學(xué),我們認(rèn)真對(duì)待我們的服務(wù),為德克薩斯州的大國(guó)提供支持,每年都有數(shù)十億美元的國(guó)家收入,更不用說向當(dāng)?shù)睾腿萆鐓^(qū)提供無數(shù)的其他福利,德克薩斯大學(xué)奧斯汀提供卓越的投資回報(bào)。作為德克薩斯精神的持久象征,我們推動(dòng)經(jīng)濟(jì)和社會(huì)進(jìn)步,同時(shí)為我們的城市,國(guó)家和國(guó)家服務(wù),成為知識(shí)和創(chuàng)造力的領(lǐng)先中心。我們的大學(xué)生,傳統(tǒng)歷史,強(qiáng)大的社區(qū)和豐富的傳統(tǒng)已經(jīng)引起了超過482,000名驕傲的校友基地,其中包括Michael Dell和Rex Tillerson等行業(yè)領(lǐng)袖,奧斯卡獲獎(jiǎng)演員Matthew McConaughey,奧斯卡頒獎(jiǎng)典禮,獲獎(jiǎng)的女演員馬西婭·蓋·哈登和電影導(dǎo)演羅伯特·羅德里格斯,像比爾·莫耶斯和瓦爾特·克朗凱特這樣的記者,以及像Sam Rayburn,James Baker和Kay Bailey Hutchison這樣的政治家。除了提供良好的交流機(jī)會(huì)之外,我們的校友連系確保了無論畢業(yè)后你去哪里,都能找到長(zhǎng)角牛(我們的吉祥物)。
二、歷史沿革
In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state's higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a "university of the first class." Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.
1839年,德克薩斯共和國(guó)議會(huì)下令,將一個(gè)場(chǎng)址放在一邊以滿足國(guó)家的高等教育需求。經(jīng)過幾十年的一系列拖延,國(guó)家立法機(jī)關(guān)在1876年重新啟動(dòng)了這個(gè)項(xiàng)目,呼吁建立“一流大學(xué)”。奧斯汀于1881年被選為新大學(xué)的遺址,并于1882年11月在原來的主樓開始施工。不到一年后,1883年9月15日,德克薩斯大學(xué)奧斯汀分校開設(shè)了一座建筑,八座教授,一位考官和221名學(xué)生,以及改變世界的使命。今天,UT奧斯汀是世界知名的高等教育,研究和公共服務(wù)機(jī)構(gòu),每年為18所頂尖大學(xué)和學(xué)校提供51000多名學(xué)生。
三、教研優(yōu)勢(shì)
The University of Texas at Austin is proud to be one of the world's leading research universities. Our students and faculty are encouraged to explore and discover in the arts, humanities and sciences — and across disciplinary boundaries. UT researchers work to fight and treat diseases, devise solutions to global problems, address critically important social issues and improve the human condition in myriad ways. Our world-class resources include extensive grant and funding opportunities, broad support networks dedicated to turning ideas into products and companies, and state-of-the-art labs, studios and facilities. We're proud to support our inspiring community of researchers — and are dedicated to sharing their work with the world.
德克薩斯大學(xué)奧斯汀分校自豪地成為世界領(lǐng)先的研究型大學(xué)之一。我們鼓勵(lì)學(xué)生和教師探索和發(fā)現(xiàn)藝術(shù)、人文科學(xué)和跨學(xué)科界限。UT研究人員致力于治療疾病,制定解決全球問題的辦法,解決重大的重大社會(huì)問題,以無數(shù)方式改善人身狀況。我們的世界級(jí)資源包括廣泛的資助和資金機(jī)會(huì),廣泛的支持網(wǎng)絡(luò),致力于將想法轉(zhuǎn)化為產(chǎn)品和公司,以及最先進(jìn)的實(shí)驗(yàn)室,工作室和設(shè)施。我們?yōu)橹С治覀児奈枞诵牡难芯咳藛T而感到自豪,并致力于與世界分享他們的工作。
he Nation’s Largest University Undergraduate Research Program
In UT Austin’s College of Natural Sciences, students dive into scientific research right from the start. The pioneering Freshman Research Initiative (FRI) gives first-year students the opportunity to initiate and engage in real-world research experience with faculty and graduate students. Our companion Accelerated Research Initiative offers a parallel experience to upper division students.Our program has become a national model for science education, as students are more likely to stay in college, complete science and math degrees, and graduate better prepared to pursue advanced degrees or jobs in industry. n the Autonomous Robots research stream, freshmen program intelligent machines to interact on their own with visitors to the UT Austin campus.In the DIY Diagnostics research stream, first-year students develop take-home diagnostic tools and apps used to detect disease and measure environmental quality.In the Bugs in Bugs research stream, students study the gut bacteria of pollinators and other insects to better understand the impact of microbial bacteria on the health of crucial species, such as bees. In the Biofuels research stream, undergraduates contribute to a major National Science Foundation-funded project to examine whether plants like switchgrass can be used for energy in place of oil.
國(guó)家最大的本科研究計(jì)劃
在奧斯汀自然科學(xué)院,學(xué)生從一開始就深入科學(xué)研究。開創(chuàng)性的大一新生研究計(jì)劃(FRI)為第一年的學(xué)生提供了與教師和研究生進(jìn)行現(xiàn)實(shí)研究經(jīng)驗(yàn)的機(jī)會(huì)。我們的同伴加速研究計(jì)劃為上學(xué)生提供了平行的體驗(yàn)。我們的課程已經(jīng)成為科學(xué)教育的國(guó)家模式,因?yàn)閷W(xué)生更有可能留在大學(xué),完成科學(xué)和數(shù)學(xué)學(xué)位,畢業(yè)生更好地準(zhǔn)備追求高級(jí)學(xué)位或工業(yè)的工作。學(xué)生在科學(xué),數(shù)學(xué)和技術(shù)方面探索未回答的問題。他們發(fā)現(xiàn)了新知識(shí),并開發(fā)了像這樣的專門程序的創(chuàng)新技術(shù):在自主機(jī)器人研究流中,新生程序智能機(jī)器與UT Austin校園的游客自行互動(dòng)。在DIY診斷研究流程中,第一年的學(xué)生開發(fā)了用于檢測(cè)疾病和測(cè)量環(huán)境質(zhì)量的入門診斷工具和應(yīng)用程序。在Bugs研究流程中,學(xué)生研究傳粉者和其他昆蟲的腸道細(xì)菌,以更好地了解微生物細(xì)菌對(duì)蜜蜂等關(guān)鍵物種的健康的影響。在生物燃料研究流程中,本科生對(duì)國(guó)家科學(xué)基金會(huì)資助的一個(gè)重大項(xiàng)目進(jìn)行了調(diào)查,以檢查是否可以利用柳枝稷類植物替代能源。
Core Facilities
Table of Contents: Cockrell School of Engineering.College of Liberal Arts/College of Natural Sciences.College of Natural Sciences.Jackson School of Geosciences.College of Pharmacy.
The University of Texas at Austin operates core facilities dedicated to providing the latest equipment and knowledge necessary to assist researchers. From routine, though essential, support services to advanced technical and consulting services, these cores facilitate and enhance the important research conducted at the university on a daily basis.Cockrell School of EngineeringFacility Name.
Center for Aeromechanics Research.Flowfield Imaging Lab.Computational Fluid Physics LAB.Microelectronics Research Center.E-Beam Lithography (Microelectronics Research Center).Texas Materials Institute. Electron Microscopy.Polymer Characterization.X-ray Scattering. Surface Analysis.Center for Nano and Molecular Science and Technolog.Scanning Probe Microscopy. Nano Fabrication and Testing.Specialized Central Facilities.
相關(guān)研究設(shè)施簡(jiǎn)介
德克薩斯大學(xué)奧斯汀分校運(yùn)作核心設(shè)施,致力于提供必要的最新設(shè)備和知識(shí),以協(xié)助研究人員。這些核心從日常的,必不可少的支持服務(wù)到先進(jìn)的技術(shù)和咨詢服務(wù),有助于和加強(qiáng)大學(xué)每天進(jìn)行的重要研究。
科科爾工程學(xué)院設(shè)備名稱:航空力學(xué)研究中心、流場(chǎng)成像實(shí)驗(yàn)室、計(jì)算流體物理LAB、微電子研究中心、電子光刻(微電子研究中心)。
德州材料研究所:電子顯微鏡、聚合物表征、X射線散射、表面分析。
納米和分子科學(xué)與技術(shù)中心:掃描探針顯微鏡、 納米制造和測(cè)試、專門的中央設(shè)施。
自然科學(xué)學(xué)院設(shè)備名稱:影像研究中心。
細(xì)胞與分子生物學(xué)研究所:ICMB核心研究設(shè)施、DNA測(cè)序、 蛋白質(zhì)組學(xué)、 小鼠遺傳工程、顯微鏡和成像設(shè)備、大分子晶體、 基因組測(cè)序和分析設(shè)施。
化學(xué)系:電化學(xué)中心、質(zhì)譜儀、 核磁共振、 X射線設(shè)備、費(fèi)雪科學(xué)研究室、玻璃制品店、儀器設(shè)計(jì)和維修。
德克薩斯大學(xué)藥物與診斷研究所:自動(dòng)化和高篩選、基因組測(cè)序和分析設(shè)施、大分子晶體學(xué)設(shè)備。
杰克遜地球科學(xué)院設(shè)備名稱:JSG穩(wěn)定同位素實(shí)驗(yàn)室、經(jīng)濟(jì)地質(zhì)局地質(zhì)核心、電感耦合等離子體質(zhì)譜實(shí)驗(yàn)室、Isoprobe感應(yīng)耦合等離子體質(zhì)譜儀、高壓礦物物理實(shí)驗(yàn)室、地球科學(xué)微束分析設(shè)備、高分辨率X射線計(jì)算機(jī)斷層掃描設(shè)備
藥學(xué)院設(shè)備名稱:蛋白質(zhì)組學(xué)設(shè)施、藥物動(dòng)力學(xué)研究所、Therapeutex臨床前核心實(shí)驗(yàn)室、UTech。
Periodic Table of Ecological Niches Could Aid in Predicting Effects of Climate Change
AUSTIN, Texas — A group of ecologists has started creating a periodic table of ecological niches similar to chemistry’s periodic table. And just as chemists have used their periodic table as a point of reference to understand relationships among elements, the emerging table for ecologists shows relationships over time among animals, plants and their environments — acting as a critical resource for scientists seeking to understand how a warming climate may be spurring changes in species around the globe.The University of Texas at Austin’s Eric Pianka, lead author on a paper published online this week in The American Naturalist, joined four other researchers in producing the first parts of this new ordering framework for niches, the set of defining factors in a place that determine how its plants and animals live, reproduce and interact with one another and their surroundings.“Summarizing major ecological traits in such simple schemes will allow ecologists to predict how species might react to new environmental conditions and the invasive potential of species,” Pianka said. “It will inform us about how niches have evolved in the past and even how they will evolve in the future, all of which has direct bearing on impacts of climate change.”So many factors go into defining ecological niches that they are highly complex, and ecologists have never before succeeded in ordering them in a predictable way. Still, researchers have been intrigued by the idea since 1972, when evolutionary ecologist Robert MacArthur proposed ordering them in a way similar to chemistry’s periodic table. In that table, elements are ordered by a combination of their atomic number (protons), configuration of electrons and certain chemical properties.
The periodic table capitalizes on this type of convergent evolution in lizards around the world and uses multidimensional analyses of more than 50 lizard-niche dimensions. Just three dimensions capture 62 percent of the total variation, an indication that lizard niches are tightly constrainedIn addition to the paper, the researchers have produced a website that allows ecologists to explore its findings. Because people perceive in only three dimensions, visualizing and understanding complex niches in more dimensions is difficult, so to make it easier to visualize their results on the website, Pianka and his colleagues produced rotating 3-dimensional graphics. These allow users to explore constraints and tradeoffs in the evolution of lizard niches and reveal the manner in which species overlap or separate based on habitat, body size, foraging mode, diet, life history, metabolism, defensive tactics and/or time and place of activity.The research was a collaboration among Pianka and Vitt as well as Nicolás Pelegrin of the University of Cordoba, Argentina, and Daniel B. Fitzgerald and Kirk O. Winemiller at Texas A&M University. It was funded by the National Geographic Society and the National Science Foundation, among others.
研究成果簡(jiǎn)介
研究成果一:生態(tài)位的周期表可以預(yù)測(cè)氣候變化的影響
得克薩斯州奧斯汀 - 一群生態(tài)學(xué)家已經(jīng)開始創(chuàng)建類似化學(xué)周期表的生態(tài)位的周期表。正如化學(xué)家將周期表用作了解元素之間的關(guān)系的參考點(diǎn),生態(tài)學(xué)家的新興表格顯示了動(dòng)物,植物及其環(huán)境之間的時(shí)間關(guān)系 - 作為尋求理解溫暖的科學(xué)家的關(guān)鍵資源氣候可能會(huì)刺激全球物種的變化。德克薩斯大學(xué)奧斯汀分校的Eric Pianka是本周在美國(guó)自然學(xué)家網(wǎng)絡(luò)上發(fā)表的一篇論文的主要作者,與其他四位研究人員一起,共同研究了這一新的排序框架的第一部分,這些框架的定位因素在一個(gè)地方確定它的植物和動(dòng)物如何生活,繁殖和相互交流和周圍環(huán)境。Pianka說:“在簡(jiǎn)單的計(jì)劃中總結(jié)主要的生態(tài)特征將允許生態(tài)學(xué)家預(yù)測(cè)物種如何對(duì)新的環(huán)境條件和物種的侵入潛力作出反應(yīng)。“這將告訴我們過去的生態(tài)位如何演變,甚至將來將如何發(fā)展,所有這些都將直接關(guān)系到氣候變化的影響?!?BR> 許多因素決定了高度復(fù)雜的生態(tài)環(huán)境,生態(tài)學(xué)家從未成功地以可預(yù)測(cè)的方式對(duì)其進(jìn)行排序。然而,自從1972年以來,研究人員一直對(duì)這個(gè)想法感興趣,當(dāng)時(shí)進(jìn)化生態(tài)學(xué)家羅伯特·麥克阿瑟(Robert MacArthur)提出以類似于化學(xué)周期表的方式來命令它們。在該表中,元素通過它們的原子序數(shù)(質(zhì)子),電子的配置和某些化學(xué)性質(zhì)的組合來排序。生態(tài)學(xué)的概念將是找到類似的方式來總結(jié)生態(tài)位的許多變量,并幫助預(yù)測(cè)不同大陸,但在類似環(huán)境中遙遠(yuǎn)相關(guān)的物種可能會(huì)有相似的特征演變。三維立體描繪的利基周期表。每個(gè)盒子代表一個(gè)蜥蜴利基(n1-n12)。來自不同地理區(qū)域或不同進(jìn)化譜系(進(jìn)化枝)的物種對(duì)獨(dú)立演化特征,允許它們?cè)诟髯缘臈⒌?生態(tài)收斂)中有效地使用類似的生態(tài)位。指示了兩個(gè)這樣的收斂對(duì)。1)藍(lán)線表示來自北美的融合對(duì)Phrynosoma和來自澳大利亞的Moloch,以及2)綠線表示來自巴西的融合對(duì)Polychrus和來自非洲的Chamaeleo。實(shí)際上,生態(tài)位是多維的。德克薩斯大學(xué)奧斯汀分校今天描述的框架利用了Pianka和他的俄克拉何馬大學(xué)的長(zhǎng)期同事勞里維特收集的生態(tài)數(shù)據(jù),他們共同在四大洲各種各樣的棲息地進(jìn)行了大約50年的實(shí)地工作。他們使用與134種蜥蜴有關(guān)的五個(gè)主要利基尺度(棲息地,飲食,生命史,代謝和防御,每個(gè)具有7-15個(gè)變量)的數(shù)據(jù)。生活在不同大陸的蜥蜴進(jìn)化為填補(bǔ)可識(shí)別的類似的利基并具有相似的特征。模式被重復(fù):澳大利亞沙漠蜥蜴以與非洲和美國(guó)沙漠蜥蜴相同的方式解決問題,即使它們與進(jìn)化密切相關(guān)。他們?yōu)槭澄镲曫B(yǎng),在一天中的某個(gè)時(shí)間保持活躍或不活躍,
周期表利用了世界各地蜥蜴的這種融合演化,并利用了超過50個(gè)蜥蜴生態(tài)位維度的多維分析。只有三個(gè)維度占總變化的62%,這表明蜥蜴生態(tài)位受到嚴(yán)格限制。除了文件之外,研究人員還制作了一個(gè)網(wǎng)站,允許生態(tài)學(xué)家探索其發(fā)現(xiàn)。因?yàn)槿藗冎皇窃谌S層面上看到,在更多維度上可視化和理解復(fù)雜的利基是困難的,所以Pianka和他的同事們?cè)诰W(wǎng)站上更容易地將其結(jié)果可視化,從而產(chǎn)生了旋轉(zhuǎn)的三維圖形。這些允許用戶探索蜥蜴生態(tài)位進(jìn)化過程中的限制和權(quán)衡,并揭示物種根據(jù)棲息地,體型,覓食模式,飲食習(xí)慣,生命史,新陳代謝,防守策略和/或時(shí)間和地點(diǎn)重疊或分離的方式活動(dòng)。這項(xiàng)研究是Pianka和Vitt以及阿根廷科爾多瓦大學(xué)NicolásPelegrin和Texas A&M大學(xué)的Daniel B. Fitzgerald和Kirk O. Winemiller的合作。由國(guó)家地理學(xué)會(huì)和國(guó)家科學(xué)基金會(huì)等資助。
Caspian Sea Evaporating As Temperatures Rise, Study Finds
WASHINGTON — Earth’s largest inland body of water has been slowly evaporating for the past two decades due to rising temperatures associated with climate change, according to a new study led by The University of Texas at Austin.Water levels in the Caspian Sea dropped nearly 7 centimeters (3 inches) per year from 1996 to 2015, or nearly 1.5 meters (5 feet) total, according to the new study. The current Caspian sea level is only about 1 meter (3 feet) above the historic low level reached in the late 1970s. The study was published Aug. 29 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU)
Map of the Caspian Sea and Caspian drainage (enclosed by the red contour line). The Caspian Sea is surrounded by five countries: Russia, Kazakhstan, Turkmenistan, Iran, and Azerbaijan. Four tide gauge stations (1 = Makhachkala, 2 = Fort Shevchenko, 3 = Baku, and 4 = Turkmenbashi), from which the historical Caspian Sea level observation time series is derived, are marked by magenta dots. Photo credit: Jianli Chen/Geophysical Research Letters/AGU.Increased evaporation over the Caspian Sea has been linked to increased surface air temperatures. According to the study, the average yearly surface temperature over the Caspian Sea rose by about 1 degree Celsius (1.8 degrees Fahrenheit) between the two timeframes studied, 1979-1995 and 1996-2015. These rising temperatures are probably a result of climate change, said the study’s authors. Evaporation brought about by warming temperatures appears to be the primary cause of the current drop in sea level, and the decline will probably continue as the planet warms.
The new study began after Wilson and Jianli Chen, the study’s lead author from The University of Texas at Austin Center for Space Research, used the Caspian Sea to calibrate data from the twin satellites of the GRACE mission, launched in 2002. By comparing measurements of the Caspian Sea from GRACE data and Earth-based measurements, the researchers helped improve the satellite data’s accuracy. In doing so, they noticed the Caspian Sea’s water levels were undergoing significant changes.“Once we got through with [the calibration], Jianli Chen said, ‘Well, you know, this is very curious. Why is this changing so much?’ ” Wilson said.Byron D. Tapley and Tatyana Pekker of the Center for Space Research worked on the study. The research team also included scientists from the P.P. Shirshov Institute of Oceanology, Moscow; Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Toulouse, France; and the Department of the Caspian Sea Level Problem, Institute of Geography, Baku, Azerbaijan.The researchers looked at the three primary influences on Caspian Sea water levels: water from rivers that drain into the sea, precipitation and evaporation.
They compiled information about water level changes observed by satellites, records of precipitation and drainage into the sea from rivers, and estimations of precipitation and evaporation from climate models. The researchers then assembled a record of how much each of these factors contributed to observed changes in the Caspian sea level from 1979 to 2015.Evaporation contributed to about half of that decline; the combined effects of precipitation and river discharge changes contributed to the other half. According to the study, the observed evaporation rates are associated with increased surface air temperature and other climate factors such as surface humidity and wind.The new study provides the first convincing evidence that increased evaporation over the Caspian Sea is a more important driving force of Caspian sea level change than river discharge or precipitation, said Anny Cazenave, a CNES space geodesist at the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales at Observatoire Midi-Pyrénées in Toulouse, France, who was not involved in the study.Evaporation will have the biggest impact on the northern portion of the Caspian Sea because much of the water in that area is less than 5 meters (16 feet) deep, Wilson said. If the current trend of a 7-centimeter decrease per year continues at a steady rate, it would take about 75 years for the northern part of the sea to disappear, according to the new study.
Wilson said the next step in this research is to project future changes in Caspian sea level using climate models. Although this study identified the trends in sea level and their causes, the researchers did not project specific estimates of how these levels might change in the future.
研究成果二:研究發(fā)現(xiàn),隨著溫度升高里海在蒸發(fā)
根據(jù)新研究報(bào)告,里海的水位從1996年至2015年每年下降近7厘米,或近1.5米(5英尺)。目前的里海海拔只有1米(3英尺),高于20世紀(jì)70年代末達(dá)到的歷史低點(diǎn)。該研究于8月29日在美國(guó)地球物理聯(lián)盟(AGU)刊登的地球物理研究雜志發(fā)表,里海和里海排水地圖(由紅色輪廓線包圍)。里海由五個(gè)國(guó)家包圍:俄羅斯,哈薩克斯坦,土庫曼斯坦,伊朗和阿塞拜疆。四個(gè)潮汐測(cè)量站(1 =馬哈奇卡拉,2 =舍甫琴科堡,3 =巴庫,4 =土庫曼斯坦),其歷史里海水位觀測(cè)時(shí)間序列來源于其中,以洋紅色點(diǎn)標(biāo)記。里海的蒸發(fā)量增加與地表氣溫升高有關(guān)。根據(jù)研究,1979 - 1995年和1996 - 2015年兩個(gè)研究時(shí)間段之間,里海每年的平均地表溫度上升了約1攝氏度(1.8華氏度)。研究的作者說,氣溫上升可能是氣候變化的結(jié)果。溫暖氣候帶來的蒸發(fā)似乎是目前海平面下降的主要原因,隨著地球暖化,下降可能會(huì)持續(xù)下去。
UT地球科學(xué)杰克遜學(xué)院的地球物理學(xué)家克拉克?威爾遜(Clark Wilson)說,“從地球科學(xué)家的角度來看,這是一個(gè)有趣的地方,因?yàn)榭梢詾樗械乃拷ㄔ煲环N預(yù)算?!? ?!罢嬲目刂?,導(dǎo)致它上下長(zhǎng)時(shí)間真的很可能蒸發(fā),這幾乎完全由溫度控制。位于歐洲和亞洲之間的里海是約37萬平方公里(143,244平方英里)的蒙大拿州的大小。過去幾百年來,水位發(fā)生了重大變化,但以前的研究無法確定變化的確切原因。里海由五個(gè)國(guó)家組成,擁有豐富的自然資源和多樣的野生動(dòng)物。海洋還含有石油和天然氣儲(chǔ)備,是周邊國(guó)家漁業(yè)的重要資源。新研究開始于威爾遜和陳建立,德克薩斯大學(xué)奧斯汀空間研究中心的主要作者使用里海對(duì)2002年發(fā)射的GRACE任務(wù)的雙衛(wèi)星數(shù)據(jù)進(jìn)行校準(zhǔn)。通過比較測(cè)量研究人員從GRACE數(shù)據(jù)和基于地球的測(cè)量得知里海,研究人員幫助改善了衛(wèi)星數(shù)據(jù)的準(zhǔn)確性。他們注意到里海的水位正在發(fā)生重大變化。
“一旦我們通過[校準(zhǔn)],陳建立說:”嗯,你知道,這很好奇。為什么這么多變化?“威爾遜說。空間研究中心的Byron D. Tapley和Tatyana Pekker進(jìn)行了研究。研究小組還包括莫斯科PP Shirshov海洋研究所的科學(xué)家; 法國(guó)圖盧茲實(shí)驗(yàn)室空間學(xué)研究所 和阿塞拜疆巴庫地理研究所里海問題部。研究人員研究了里海海水三個(gè)主要影響因素:流入海洋的河流,降水和蒸發(fā)。匯編了衛(wèi)星觀測(cè)的水位變化信息,河流降水和排水記錄,以及氣候模型降水和蒸發(fā)量的估算。研究人員隨后匯集了這些因素對(duì)1979年至2015年里海觀測(cè)變化的貢獻(xiàn)。他們發(fā)現(xiàn)1979年至1995年,里海每年增加約12厘米(5英寸)。但是在1996年,到2015年,海平面每年平均下降近7厘米。從1996年開始根據(jù)研究記錄,到2015年,里海的水平下降了近1.4米(4.5英尺)。蒸發(fā)量大約減少了一半; 降水和河流排放變化的綜合影響貢獻(xiàn)了另一半。根據(jù)研究,觀察到的蒸發(fā)速率與表面空氣溫度和其他氣候因素(如表面濕度和風(fēng))有關(guān)。新研究提供了第一個(gè)令人信服的證據(jù),即里海灣的蒸發(fā)量是里海海平面變化比河流排放或降水更重要的推動(dòng)力,“國(guó)家空間研究中心空間測(cè)地學(xué)家空間測(cè)繪學(xué)家安妮·卡澤諾夫說,法國(guó)圖盧茲觀景點(diǎn)比利牛斯省的空間, 沒有參與研究。威爾遜說,蒸發(fā)將對(duì)里海北部產(chǎn)生最大的影響,因?yàn)樵摰貐^(qū)的大部分水深不到5米(16英尺)深。如果目前每年下降7厘米的趨勢(shì)持續(xù)穩(wěn)定,則北部海域?qū)⑿枰?5年時(shí)間才能消失。威爾遜說,這項(xiàng)研究的下一步是使用氣候模式預(yù)測(cè)未來的里海海平面變化。雖然這項(xiàng)研究確定了海平面及其原因的趨勢(shì),但研究人員沒有對(duì)未來這些水平如何變化的具體估計(jì)進(jìn)行預(yù)測(cè)。
Stress Heightens Fear of Threats from the Past
AUSTIN, Texas — Recognizing threats is an essential function of the human mind — think “fight or flight” — one that is aided by past negative experiences. But when older memories are coupled with stress, individuals are likely to perceive danger in harmless circumstances, according to a paper published today in the Proceedings of the National Academy of Sciences.The findings by researchers from Dell Medical School at The University of Texas at Austin, New York University and McGill University shed light on fear generalization, a core component of anxiety and stress-related disorders.“The human mind uses cues to danger learned over time for self-defense, but certain circumstances can cause people to misidentify those cues,” said Joseph Dunsmoor, lead study author and assistant professor of psychiatry at Dell Med. “Our research reveals that stress levels and the amount of time since an adverse event promote this type of overgeneralization.”Dunsmoor conducted the research as a postdoctoral fellow in the lab of Elizabeth Phelps, professor of psychology and neural science at New York University (NYU). Ross Otto, assistant professor of psychology at McGill University, also worked on the study as a postdoc at NYU.Post-traumatic stress disorder (PTSD) — which affects about 8 million adults every year — is one disorder characterized by the inability to discriminate threat from safety. Fear is triggered by harmless stimuli such as a car backfiring because they serve as reminders of trauma. By understanding how the mind identifies and responds to such triggers, scientists can develop better treatments for mental illnesses and disorders.“These findings provide important laboratory data that helps explain why PTSD symptoms are often exacerbated during times of stress, and how repeated stress and trauma in the battlefield may lead to increased risk for PTSD,” said Suzannah Creech, an associate professor of psychiatry at Dell Medical School who has spent her career working with veterans recovering from trauma. Creech was not involved in the study.“The research may help improve PTSD treatment outcomes for veterans in part by helping us understand how we may be able to prevent it in the first place. Central Texas has one of the highest concentrations of military veterans in the country, many of whom returned from the wars in Iraq and Afghanistan with the disorder,” she said.
In the study, the researchers tested the effects of stress and time on a person’s ability to correctly identify a cue associated with a negative outcome. Study participants heard two tones, with one followed by a shock, set by the participant at the level of “highly annoying but not painful.” Then, researchers played tones in the range of the two frequencies and gauged participants’ expectations of shock by self-report and data on skin responses that indicate emotional arousal. When testing the range of tones, half of the participants were methodically primed to have higher cortisol levels through an arm ice bath, and half received a control arm bath with room temperature water.Researchers performed the test on two groups. One group took the shock expectancy test immediately after the initial shock. The second group took the test 24 hours after the initial shock. Both groups underwent the stress/control priming activity just before the shock expectancy test.When tested immediately after the initial shock, stress level did not significantly affect the participants’ fear of shock and accuracy in identifying the associated tone. However, when tested 24 hours later, stress level did heighten participants’ fear response and negatively impacted their ability to identify the tone associated with shock. The group tested 24 hours later without raised cortisol levels only had slightly heightened fear responses and retained the ability to identify the associated tone.“The effects of stress and memory on how humans generalize fear is largely unexamined,” Dunsmoor said. “This study provides new data that will help us care for people with disordered patterns of fear and worry.”
研究成果三:壓力加重了對(duì)過去威脅的恐懼
奧斯汀,德克薩斯州 - 認(rèn)識(shí)到威脅是人類思想的重要功能 - 認(rèn)為“打架或飛行” - 由過去的負(fù)面經(jīng)驗(yàn)所輔助。根據(jù)今天在“ 美國(guó)國(guó)家科學(xué)院院報(bào)”上發(fā)表的一篇文章,當(dāng)年紀(jì)較大的記憶與壓力相結(jié)合時(shí),個(gè)人很可能會(huì)在無害環(huán)境中感受危險(xiǎn)。德克薩斯大學(xué)德克薩斯大學(xué)奧斯汀分校,紐約大學(xué)和麥吉爾大學(xué)的研究人員的研究結(jié)果揭示了恐懼泛化,焦慮和壓力相關(guān)疾病的核心組成部分。戴爾醫(yī)學(xué)院的首席研究作者兼精神病學(xué)助理教授約瑟夫·杜斯穆爾(Joseph Dunsmoor)說:“人類的思想使用線索來隨著時(shí)間的推移自我維護(hù),但某些情況可能會(huì)導(dǎo)致人們誤認(rèn)這些線索。” “我們的研究表明,壓力水平和不利事件發(fā)生的時(shí)間量會(huì)促使這種過度的普遍化。Dunsmoor 在紐約大學(xué)(NYU)的心理學(xué)和神經(jīng)科學(xué)教授Elizabeth Phelps的實(shí)驗(yàn)室擔(dān)任博士后研究員。麥吉爾大學(xué)心理學(xué)助理教授羅斯·奧托(Ross Otto)也在紐約大學(xué)做博士后研究。創(chuàng)傷后應(yīng)激障礙(PTSD) - 每年影響約800萬名成年人 - 是以無法區(qū)分威脅與安全為特征的一種疾病??謶质怯蔁o害刺激引起的,如汽車反火,因?yàn)樗鼈冏鳛閯?chuàng)傷的提醒。通過了解心靈如何識(shí)別和響應(yīng)這些觸發(fā)因素,科學(xué)家可以開發(fā)更好的治療精神疾病和疾病?!斑@些研究結(jié)果提供了重要的實(shí)驗(yàn)室數(shù)據(jù),有助于解釋為什么PTSD癥狀在壓力發(fā)作期間經(jīng)常加劇,以及戰(zhàn)場(chǎng)中多么重復(fù)的壓力和創(chuàng)傷可能導(dǎo)致PTSD風(fēng)險(xiǎn)增加,” 戴爾精神病學(xué)副教授Suzannah Creech說,醫(yī)學(xué)院已經(jīng)花了她的工作與退伍軍人恢復(fù)創(chuàng)傷。Creech沒有參與研究。
“這項(xiàng)研究可能有助于改善退伍軍人的PTSD治療結(jié)果,部分原因是幫助我們了解我們?nèi)绾文軌蚴紫茸柚雇宋檐娙说闹委?。中德克薩斯州是該國(guó)最高級(jí)別的退伍軍人之一,其中許多人在伊拉克和阿富汗的戰(zhàn)爭(zhēng)中從混亂中恢復(fù)過來,“她說。在研究中,研究人員測(cè)試了壓力和時(shí)間對(duì)一個(gè)人正確識(shí)別與否定結(jié)果相關(guān)聯(lián)的能力的能力的影響。研究參與者聽到兩個(gè)音調(diào),一個(gè)是震驚,由參與者設(shè)置在“非常討厭但不痛苦”的水平。然后,研究人員在兩個(gè)頻率的范圍內(nèi)播放音調(diào),并測(cè)量參與者對(duì)自己的震驚期望 - 表示情緒喚醒的皮膚反應(yīng)的報(bào)告和數(shù)據(jù)。當(dāng)測(cè)試音調(diào)范圍時(shí),一半的參與者通過手臂冰浴有條理地注射皮膚醇水平較高,一半用室溫水接受對(duì)照手臂浴。研究人員對(duì)兩組進(jìn)行了測(cè)試。一組在初次沖擊后立即進(jìn)行了休克預(yù)期測(cè)試。第二組在初次休克24小時(shí)后進(jìn)行測(cè)試。兩組在沖擊預(yù)期試驗(yàn)之前進(jìn)行了壓力/控制啟動(dòng)活動(dòng)。初次沖擊后立即進(jìn)行測(cè)試時(shí),應(yīng)激水平并不會(huì)明顯影響參與者對(duì)辨認(rèn)相關(guān)音調(diào)的沖擊和準(zhǔn)確性的恐懼。然而,24小時(shí)后進(jìn)行測(cè)試時(shí),壓力水平提高了參與者的恐懼反應(yīng),并對(duì)其識(shí)別與休克相關(guān)的語氣的能力產(chǎn)生了負(fù)面影響。該組在24小時(shí)后測(cè)試,沒有升高的皮質(zhì)醇水平只有略高的恐懼反應(yīng),并保留識(shí)別相關(guān)色調(diào)的能力。鄧斯穆爾說:“壓力和記憶對(duì)人類如何概括恐懼的影響在很大程度上是未經(jīng)審查的。” “這項(xiàng)研究提供了新的數(shù)據(jù),幫助我們照顧無序的恐懼和憂慮的人?!?BR> 四、校園環(huán)境和安全保障
1.住宿和飲食
We believe it's important for our community to have access to extraordinary living, learning and working experiences beyond the classroom. By providing clean, attractive, safe facilities for campus residents and diverse, high-quality food options — along with partnerships and programs dedicated to improving quality of life for our students, faculty and staff — we work hard to create a positive, comfortable environment on the Forty Acres.Living on campus is about more than sharing a room. It's about building community. Our 14 campus residence halls support learning and growth outside the classroom with individual support, special programs and unique learning environments.From the buffets at J2 or Kinsolving Dining to the wide range of popular restaurants across campus, Longhorns never have to look far for a good place to eat.
我們相信,我們的社區(qū)必須能夠在課堂之外獲得非凡的生活,學(xué)習(xí)和工作經(jīng)驗(yàn)。通過為校園居民提供干凈,有吸引力,安全的設(shè)施和多樣化的高質(zhì)量食物選擇。努力作為一個(gè)提高學(xué)生,教職員工的生活質(zhì)量的合作伙伴,我們將在四十英畝的校園里努力營(yíng)造一個(gè)積極、舒適的生活環(huán)境.。不僅僅是分享一個(gè)房間。這是關(guān)于建立社區(qū)。我們的14個(gè)校園宿舍通過個(gè)人支持,特殊課程和獨(dú)特的學(xué)習(xí)環(huán)境,支持課堂外的學(xué)習(xí)和成長(zhǎng)。從J2或Kinsolving Dining的自助餐到校園范圍廣泛的受歡迎的餐館,Longhorns從來不必去尋找一個(gè)好地方,無論走到哪里你都可以享受生活。
2.校園設(shè)施
Spend just a minute on our campus and you'll quickly see how The University of Texas at Austin is an immense and beautiful world all its own. And with our dozens of museums, libraries, centers, institutes and special venues spread across the campus and the city, each with its own unique exhibits and programming, you'll never be bored. Designed to enhance the experience of not just current students, faculty, and staff but also community members and visitors from around the world, our many campus destinations will educate, delight and amaze.
Blanton Museum of Art:One of the foremost university art museums in the country, with the largest and most comprehensive collection of art in Central Texas.
Cactus Cafe:An intimate live music performance venue showcasing top local, regional, national and international acoustic music acts
Darrell K Royal-Texas Memorial Stadium:One of the largest stadiums in the nation — and home to our beloved Longhorns football team.
Dolph Briscoe Center for American History:A leading history research center featuring rich collections on Texas and U.S. history.
Frank Erwin Center:A multipurpose entertainment and sports arena providing benefits to the entire Central Texas community, and home to the men's and women's basketball teams.
Gregory Gym Aquatic Complex:An impressive aquatic complex with indoor and outdoor lap and leisure pools, a spa, deck space, and more.
在校園里度過的每一分鐘,你都會(huì)很快看到德克薩斯大學(xué)奧斯汀分校是一個(gè)非常美麗的世界。隨著我們數(shù)十個(gè)博物館、圖書館、中心、研究所和特殊場(chǎng)所遍布校園和城市,每個(gè)都有自己獨(dú)特的展覽和節(jié)目,你永遠(yuǎn)不會(huì)感到無聊。旨在增強(qiáng)不僅來自當(dāng)前學(xué)生,教職員工和工作人員以及來自世界各地的社區(qū)成員和訪客的經(jīng)驗(yàn),我們的許多校園目的地將教育,欣賞和驚奇。
布蘭坦藝術(shù)博物館:國(guó)家最重要的大學(xué)藝術(shù)博物館之一,擁有中德克薩斯州最大和最全面的藝術(shù)收藏。
仙人掌咖啡廳:一個(gè)距離很近的的現(xiàn)場(chǎng)音樂表演場(chǎng)地,展示當(dāng)?shù)?、地區(qū)、國(guó)家和國(guó)際頂級(jí)的音樂表演。
達(dá)拉爾K皇家德克薩斯紀(jì)念體育場(chǎng):全國(guó)最大的體育場(chǎng)之一 - 我們心愛的長(zhǎng)角牛足球隊(duì)的家園。
Dolph Briscoe美國(guó)歷史中心:一個(gè)領(lǐng)先的歷史研究中心,擁有德克薩斯和美國(guó)歷史的豐富收藏。
弗蘭克·歐文中心:一個(gè)多用途娛樂和體育競(jìng)技場(chǎng)為整個(gè)中德克薩斯州社區(qū)提供福利,并為男子和女子籃球隊(duì)提供福利
格雷戈里健身水上綜合設(shè)施:一個(gè)令人印象深刻的水上綜合設(shè)施,室內(nèi)和室外的膝蓋和休閑游泳池,水療中心,甲板空間等等。
哈里·蘭索姆中心:國(guó)際知名的人文科學(xué)研究圖書館和博物館,為作家和藝術(shù)家的創(chuàng)作過程提供獨(dú)特的見解。
學(xué)生活動(dòng)中心:最先進(jìn)的,獲獎(jiǎng)和環(huán)保的學(xué)生聚會(huì)空間。
五、知名校友(源自網(wǎng)絡(luò),因篇幅原因無法逐一呈現(xiàn),排名不分先后)
馬克斯韋爾 庫切(2003年諾貝爾文學(xué)獎(jiǎng)得主)
E. Donnall Thomas (1990年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)得主)
赫爾曼·約瑟夫·馬勒 (1946年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)得主)
George Davis Snell(1980年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)得主)
伊利亞·普里高津 (1977年諾貝爾化學(xué)獎(jiǎng)得主)
Gunnar Myrdal (1974年諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)得主)
Alva Myrdal (1982諾貝爾和平獎(jiǎng)得主)
溫伯格 (1979年諾貝爾物理學(xué)獎(jiǎng)得主)
Norman Hackerman (國(guó)家科學(xué)獎(jiǎng)?wù)乱约叭f尼瓦爾布希獎(jiǎng)獲得者- 化學(xué)與生化)
Steven Weinberg (國(guó)家科學(xué)獎(jiǎng)?wù)芦@得者 - 物理)
約翰·阿奇博爾德·惠勒 (國(guó)家科學(xué)獎(jiǎng)?wù)芦@得者 - 物理)
E. Allen Emerson (圖靈獎(jiǎng)獲得者 - 計(jì)算機(jī)科學(xué))
Allen J. Bard (沃爾夫獎(jiǎng)于韋爾奇獎(jiǎng)獲得者 - 化學(xué)于生化)
Karl August Folkers (韋爾奇獎(jiǎng)獲得者 - 化學(xué)于生化)
Adam Heller (國(guó)家技術(shù)于創(chuàng)新獎(jiǎng)?wù)芦@得者 - 化學(xué)工程)
Grant Willson (國(guó)家技術(shù)于創(chuàng)新獎(jiǎng)?wù)芦@得者 - 化學(xué)工程)
George Kozmetsky (國(guó)家技術(shù)于創(chuàng)新獎(jiǎng)?wù)芦@得者)
Eric V. Anslyn (卡米爾德萊弗斯教師學(xué)術(shù)獎(jiǎng) - 化學(xué)與生化)
Michael J. Krische (卡米爾德萊弗斯教師學(xué)術(shù)獎(jiǎng) - 化學(xué))
Hal Alper (卡米爾德萊弗斯教師學(xué)術(shù)獎(jiǎng) - 化學(xué)工程)
John B. Goodenough (恩里科費(fèi)米獎(jiǎng) - 機(jī)械工程)
William Jefferys (美國(guó)宇航局獎(jiǎng) - 天文學(xué))
米迦勒戴爾(戴爾電腦公司的創(chuàng)始人/CEO)
加里·凱利(美國(guó)西南航空公司的CEO)
戴維格芬(美國(guó)夢(mèng)工廠動(dòng)畫的共同創(chuàng)辦人)
John R. Hubbard(南加利福尼亞大學(xué)校長(zhǎng))
Gene Nichol(威廉瑪麗學(xué)院校長(zhǎng))
James Moeser(北卡羅來納大學(xué)教堂山分校校長(zhǎng))
Leon A. Green(西北大學(xué)法學(xué)院系主任)
F. Murray Abraham (第57屆奧斯卡最佳男主角)
Marcia Gay Harden (第73屆奧斯卡最佳最佳女配角)
Renée Zellweger(第75屆奧斯卡最佳女配角)
伯德·詹森(前美國(guó)總統(tǒng)第一夫人)
蘿拉·威爾斯·布希(前美國(guó)總統(tǒng)第一夫人)
羅杰·克萊門斯(MLB投手)
Ian Crocker(混合泳世界紀(jì)錄保持者)
Rick Carey (仰泳/混合泳前世界紀(jì)錄保持者)
Aaron Peirsol(仰泳/混合泳世界記錄保持者)
Brendan Hansen(蛙泳前世界記錄保持者/混合泳世界紀(jì)錄保持者)
以上內(nèi)容由出國(guó)留學(xué)網(wǎng)www.liuxue86.com獨(dú)家翻譯,版權(quán)歸出國(guó)留學(xué)網(wǎng)所有,未經(jīng)出國(guó)留學(xué)網(wǎng)授權(quán)許可,任何公司任何人不得轉(zhuǎn)載,違者必追究法律責(zé)任!