許多同學想了解高中物理的知識點,那么物理必修三有哪些知識點呢?快來了解一下吧。下面是由出國留學網(wǎng)小編為大家整理的“高中物理必修三知識點歸納”,僅供參考,歡迎大家閱讀。
高中物理必修三知識點歸納
科學的轉(zhuǎn)折光的粒子性
1.光電效應(表明光子具有能量)
(1)光的電磁說使光的波動理論發(fā)展到相當完美的地步,但是它并不能解釋光電效應的現(xiàn)象。在光(包括不可見光)的照射下從物體發(fā)射出電子的現(xiàn)象叫做光電效應,發(fā)射出來的電子叫光電子。(實驗圖在課本)
(2)光電效應的研究結(jié)果:
新教材:①存在飽和電流,這表明入射光越強,單位時間內(nèi)發(fā)射的光電子數(shù)越多;②存在遏止電壓:;③截止頻率:光電子的能量與入射光的頻率有關(guān),而與入射光的強弱無關(guān),當入射光的頻率低于截止頻率時不能發(fā)生光電效應;④效應具有瞬時性:光電子的發(fā)射幾乎是瞬時的,一般不超過10-9s。
老教材:①任何一種金屬,都有一個極限頻率,入射光的頻率必須大于這個極限頻率,才能產(chǎn)生光電效應;低于這個頻率的光不能產(chǎn)生光電效應;②光電子的初動能與入射光的強度無關(guān),只隨著入射光頻率的增大而增大;③入射光照到金屬上時,光電子的發(fā)射幾乎是瞬時的,一般不超過10-9s;④當入射光的頻率大于極限頻率時,光電流的強度與入射光的強度成正比。
(3)光電管的玻璃泡的內(nèi)半壁涂有堿金屬作為陰極K(與電源負極相連),是因為堿金屬有較小的逸出功。
2.光子說:光本身就是由一個個不可分割的能量子組成的,頻率為ν的光的能量子為hν。這些能量子被成為光子。
3.光電效應方程:
EK=h-WO
(掌握Ek/Uc—ν圖象的物理意義)同時,h截止=WO(Ek是光電子的初動能;W是逸出功,即從金屬表面直接飛出的光電子克服正電荷引力所做的功。)
靜電場
1.電荷電荷守恒定律點電荷
自然界中只存在正、負兩中電荷,電荷在它的同圍空間形成電場,電荷間的相互作用力就是通過電場發(fā)生的。電荷的多少叫電量?;倦姾蒭=1.6_0^(-19)C。帶電體電荷量等于元電荷的整數(shù)倍(Q=ne)
使物體帶電也叫起電。使物體帶電的方法有三種:①摩擦起電②接觸帶電③感應起電。
電荷既不能創(chuàng)造,也不能被消滅,它只能從一個物體轉(zhuǎn)移到另一個物體,或從的體的這一部分轉(zhuǎn)移到另一個部分,這叫做電荷守恒定律。
帶電體的形狀、大小及電荷分布狀況對它們之間相互作用力的影響可以忽略不計時,這樣的帶電體就可以看做帶電的點,叫做點電荷。
2.庫侖定律
公式F=KQ1Q2/r^2(真空中靜止的兩個點電荷)
在真空中兩個點電荷間的作用力跟它們的電量的乘積成正比,跟它們間的距離的平方成反比,作用力的方向在它們的連線上,其中比例常數(shù)K叫靜電力常量,K=9.0_0^9Nm^2/C^2。(F:點電荷間的作用力(N),Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引)
庫侖定律的適用條件是(1)真空,(2)點電荷。點電荷是物理中的理想模型。當帶電體間的距離遠遠大于帶電體的線度時,可以使用庫侖定律,否則不能使用。
3.靜電場電場線
為了直觀形象地描述電場中各點的強弱及方向,在電場中畫出一系列曲線,曲線上各點的切線方向表示該點的場強方向,曲線的疏密表示電場的弱度。
電場線的特點:
(1)始于正電荷(或無窮遠),終止負電荷(或無窮遠);
(2)任意兩條電場線都不相交。
電場線只能描述電場的方向及定性地描述電場的強弱,并不是帶電粒子在電場中的運動軌跡。帶電粒子的運動軌跡是由帶電粒子受到的合外力情況和初速度共同決定。
拓展閱讀:高中物理學習復習方法
估算法
有些物理問題本身的結(jié)果,并不一定需要有一個很準確的答案,但是,往往需要我們對事物有一個預測的估計值。像盧瑟福利用經(jīng)典的粒子的散射實驗根據(jù)功能原理估算出原子核的半徑。采用“估算”的方法能忽略次要因素,抓住問題的主要本質(zhì),充分應用物理知識進行快速數(shù)量級的計算。
微元法
在研究某些物理問題時,需將其分解為眾多微小的“元過程”,而且每個“元過程”所遵循的規(guī)律是相同的`,這樣,我們只需分析這些“元過程”,然后再將“元過程”進行必要的數(shù)學方法或物理思想處理,進而使問題求解。像課本中提到利用計算摩擦變力做功、導出電流強度的微觀表達式等都屬于利用微元思想的應用。
整體法
整體是以物體系統(tǒng)為研究對象,從整體或全過程去把握物理現(xiàn)象的本質(zhì)和規(guī)律,是一種把具有相互聯(lián)系、相互依賴、相互制約、相互作用的多個物體,多個狀態(tài),或者多個物理變化過程組合作為一個融洽加以研究的思維形式。
圖象法
應用圖象描述規(guī)律、解決問題是物理學中重要的手段之一。因圖象中包含豐富的語言、解決問題時簡明快捷等特點,在高考中得到充分體現(xiàn),且比重不斷加大。涉及內(nèi)容貫穿整個物理學。描述物理規(guī)律的最常用方法有公式法和圖象法,所以在解決此類問題時要善于將公式與圖象合一相長。
對稱法
利用對稱法分析解決物理問題,可以避免復雜的數(shù)學演算和推導,直接抓住問題的實質(zhì),出奇制勝,快速簡便地求解問題。像課本中伽利略認為圓周運動最美(對稱)為牛頓得到萬有引力定律奠定基礎。