三角函數(shù)是高中數(shù)學(xué)的一部分內(nèi)容,那么關(guān)于三角函數(shù)的變換公式大家還記得嗎?如果不記得了,請往下看。下面是由出國留學(xué)網(wǎng)小編為大家整理的“三角函數(shù)變換公式大全”,僅供參考,歡迎大家閱讀。
三角函數(shù)變換公式大全
三角函數(shù)的轉(zhuǎn)化公式
sin(-α)=-sinα
cos(-α)=cosα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
tanα=sinα/cosα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
三角和差變換乘積公式
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三角乘積變換和差公式
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
三角函數(shù)的關(guān)系公式
三角函數(shù)的倒數(shù)關(guān)系公式
tanαcotα=1
sinαcscα=1
cosαsecα=1
三角函數(shù)的商數(shù)關(guān)系公式
tanα=sinα/cosα
cotα=cosα/sinα
三角函數(shù)的平方關(guān)系公式
(sina)^2+(cosa)^2=1
1+(tana)^2=(seca)^2
1+(cota)^2=(csca)^2
拓展閱讀:三角函數(shù)6個誘導(dǎo)公式的推導(dǎo)
公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)=sinα k∈z cos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈z cot(2kπ+α)=cotα k∈z
公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)=-sinα k∈z cos(π+α)=-cosα k∈z tan(π+α)=tanα k∈z cot(π+α)=cotα k∈z
公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
公式六: π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα