一元二次方程的解法教學(xué)反思800字精選

字號:


    出國留學(xué)網(wǎng)精選專題推薦:“一元二次方程解法教學(xué)反思”。
    一元二次方程的解法教學(xué)反思 篇1
    一、一元二次方程的解法之間的比較:
    1.直接開平方法應(yīng)用簡單,但受形式限制;開平方的時候要注意正負(fù)。
    2.配方法較麻煩,用公式法更方便,故一般不采用。但配方法是一種較重要的數(shù)學(xué)方法,公式法就是由它推導(dǎo)出來的,而且在后面的函數(shù)中還要用到配方法,所以要掌握好。它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時還將經(jīng)常用到。配方的時候,要注意二次項系數(shù)應(yīng)先化為1,再把常數(shù)項移到式子的右邊,然后把方程兩邊都加上一次項系數(shù)一半的平方;左邊就變成了一個平方的形式,再運用直接開平方的方法求出方程的解。
    3.公式法是一元二次方程的基本解法,對所有的一元二次方程都適用;用公式法的時候要先把方程變?yōu)橐话阈问?,在求出方程的判別式,最后用公式求出方程的解。
    4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三項式都能很方便地進(jìn)行因式分解。應(yīng)用時要注意,等號的右邊一定要為0,然后再把方程的左邊進(jìn)行因式分解,將方程左邊分解成兩個一次因式的乘積的形式,令每個因式分別為零,得到兩個一元一次方程,解每個方程就求出了原方程的解。
    二、一元二次方程的解法選用:
    1.先觀察能否用直接開平方法,能用就優(yōu)先采用;
    2.再觀察能否用因式分解法;
    3.用公式法。
    注意:一般不采用配方法。
    一元二次方程的解法教學(xué)反思 篇2
    一元二次方程是整個初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無理方程及有關(guān)應(yīng)用性問題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基礎(chǔ)上,因此我采取讓學(xué)生帶著問題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號右邊必須為零,左邊必須為兩個一次因式的乘積(不能是加減運算),利用零的特性,將求一元二次方程的解,通過因式分解法,轉(zhuǎn)化為求兩個一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來的問題,在全班及時糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。
    老師提示:
    1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;
    2.關(guān)鍵是熟練掌握因式分解的知識;
    3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零.
    一元二次方程的解法教學(xué)反思 篇3
    本節(jié)內(nèi)容是初中數(shù)學(xué)九年級上冊教材第二十三章第二節(jié)。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程的直接開平方法和完全平方公式,這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。配方法雖然不是解一元二次方程的主要方法,但是通過配方法可以推導(dǎo)出公式法的求根公式,并且是今后運用配方的思想解決一些數(shù)學(xué)問題的基礎(chǔ)。所以,本節(jié)內(nèi)容在教材中起到承前啟后的作用,在整個初中的數(shù)學(xué)學(xué)習(xí)都起到至關(guān)重要的作用。
    配方法是初中數(shù)學(xué)教學(xué)中的重要內(nèi)容,也是數(shù)學(xué)學(xué)習(xí)的主要思想方法。本節(jié)課我在教材的處理上,既注意到新教材、新理念的實施,又考慮到傳統(tǒng)教學(xué)優(yōu)勢的傳承,使自主探究、合作交流的學(xué)習(xí)方式與數(shù)學(xué)基礎(chǔ)知識、基本技能的牢固掌握、靈活應(yīng)用有效結(jié)合。新的課程標(biāo)準(zhǔn)突出了數(shù)學(xué)知識的實際應(yīng)用,所以在教學(xué)實際中,我力求將解方程的基本技能訓(xùn)練與實際問題的解決融為一體,在解決實際問題的過程中提高學(xué)生的解題能力。因此,我先創(chuàng)設(shè)了一個實際問題的情境,讓學(xué)生感受到“生活中處處有數(shù)學(xué)”。
    為了突破本節(jié)課的難點,我在教學(xué)中注意找準(zhǔn)學(xué)生的最近發(fā)展區(qū),主要以啟發(fā)學(xué)生進(jìn)行探究的形式展開。在知識探究的過程中,設(shè)計了幾個既有聯(lián)系又層層遞進(jìn)的問題,使學(xué)生在探究的過程中能體會到成功的喜悅。本節(jié)的重點是配方法解一元二次方程的探究,讓學(xué)生體會從特殊到一般,從具體到抽象的思維過程。在教學(xué)中,自主探究,合作交流,學(xué)生在探究的過程中掌握了和理解了配方法。
    小結(jié)的時候教師要根據(jù)實際情況進(jìn)行補(bǔ)充和強(qiáng)調(diào),主要是以下兩個方面:在知識方面,要回顧配方法解方程的一般步驟和依據(jù);在方法方面,注意解一元二次方程的思想是“降次”。課后作業(yè)注重基礎(chǔ)知識和基本技能的訓(xùn)練,又注意為下一節(jié)學(xué)習(xí)做準(zhǔn)備。
    一元二次方程的解法教學(xué)反思 篇4
    一、配方法解方程教學(xué)反思
    本節(jié)共分3課時,第一課時引導(dǎo)學(xué)生通過轉(zhuǎn)化得到解一元二次方程的配方法,第二課時利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時通過實際問題的解決,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識和能力,同時又進(jìn)一步訓(xùn)練用配方法解題的技能。
    在教學(xué)中最關(guān)鍵的是讓學(xué)生掌握配方,配方的對象是含有未知數(shù)的二次三項式,其理論依據(jù)是完全平方式,配方的方法是通過添項:加上一次項系數(shù)一半的平方構(gòu)成完全平方式,對學(xué)生來說,要理解和掌握它,確實感到困難,因此在教學(xué)過程中及課后批改中發(fā)現(xiàn)學(xué)生出現(xiàn)以下幾個問題:
    在利用添項來使等式左邊配成一個完全平方公式時,等式的右邊忘了加。
    在開平方這一步驟中,學(xué)生要么只有正、沒有負(fù)的.,要么右邊忘了開方。
    當(dāng)一元二次方程有二次項的系數(shù)不為1時,在添項這一步驟時,沒有將系數(shù)化為1,就直接加上一次項系數(shù)一半的平方。
    因此,要糾正以上錯誤,必須讓學(xué)生多做練習(xí)、上臺表演、當(dāng)場講評,才能熟練掌握。
    二、用公式法解一元二次方程教學(xué)反思
    通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。對我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)勛约簩@節(jié)課的反思。
    本節(jié)課的重點主要有以下3點:
    1. 找出a,b,c的相應(yīng)的數(shù)值2. 驗判別式是否大于等于03. 當(dāng)判別式的數(shù)值符合條件,可以利用公式求根.
    在講解過程中,我沒讓學(xué)生進(jìn)行(1)(2)步就直接用公式求根,第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計學(xué)生的能力,結(jié)果出現(xiàn)錯誤較多.
    1. a,b,c的符號問題出錯,在方程中學(xué)生往往在找某個項的系數(shù)時總是丟掉前面的符號
    2. 求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多.
    其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做著一步在到求根公式時可以把數(shù)值直接代入.在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求收到更好的教學(xué)效果
    3、板書不太理想。板書可以說在課堂教學(xué)也起關(guān)鍵作用,它可以幫學(xué)生溫習(xí)本課的內(nèi)容,而我許多本該板書的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個內(nèi)容時,這些內(nèi)容也就不會再出現(xiàn),只給學(xué)生瞬間的停留,這樣做也有欠妥當(dāng)。
    4、本節(jié)課沒有激情,學(xué)習(xí)的積極性調(diào)動不起來,對學(xué)生地鼓勵性的語言過于少,可以說幾乎沒有。
    三、分解因式法解一元二次方程的教學(xué)反思
    教學(xué)時可以讓學(xué)生先各自求解,然后進(jìn)行交流并對學(xué)生的方法與課本上對小穎、小明、小亮的方法進(jìn)行比較與評析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡便的方法。利用分解因式法解題時。很多同學(xué)在解題時易犯的錯誤是進(jìn)行了非同解變形,結(jié)果丟掉一根,對此教學(xué)時只能結(jié)合具體方程予以說明,另外,本節(jié)課學(xué)生易忽略一點是“或”與“且”的區(qū)別,應(yīng)做些說明。
    對于學(xué)有余力的學(xué)生可以介紹十字相乘法,它對二次三項式分解因式簡便。
    通過以上的反思,我將在以后的教學(xué)中對自己存在的優(yōu)點我會繼續(xù)保持,針對不足我將會不斷地改進(jìn),使自己的課堂教學(xué)逐步走上一個新的臺階。
    一元二次方程的解法教學(xué)反思 篇5
    本節(jié)課充分發(fā)揮了學(xué)生的主題地位,讓學(xué)生盡可能的參與教學(xué),參與小組討論,提高學(xué)生“我是課堂主人”的認(rèn)知,課堂上看似學(xué)生學(xué)的很認(rèn)真,但從學(xué)生做題情況來看,并沒有理解因式分解法解一元二次方程的關(guān)鍵:把所有的項移到方程左端,右邊為0,再對左邊進(jìn)行因式分解,由于0乘任何數(shù)都得0,因此才有兩個一次因式分別為0的這一步,感覺學(xué)生學(xué)習(xí)好像囫圇吞棗,并沒有理解真正含義,懶得取分析算理,導(dǎo)致出錯。
    因此,在后續(xù)的教學(xué)中,我們更應(yīng)該關(guān)注的是學(xué)生是否掌握了本質(zhì)——算理,而不能只局限于學(xué)生的參與度。學(xué)生課堂上的活躍很容易給我們一種假象,看似熱鬧的背后,值得我們深思,優(yōu)生可能更優(yōu)秀,學(xué)困生可能更落后,這樣,學(xué)生的兩級分化會更嚴(yán)重。所以,對于簡單內(nèi)容的教學(xué),尤其是運算,我們更應(yīng)該關(guān)注的是讓學(xué)生理解算理,運用算理進(jìn)行相關(guān)計算,而不是機(jī)械的套用公式,只有理解了算理,學(xué)生才能做到舉一反三,觸類旁通。
    小編精心