分式教學反思范文通用

字號:

分式教學反思范文【篇1】
    一.設(shè)計思路:
    設(shè)計思路建立在我校目標教學的前提下,由學生自主導學,然后再由教師考查和點撥,但是由于種種原因,我最終決定給學生一個半開半閉的區(qū)間。這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學生一個完全自由的空間還是說讓學生在老師的引導下去完成,我先后作了多次試驗和論證,認為“完全開放”符合設(shè)計思路,但是學生在有限的時間內(nèi)難以完成教學任務(wù),故我們最終決定和學生一起共同完成。
    二.教學知識點:
    1.在本課的教學過程中,掌握范圍分式方程的解法是關(guān)鍵,所以由兩個習題過渡后,我復習了一元一次方程的解法,然后引導學生嘗試利用解一元一次方程方法的基礎(chǔ)上一起探索探索解分式方程的解法。我先作一示范,學生練習格式,接著出現(xiàn)有增根的練習題,依然讓學生解決,由于學生不會檢驗根的情況,所以,些時再詳究增根產(chǎn)生的原因,怎樣檢驗增根等問題。
    2.在利用類比法解分式方程這一過程中,分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)滲透種化歸思想的教學。
    3.本節(jié)課的難點是對分式方程可能產(chǎn)生增根的原因,我為了讓學生更深刻的理解就用了兩個分式方程的解答過程進行對比,體現(xiàn)驗根的重要性及必要性,
    充分體現(xiàn)學生為主體,教師為主導的教學體系。
    三.課堂效果:
    在這節(jié)公開課上,學生狀態(tài)不錯,所有的學生都能積極思考,踴躍回答問題,在課堂練習和最后的課堂小測里,學生的作答規(guī)范正確,而且對于增根產(chǎn)生的原因及相關(guān)知識點的難題的突破學生掌握的不錯。
    整節(jié)課下來,基本能夠達成教學目標,但是作為年輕教師,我在一些細節(jié)的處理上仍然需要改進。個別教學語言不夠規(guī)范,而且利用新知識的學習過程,對舊知識的復習仍然不夠,語速有點快,個別問題的引導可以更深層次,沒有充分放手讓學生突破難點,也是比較遺憾的地方,希望聽課的老師給我多提意見,我會珍惜的。
    分式教學反思范文【篇2】
    一是分式的運算錯的較多。
    分式加減法主要是當分子是多項式時,如果不把分子這個整體用括號括上,容易出現(xiàn)符號和結(jié)果的錯誤。所以我們在教學分式加減法時,應(yīng)教育學生分子部分不能省略括號。其次,分式概念運算應(yīng)按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。
    二是分式方程也是錯誤重災(zāi)區(qū)。
    (一)是增根定義模糊,對此,我對增根的概念進行深入淺出的闡述,
    ⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
    ⑵增根能使最簡公分母等于0;
    (二)是解分式方程的步驟不規(guī)范,大多數(shù)同學缺少“檢驗”這一重要步驟,不能從解整式方程的模式中跳出來;
    (三)是列分式方程錯誤百出。
    針對上述問題,我從基礎(chǔ)知識和題型入手,用類比的方法講解,與列整式方程一樣,先分析題意,準確找出應(yīng)用題中數(shù)量問題的相等關(guān)系,恰當?shù)卦O(shè)出未知數(shù),列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。
    《分式》一章在教學上應(yīng)多用類比的方法,與分數(shù)進行類比教學,使學生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。
    分式教學反思范文【篇3】
    分式一章的第一課時教學,利用引例列出的代數(shù)式進行歸納比較,得出分式的概念,抓住分式概念最本質(zhì)的特征“分母含有字母”,從而研究:分式有意義無意義的條件、分式的值為零的條件、分式的值為正數(shù)負數(shù)整數(shù)等條件,解決各種數(shù)學問題。
    在解決分式的值為零,分子為零且分母不為零的題型時,有考慮字母的值的取舍的題目,采用學生在黑板上的說理方法比我原來的方法更有效,學生的方法是:由分子x2-4=0求得x=2及x=-2,再分別將求得的字母的值代入分母進行計算,使分母為零的情況舍去,使分母不為零的保留,進行這樣的取舍檢驗,對于分母不是一次多項式的情況就能順利地區(qū)分出來,學生使用的這個方法好。
    在轉(zhuǎn)化求解時,發(fā)現(xiàn)學生對一元一次不等式組的解題還是比較生疏的,為了使學生全面提高學習效果,在遇有類似情況時還是復習一下更有效果。學習的主體是學生,不是課堂的花架子。
    對于-a2-1一定為負數(shù),也同樣要師生協(xié)作,生生協(xié)作討論研究,確保全體學生理解和靈活應(yīng)用。
    對于題目:整數(shù)x取何值時,分式4/x-1的值為整數(shù),學生的理解和解題也是一個難點。
    由于學生沒有課本,我們的課堂學案應(yīng)設(shè)計的更具實用性,課堂知識內(nèi)容的表達要更加便于學生理解和接受。
    小編精心