因數(shù)倍數(shù)教學(xué)反思1000字精選8篇

字號:


    出國留學(xué)網(wǎng)推薦更多專題:“因數(shù)倍數(shù)教學(xué)反思”。
    現(xiàn)行教案的內(nèi)容雖然要求高,但是教學(xué)方式并不復(fù)雜。在正式講課之前,老師通常都會為課程內(nèi)容準備好教案,教案是老師的教學(xué)設(shè)計和設(shè)想,該怎么掌握編寫教案的技巧和規(guī)范呢?為此,我們花時間整理了因數(shù)倍數(shù)教學(xué)反思,供你閱讀參考,并請收藏本頁面!
    因數(shù)倍數(shù)教學(xué)反思 篇1
    一.?dāng)?shù)形結(jié)合減緩難度
    《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學(xué)生的形象思維,而透過數(shù)學(xué)潛在的“形”與“數(shù)”的關(guān)系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉(zhuǎn)入抽象思維打下了良好基礎(chǔ),有效地實現(xiàn)了原有知識與新學(xué)知識之間的鏈接。在學(xué)生已有的知識基礎(chǔ)上,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
    二.自主探究,合作學(xué)習(xí)
    放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的
    難點。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的不同中通過合作交流找到相同。
    三.在游戲中體驗學(xué)習(xí)的快樂
    在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。這樣由淺入深的設(shè)計符合學(xué)生跳一跳就能摘到果子的心理,同時也讓學(xué)生在游戲中再次體驗因數(shù)與倍數(shù)的特點,如找完因數(shù)朋友時我以你是我的最大的因數(shù)朋友點出一個數(shù)的因數(shù)的個數(shù)是有限的,找倍數(shù)朋友時起來的學(xué)生非常多,讓學(xué)生再次體驗一個數(shù)的倍數(shù)的個數(shù)是無限的。找共同的朋友則是一個思維的升華過程,能有效地激活學(xué)生的思維,在求知欲的支配下去進行有效地思考。這一環(huán)節(jié)使課堂氣氛更加熱烈,也讓學(xué)生在輕松的氛圍中體驗到學(xué)習(xí)的快樂。
    這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找36的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。雖然是新理念
    但卻沿用了舊模式,在今后的教學(xué)中我還要不斷改進自己的教法,讓學(xué)生成為課堂的真正主人。
    這堂課我的個人語言過于隨意,數(shù)學(xué)是嚴謹?shù)?,隨意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。由于長期的教學(xué)習(xí)慣和自身的性格特點造成了我的語言在某些時候不夠嚴謹。這一點我心里非常清楚,在日常的教學(xué)中也在不斷地改正,但這節(jié)課有的地方還是沒有注意到。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機會,通過各種渠道不斷的學(xué)習(xí),提高自己的素質(zhì)。多反思認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。
    感謝各位老師給我這么一個寶貴的學(xué)習(xí)機會,并在這個過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴格要求自己,爭取在今后的工作中做的更好!
    因數(shù)倍數(shù)教學(xué)反思 篇2
    《公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學(xué)內(nèi)容精簡掉了,新教材突出了讓學(xué)生在現(xiàn)實情境中探究認識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學(xué)生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。教學(xué)以后與以前的教材相比,主要的體會有以下幾點。
    一是在現(xiàn)實的情境中教學(xué)概念,讓學(xué)生通過操作領(lǐng)會公倍數(shù)、公因數(shù)的含義。例1教學(xué)公倍數(shù)和最小公倍數(shù),例3教學(xué)公因數(shù)和最大公因數(shù),都是形成新的數(shù)學(xué)概念,都讓學(xué)生在操作活動中領(lǐng)會概念的含義。學(xué)生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學(xué)生已有知識經(jīng)驗之間的距離,有利于學(xué)生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識解決實際問題。
    二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在教學(xué)中,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導(dǎo)學(xué)生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長與長方形的長和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學(xué)生經(jīng)歷了概念的形成過程。
    三是刪掉了一些與學(xué)生實際聯(lián)系不夠緊密、對后繼學(xué)習(xí)沒有影響的內(nèi)容后,確實減輕了學(xué)生的負擔(dān),但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學(xué)生得花較多的時間去找,當(dāng)碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學(xué)中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學(xué)生熟悉之后就教學(xué)生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學(xué)生也沒感到增加了負擔(dān)。
    因數(shù)倍數(shù)教學(xué)反思 篇3
    《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
    能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時在練習(xí)中我設(shè)計了其中一道題是猜我的電話號碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進作用。
    這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
    由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強,學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
    因數(shù)倍數(shù)教學(xué)反思 篇4
    今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學(xué)生體會因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補上。
    滿意的一點:模式的提練
    在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯,馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。
    不滿意的地方在于:對于找出36所有因數(shù)的有序思考沒有強調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時,許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進行比較。
    如:1、36、2、18、3、12、4、9、6
    1、2、3、4、6、9、12、18、36
    和36÷1=36,36÷2=18,36÷3=12
    36÷4=9,36÷6=6
    尤其是最后一種方法,我特別注意讓學(xué)生評價一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機在這一步讓學(xué)生體會尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補充習(xí)題上出現(xiàn)了問題,我抓了幾個學(xué)生問為什么強調(diào)有序性,學(xué)生告訴我:因為可以看得清楚,因為不會遺漏??雌饋戆嗌系膶W(xué)生有這方面的意識,在做題目的時候還應(yīng)該再稍稍提點一下,應(yīng)該也就不成問題了。
    《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日
    昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會說,但到了家自己做家作時,問題很多。今天進行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對昨天的內(nèi)容進行了復(fù)習(xí)。讓學(xué)生進一步明確:1、講因數(shù)和倍數(shù)時應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個數(shù)的倍數(shù)和因數(shù)時,倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時,提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個,要盡可能把這些數(shù)都找出來。但學(xué)生有時找不全,我就教會學(xué)生這樣思考:找一個數(shù)的倍數(shù)時用乘法,找一個數(shù)的因數(shù)時用除法。效果還可以。
    今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會找一個數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。
    存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)?!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時,又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念??磥黹_始的復(fù)述學(xué)生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會理解只要是兩個整數(shù)相乘等于12,12就是這兩個整數(shù)的倍數(shù),這兩個整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。
    滿意之處:學(xué)生在找一個數(shù)的因數(shù)和倍數(shù)時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。
    因數(shù)倍數(shù)教學(xué)反思 篇5
    體會:
    一、動手實踐、合作交流是學(xué)生有效學(xué)習(xí)的重要方式
    《數(shù)學(xué)課程標準》指出:有效的數(shù)學(xué)學(xué)習(xí)活動,不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
    本片斷一開始,以“用12個同樣大小的正方形,擺成一個長方形”為例,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?這里牛老師充分挖掘了教材,根據(jù)教材中的3種長方形的擺法,教師預(yù)想到學(xué)生可能出現(xiàn)的6種操作方法,事先用課件預(yù)設(shè)好。同時,教師在學(xué)生小組交流、操作后,又請各小組代表到黑板上演示自己的一種擺法,得到大家的認可后,再用課件逐一呈現(xiàn)。這樣的安排,首先體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗和動手操作,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,同時知識的得到是從實際問題的解決,抽象為具體討論的數(shù)學(xué)問題。其次,這樣的安排體現(xiàn)了兩方面好處:一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者,另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。這里的設(shè)計,有效的解決了知識的傳授與理解。
    二、能挖掘教材,精心設(shè)計練習(xí),達到有效的訓(xùn)練
    本片斷的兩個練習(xí)。第一個練習(xí)是“請你做裁判”。這一組的3題突出了說倍數(shù)和因數(shù)時,強調(diào)誰是誰的因數(shù),誰是誰的倍數(shù),同時也讓學(xué)生理解了兩個數(shù)的倍數(shù)和因數(shù)的關(guān)系。第二個練習(xí)是“請你說一說”。教師選擇了2,3,5,6,9,20這6個數(shù),讓學(xué)生選擇性的分析以上信息,運用所學(xué)知識說說哪兩個數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計,培養(yǎng)了學(xué)生觀察、分析問題、口頭表達的能力,也進一步鞏固了倍數(shù)和因數(shù)的概念理解,接著教師又增加了“1”,讓學(xué)生再次用“1”與其它數(shù)比較,小組交流發(fā)現(xiàn)1與其它自然數(shù)的關(guān)系,學(xué)生很快總結(jié)出1是其它自然數(shù)的因數(shù),其它自然數(shù)是1的倍數(shù)。這樣的練習(xí)形式,很好的解決了本節(jié)課對于因數(shù)和倍數(shù)的概念理解,同時,形式上也較多的鼓勵學(xué)生參與學(xué)習(xí)、發(fā)表自己的見解、小組交流等,充分調(diào)動學(xué)生、相信學(xué)生、培養(yǎng)學(xué)生的學(xué)習(xí)能力,我覺得處理的較好。
    反思:
    一、教師的語言準確性和科學(xué)性
    這里需要說明一點,四年級國標版教材的倍數(shù)和因數(shù),和蘇教版五年級第十冊教學(xué)的約數(shù)和倍數(shù)單元內(nèi)容相近,這里的概念也是建立在數(shù)的整除的基礎(chǔ)上,不同的是國標版第八冊教材是用乘法的方式引入新知的學(xué)習(xí)。
    牛琴老師在教學(xué)練習(xí)二時,有一個學(xué)生說出3是2的倍數(shù),2是3的因數(shù),該同學(xué)剛說完,就有很多同學(xué)指出這種說法的錯誤,老師追問錯誤原因,有一個學(xué)生說因為3除以2不能整除,教師也及時給出結(jié)論:因為3除以2不能除盡。這個結(jié)論顯然不準確,或者說犯了科學(xué)性的錯誤,3除以2能除盡,但是3除以2得不到整數(shù)的商,所以3不可能被2整除,在這樣的前提下,3不是2的倍數(shù),2也不是3的因數(shù)。我覺得教師如果不自己下結(jié)論,而是讓學(xué)生結(jié)合這一問題展開討論、交流、對比,可能會使課堂增添一個意外的驚喜。
    二、練習(xí)的設(shè)計與挖掘
    1、練習(xí)一第3題:54是9的倍數(shù)。在學(xué)生判斷后,能否再展開拓展,54還是哪些數(shù)的倍數(shù),鼓勵學(xué)生發(fā)現(xiàn)54與其它自然數(shù)的倍數(shù)關(guān)系,也為后面教學(xué)找一個數(shù)的所有因數(shù)做鋪墊。
    2、練習(xí)二中,老師選擇了6個數(shù)字讓學(xué)生選擇其中的兩個數(shù)判斷倍數(shù)和因數(shù)關(guān)系,從實際情況看完成的較好,不過是否顯多了,能否去調(diào)2個,這樣課的結(jié)構(gòu)會不會更緊密,課堂效果會更好呢?
    當(dāng)然,我們的研究正如我們學(xué)校出版的教學(xué)片斷的書序中所說:燃一根火柴,會閃亮一點,倘若用一根火柴點燃一堆篝火,定會帶來無限的精彩。希望我們的研究能給兄弟學(xué)校一定的思索,同時也希望兄弟學(xué)校能反饋給我們寶貴的建議,讓我們在課程改革中,更加堅定,更加執(zhí)著。
    因數(shù)倍數(shù)教學(xué)反思 篇6
    這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓(xùn)練。通過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點的學(xué)習(xí)和掌握上還存在一些問題:
    1、最大公因數(shù)和最小公倍數(shù)
    教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準備在平時每節(jié)課都有三到五個訓(xùn)練,并進行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
    2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)
    這四個概念按照兩個不同的標準分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
    3、235倍數(shù)的特征
    如果單獨讓學(xué)生去說去判斷一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進行反應(yīng),數(shù)的感覺不佳。
    以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。
    因數(shù)倍數(shù)教學(xué)反思 篇7
    《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:
    1.在第一個環(huán)節(jié)認識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。
    針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。
    2。第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?
    針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么??梢詥枺簞偛耪伊?,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。
    3。第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。
    我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。
    在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。
    4。第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。
    原本認為簡單的課卻一點都不簡單,每個細小環(huán)節(jié)的把握都要求我去仔細的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。
    因數(shù)倍數(shù)教學(xué)反思 篇8
    不知不覺,我們又進行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。
    1、以往認識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)?,F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
    2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分數(shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。
    3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。
    可見,編者為體現(xiàn)新課標精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)??蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。
    小編精心