在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發(fā)揮它最大的作用呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
高中數學說課稿分鐘篇一
1· 教材的地位和作用
在學習這節(jié)課以前,我們已經學習了振幅變換。本節(jié)知識是學習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學習有助于學生進一步理解正弦函數的圖象和性質,加深學生對函數圖象變換的理解和認識,加深數形結合在數學學習中的應用的認識。同時為相關學科的學習打下扎實的基礎。
⒉教材的重點和難點
重點是對周期變換、相位變換規(guī)律的理解和應用。
難點是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
⒊教材內容的安排和處理
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時,本節(jié)是第2課時,主要學習周期變換和相位變換,以及兩種變換的綜合應用。
⒈知識目標
掌握相位變換、周期變換的變換規(guī)律。
⒉能力目標
培養(yǎng)學生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。
⒊德育目標
在教學中努力培養(yǎng)學生的“由簡單到復雜、由特殊到一般”的辯證思想,培養(yǎng)學生的探究能力和協作學習的能力。
⒋情感目標
通過學數學,用數學,進而培養(yǎng)學生對數學的興趣。
①本課安排在電腦室教學,每個學生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實現師生、生生的相互溝通。
②課前應先把本課所需要的幾何畫板課件通過多媒體演示系統發(fā)送到每一臺學生電腦。
本節(jié)課以“探究——歸納——應用”為主線,通過設置問題情境,引導學生自主探究,總結規(guī)律,并能應用規(guī)律分析問題、解決問題。
以學生的自主探究為主要方式,把計算機使用的主動權交給學生,讓學生主動去學習新知、探究未知,在活動中學習數學、掌握數學,并能數學地提出問題、解決問題。
預備知識
一、問題探究
⑴師生合作探究周期變換
⑵學生自主探究相位變換
二、歸納概括
三、實踐應用
教學程序
設計說明
〖預備知識
1我們已經學習了幾種圖象變換?
2這些變換的規(guī)律是什么?
幫助學生鞏固、理解和歸納基礎知識,為后面的學習作鋪墊。促使學生學會對知識的歸納梳理。
〖問題探究
(一)師生合作探究周期變換
x圖象的變換過程,指出變換過程中圖象上每一個點的坐標發(fā)生了什么變化。
(二)學生自主探究相位變換
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗證。
設計這個問題的主要用意是讓學生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。
設計這個問題意圖是引導學生再次認真觀察圖象變換的過程,以便總結周期變換的規(guī)律。
師生合作探究已經讓學生掌握了探究圖象變換的基本方法,在此基礎上,由學生自主探究相位變換規(guī)律,提高學生的綜合能力。
〖歸納概括
通過以上探究,你能否總結出周期變換和相位變換的一般規(guī)律?
設計這個環(huán)節(jié)的意圖是通過對上述變換過程的探究,進而引導學生歸納概括,從現象到本質,總結出周期變換和相位變換的一般規(guī)律。
〖實踐應用
(一)應用舉例
(1)用五點法作出y=sin(2x+)一個周期內的簡圖。
(3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
(二)分層訓練
a組題(基礎題)
如何完成下列圖象的變換:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c組題(拓展題)
①如何完成下列圖象的變換:
y=sinx →y=sin(3x+1)
②我們知道,從f(x)到f(x)+k的變換可通過圖象的上下平移(k0上移)(k0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。
讓學生用五點法作出這個圖象是為了驗證變換方法是否正確。
給出這個問題的用意是開拓學生的思維,讓學生從多角度思考問題。
這個步驟主要目的是培養(yǎng)學生的探究能力和動手能力。
這個問題的解決,是突破本課難點的關鍵。通過問題的解決,讓學生理解如果先進行周期變換,而后進行相位變換,應特別關注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學生對新問題進行探究,
有較大難度,適合基礎較好的
同學完成。
作業(yè):
(1)必做題
(2)選做題
作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學有余力的學生課后研究。
在本節(jié)的教與學活動中,始終體現以學生的發(fā)展為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,注意學生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生得到不同的發(fā)展,體現因材施教原則。
調節(jié)與反饋:
⑴驗證兩種變換的綜合時,可能會出現有些學生無法觀察到兩種變換的區(qū)別這種情況,此時,教師除了加以引導外,還需通過教師演示和詳細講解加以解決。
⑵教學中可能出現個別學生無法正確操作課件的情況,這種情況下一定要強調學生的協作意識。
高中數學說課稿分鐘篇二
大家好!
今天我說課的內容是《函數的概念》,選自人教版高中數學必修一第一章第二節(jié)。下面介紹我對本節(jié)課的設計和構思,請您多提寶貴意見。
1、學習任務分析
本節(jié)課是必修1第1章第2節(jié)的內容,是函數這一章的起始課,它上承集合,下引性質,與方程、不等式、數列、三角函數、解析幾何、導數等內容聯系密切,是學好后繼知識的基礎和工具,所以本節(jié)課在數學教學中的地位和作用是至關重要的。
2、學情分析
學生在初中已經學習了函數的概念,初步具備了學習函數概念的基本能力,但函數的概念從初中的變量學說到高中階段的對應說很抽象,不易理解。
另外,通過對集合的學習,學生基本適應了有效教學的課堂模式,初步具備了小組合作、自主探究的學習能力。
教學難點為:函數概念的形成及理解。
根據《課程標準》對本節(jié)課的學習要求,結合本班學生的情況,故而確立本節(jié)課的教學目標。
1、知識與技能(方面)
通過豐富的實例,讓學生
①了解函數是非空數集到非空數集的一個對應;
②了解構成函數的三要素;
③理解函數概念的本質;
④理解f(x)與f(a)(a為常數)的區(qū)別與聯系;
⑤會求一些簡單函數的定義域。
2、過程與方法(方面)
在教學過程中,結合生活中的實例,通過師生互動、生生互動培養(yǎng)學生分析推理、歸納總結和表達問題的能力,在函數概念的構建過程中體會類比、歸納、猜想等數學思想方法。
3、情感、態(tài)度與價值觀(方面)
讓學生充分體驗函數概念的形成過程,參與函數定義域的求解過程以及函數的求值過程,使學生感受到數學的抽象美與簡潔美。
復習舊知,引出課題(約2分鐘)創(chuàng)設情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結反思,知識升華(約2分鐘)(最后)布置作業(yè),拓展練習。
教學中利用投影與黑板相結合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節(jié)重要內容,使學生對所學內容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發(fā)現及時解決。
本節(jié)課圍繞問題的解決與重難點的突破,設計了下面的教學過程。
整個教學過程按四個環(huán)節(jié)展開:
首先,在第一環(huán)節(jié)——復習舊知,引出課題,先由兩個問題導入新課
①初中時函數是如何定義的?
②y=1是函數嗎?
[設計意圖]:學生通過對這兩個問題的思考與討論,發(fā)現利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數概念會是什么?激發(fā)他們學習本節(jié)課的強烈愿望和情感,使他們處于積極主動的探究狀態(tài),大大提高了課堂效率。
從學生的心理狀態(tài)與認知規(guī)律出發(fā),教學過程自然過渡到第二個環(huán)節(jié)——函數概念的形成。
由于高中階段的函數概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學生能看見能感知的生活中的3個實例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數的概念,此過程我稱之為“創(chuàng)設情境,形成概念”。
對于這3個實例,我分別預設一個問題讓學生思考與體會。
[設計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導學生根據問題總結3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向學生滲透集合與對應的觀點,這樣,再讓學生經歷由具體到抽象的概括過程,用集合、對應的語言來描述函數時就顯得水到渠成,難點得以突破。
函數的概念既已形成,本節(jié)課自然進入了第3個環(huán)節(jié)——剖析概念,理解概念。
函數概念的理解是本節(jié)課的重點也是難點,概念本身比較抽象,學生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。
首先,在學生熟讀熟背函數概念的基礎上,我設計一個學生活動,讓學生充分參與,在參與中體會學習的快樂。
[設計意圖]:通過層層提問,層層回答,讓學生對概念中關鍵詞的把握更為準確,對函數概念的理解更為具體,為總結歸納函數概念的本質特征打下基礎。
其次,我通過幻燈片的形式展示幾組數集的對應關系,讓學生分析討論哪些對應關系能構成函數,在學生深刻認識到函數是非空數集到非空數集的一對一或多對一的對應關系,并能準確把握概念中的關鍵詞后,再著重強強在這兩種對應關系中,何為定義域,何為值域,值域和集合b有什么關系,強調函數的三要素,得出兩函數相等的條件。
至此,本節(jié)課的第三個環(huán)節(jié)已經完成,對于區(qū)間的概念,學生通過預習能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。
在本節(jié)課的第四個環(huán)節(jié)——例題分析中,我重點以例題的形式考查函數的有關概念問題,簡單函數的定義域問題以及函數的求值問題,至于分段函數、復合函數的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學生討論、展寫、展講、學生互評、教師點評的方式完成知識的鞏固,讓學生成為課堂的主人。
最后,通過
——總結點評,完善知識體系
——課堂練習,鞏固知識掌握
——布置作業(yè),沉淀教學成果
教學是動態(tài)生成的過程,課堂上必然會有難以預料的事情發(fā)生,具體的教學過程還應根據實際情況加以調整。
最后,引用赫爾巴特的一句名言結束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。
謝謝大家!
高中數學說課稿分鐘篇三
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節(jié)課里學生對導數的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。
教學難點:理解導數的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。
過程與方法:
通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
1.創(chuàng)設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線c的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線pq的斜率。
問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,q();從形的角度看, 的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發(fā)現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。
問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學生發(fā)現并說出:,割線pq切線pt,所以割線
pq的斜率切線pt的斜率。因此,=切線pt的斜率。
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業(yè),對學生的學習效果評價.
高中數學說課稿分鐘篇四
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
(二)重點難點
本節(jié)課的教學重點是________________________,教學難點是_____________________。
(一)教法
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創(chuàng)設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
(3)自我嘗試,初步應用。
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
(二)作業(yè)設計
我設計了以下作業(yè):
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝!
高中數學說課稿分鐘篇五
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數學方面的能力。
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
本節(jié)采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發(fā)現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度?!币龑W生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號?!鳖惐犬愄杻蓴迪嗉?,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
(4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結內容,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
高中數學說課稿分鐘篇六
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學)。本節(jié)課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續(xù)學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發(fā)展學生運用數學語言交流的能力。
2、 教學目標
(1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;
b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。
b、學會借助實例分析,探究數學問題,發(fā)展學生的觀察歸納能力。
b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。
3、重點和難點
重點:集合的概念,元素與集合的關系。
難點:準確理解集合的概念。
對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。
針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發(fā),提高學生的注意力和激發(fā)學生的學習興趣。在創(chuàng)設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發(fā)學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。
教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節(jié)課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。
1、引入新課:
a、創(chuàng)設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。
b、介紹集合論的創(chuàng)始者康托爾
2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創(chuàng)造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發(fā),引導學生尋找實例中的共同特征,培養(yǎng)學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。
教師在這一環(huán)節(jié)做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節(jié)重點做好鋪墊。
6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環(huán)節(jié)教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節(jié)在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。
9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。
10、知識的實際應用:
問題不難,落實課本能力目標,培養(yǎng)學生運用數學的意識和能力初步培養(yǎng)學生應用集合的眼光觀看世界。
11、課堂小節(jié)
以學生小節(jié)為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養(yǎng)學生的鬼納總結能力。
教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發(fā)揮著積極作用,教學過程遵重學生之間的差異培養(yǎng)學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環(huán)節(jié)。
1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。
2、 啟發(fā)探究教學,營造學生的學習氛圍,培養(yǎng)學生自主學習,合作交流的能力。
高中數學說課稿分鐘篇七
大家好!
我是今天的x號考生,今天我說課的題目是《直線與平面平行的判定》。
高中數學課程以學生發(fā)展為本,提升數學學科核心素養(yǎng)。這節(jié)課我將秉承這一教學理念,從教材分析、教學目標、教學過程等幾個方面來展開我的說課。
本節(jié)課選自人教a版高中數學必修2第二章第2節(jié)。此前學生對空間立體幾何已經有了一定的感知。通過本節(jié)課的學習,能使學生進一步了解空間中直線與平面平行關系的判定方法,培養(yǎng)學生的邏輯思維和空間想象能力。
學生已經學習了空間中點、直線、平面間的位置關系,知道若直線與平面平行,則沒有公共點,但直接利用定義無法進行判斷。因而我會注意在教學時逐步引導學生,在辯證思考中探索直線與平面平行的條件。
根據以上對教材的分析和對學情的把握,我設置本節(jié)課的教學目標如下:
掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進行簡單應用。
通過直觀感知、觀察、操作確認的認知過程,培養(yǎng)空間想象力和邏輯思維能力,體會“降維”的思想。
通過生活中的實例,體會平行關系在生活中的廣泛應用;在探究線面平行判定定理的過程中,形成學習數學的積極態(tài)度。
根據學生現有的知識儲備和知識本身的難易程度,我設置本節(jié)課教學重點為:直線與平面平行的判定定理。教學難點為:直線與平面平行的判定定理的探究。
為達成教學目標,突破教學重難點,本節(jié)課我將采用講授法、自主探究法、練習法等教學方法,以達到教與學的和諧完美統一。
下面我將重點談談我的教學過程。
導入環(huán)節(jié)我會帶領學生從文字語言、圖形語言和符號語言這三個角度復習直線與平面有哪些位置關系。接著我會請學生思考,該如何判定直線與平面平行。根據定義,只需判定直線與平面沒有公共點即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點。由此引發(fā)認知沖突,引入本節(jié)課的學習。
通過復習導入,不僅鞏固了之前所學,建立起新舊知識之間的聯系,而且能夠有效激發(fā)起學生的學習興趣,從而為下面的學習打好基礎。
接下來是新知講解環(huán)節(jié)。
我會請學生觀察,教室門扇的兩邊是平行的,當門扇繞著一邊轉動時,觀察門扇轉動的一邊和門框所在平面有怎樣的位置關系。并組織學生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關系。
學生不難看出其中的平行關系。在此基礎上,我會請學生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內多少條直線平行。如果這條直線平行于平面內的無數條直線,那么這條直線是否一定與這個平面平行。
除了知道知識,學生還要能對知識進行應用。我會出示以下練習題:求證空間四邊形相鄰兩邊中點的連線平行于另外兩邊所在的平面。結合這一練習題,我會進一步強調,線面平行問題可轉化為線線平行問題。這也為之后線面、面面關系的學習奠定基礎。
課堂小結部分,我會充分發(fā)揮學生的主體性,請學生說一說本節(jié)課的收獲。收獲不僅僅只是知識方面,也可以說一說這節(jié)課學到的思想方法等,進一步培養(yǎng)學生的綜合素質。
課后作業(yè)我會請學生完成書上相應練習題,使學生在課后也能得到思考,夯實學生對于新知的掌握。
我的板書設計遵循簡潔明了、突出重點的原則,以下是我的板書設計:
略。
高中數學說課稿分鐘篇八
"分類計數原理與分步計數原理"是《高中數學》一節(jié)獨特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯系,經過對這一節(jié)課的學習,既能夠讓學生理解、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
根據兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:
(1)使學生正確理解兩個基本原理的概念;
(2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
(3)提高分析、解決問題的本事
(4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點資料。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,應對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生理解概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
根據本節(jié)課的資料及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。
啟發(fā)引導式作為一種啟發(fā)式教學方法,體現了認知心理學的基本理論。貼合教學論中的自覺性和進取性、鞏固性、可理解性、教學與發(fā)展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生經過主動思考、動手操作來到達對知識的"發(fā)現"和理解,進而完成知識的內化,使書本的知識成為自我的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來體現,更好地為教學服務。
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現的學習本事,增強學生的綜合素質,從而到達教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,經過教師的啟發(fā)點撥,類比推理,在進取的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學生認知水平,培養(yǎng)了學習本事。
(一)課題導入
這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的資料作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下頭的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學習本章資料的重要性。同時板書課題(分類計數原理與分步計數原理)
這樣做,能使學生明白本節(jié)資料的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
(二)新課講授
經過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
這個問題的兩個引申由漸入深、循序漸進為學生理解分類計數原理做好了準備。
板書分類計數原理資料:
完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
(1)各分類之間相互獨立,都能完成這件事;
(2)根據問題的特點在確定的分類標準下進行分類;
(3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。
這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學生會發(fā)現問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書原理資料)
n=m1×m2×…×mn
種不一樣的方法。
同樣趁學生對定理有必須的認識,引導學生分析分步計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
(1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;
(2)根據問題的特點在確定的分步標準下分步;
(3)分步時要注意滿足完成一件事必須并且只需連續(xù)完成這n個步驟這件事才算完成。
(三)應用舉例
教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。
(1)每一個三位數是由什么構成的?(三個整數字)
(2)023是一個三位數嗎?(百位上不能是0)
(3)組成一個三位數需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)
(4)怎樣表述?
教師巡視指導、并歸納
答:能夠組成100個三位整數。
(教師的連續(xù)發(fā)問、啟發(fā)、引導,幫忙學生找到正確的解題思路和計算方法,使學生的分析問題本事有所提高。
教師在第二個例題中給出板書示范,能幫忙學生進一步加深對兩個基本原理實質的理解,周密的研究,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的構成有著進取的促進作用,也能夠為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
(四)歸納小結
師:什么時候用分類計數原理、什么時候用分步計數原理呢?
生:分類時用分類計數原理,分步時用分步計數原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
(五)課堂練習
p222:練習1~4.學生板演第4題
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
(六)布置作業(yè)
p222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
(提示:按十位上數字的大小能夠分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數。
(提示:需要按三個志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且僅有兩個數字相同的三位數共有多少個?
(提示:能夠用下頭方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個僅有兩個數字相同的三位數)
(提示:由于8+5=13》10,所以10人中必有3人既會英語又會日語。(1)n=5+2+3;(2)n=5×2+5×3+2×3)
只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自我夢想的成績。
高中數學說課稿分鐘篇一
1· 教材的地位和作用
在學習這節(jié)課以前,我們已經學習了振幅變換。本節(jié)知識是學習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學習有助于學生進一步理解正弦函數的圖象和性質,加深學生對函數圖象變換的理解和認識,加深數形結合在數學學習中的應用的認識。同時為相關學科的學習打下扎實的基礎。
⒉教材的重點和難點
重點是對周期變換、相位變換規(guī)律的理解和應用。
難點是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
⒊教材內容的安排和處理
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時,本節(jié)是第2課時,主要學習周期變換和相位變換,以及兩種變換的綜合應用。
⒈知識目標
掌握相位變換、周期變換的變換規(guī)律。
⒉能力目標
培養(yǎng)學生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。
⒊德育目標
在教學中努力培養(yǎng)學生的“由簡單到復雜、由特殊到一般”的辯證思想,培養(yǎng)學生的探究能力和協作學習的能力。
⒋情感目標
通過學數學,用數學,進而培養(yǎng)學生對數學的興趣。
①本課安排在電腦室教學,每個學生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實現師生、生生的相互溝通。
②課前應先把本課所需要的幾何畫板課件通過多媒體演示系統發(fā)送到每一臺學生電腦。
本節(jié)課以“探究——歸納——應用”為主線,通過設置問題情境,引導學生自主探究,總結規(guī)律,并能應用規(guī)律分析問題、解決問題。
以學生的自主探究為主要方式,把計算機使用的主動權交給學生,讓學生主動去學習新知、探究未知,在活動中學習數學、掌握數學,并能數學地提出問題、解決問題。
預備知識
一、問題探究
⑴師生合作探究周期變換
⑵學生自主探究相位變換
二、歸納概括
三、實踐應用
教學程序
設計說明
〖預備知識
1我們已經學習了幾種圖象變換?
2這些變換的規(guī)律是什么?
幫助學生鞏固、理解和歸納基礎知識,為后面的學習作鋪墊。促使學生學會對知識的歸納梳理。
〖問題探究
(一)師生合作探究周期變換
x圖象的變換過程,指出變換過程中圖象上每一個點的坐標發(fā)生了什么變化。
(二)學生自主探究相位變換
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗證。
設計這個問題的主要用意是讓學生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。
設計這個問題意圖是引導學生再次認真觀察圖象變換的過程,以便總結周期變換的規(guī)律。
師生合作探究已經讓學生掌握了探究圖象變換的基本方法,在此基礎上,由學生自主探究相位變換規(guī)律,提高學生的綜合能力。
〖歸納概括
通過以上探究,你能否總結出周期變換和相位變換的一般規(guī)律?
設計這個環(huán)節(jié)的意圖是通過對上述變換過程的探究,進而引導學生歸納概括,從現象到本質,總結出周期變換和相位變換的一般規(guī)律。
〖實踐應用
(一)應用舉例
(1)用五點法作出y=sin(2x+)一個周期內的簡圖。
(3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
(二)分層訓練
a組題(基礎題)
如何完成下列圖象的變換:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c組題(拓展題)
①如何完成下列圖象的變換:
y=sinx →y=sin(3x+1)
②我們知道,從f(x)到f(x)+k的變換可通過圖象的上下平移(k0上移)(k0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。
讓學生用五點法作出這個圖象是為了驗證變換方法是否正確。
給出這個問題的用意是開拓學生的思維,讓學生從多角度思考問題。
這個步驟主要目的是培養(yǎng)學生的探究能力和動手能力。
這個問題的解決,是突破本課難點的關鍵。通過問題的解決,讓學生理解如果先進行周期變換,而后進行相位變換,應特別關注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學生對新問題進行探究,
有較大難度,適合基礎較好的
同學完成。
作業(yè):
(1)必做題
(2)選做題
作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學有余力的學生課后研究。
在本節(jié)的教與學活動中,始終體現以學生的發(fā)展為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,注意學生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生得到不同的發(fā)展,體現因材施教原則。
調節(jié)與反饋:
⑴驗證兩種變換的綜合時,可能會出現有些學生無法觀察到兩種變換的區(qū)別這種情況,此時,教師除了加以引導外,還需通過教師演示和詳細講解加以解決。
⑵教學中可能出現個別學生無法正確操作課件的情況,這種情況下一定要強調學生的協作意識。
高中數學說課稿分鐘篇二
大家好!
今天我說課的內容是《函數的概念》,選自人教版高中數學必修一第一章第二節(jié)。下面介紹我對本節(jié)課的設計和構思,請您多提寶貴意見。
1、學習任務分析
本節(jié)課是必修1第1章第2節(jié)的內容,是函數這一章的起始課,它上承集合,下引性質,與方程、不等式、數列、三角函數、解析幾何、導數等內容聯系密切,是學好后繼知識的基礎和工具,所以本節(jié)課在數學教學中的地位和作用是至關重要的。
2、學情分析
學生在初中已經學習了函數的概念,初步具備了學習函數概念的基本能力,但函數的概念從初中的變量學說到高中階段的對應說很抽象,不易理解。
另外,通過對集合的學習,學生基本適應了有效教學的課堂模式,初步具備了小組合作、自主探究的學習能力。
教學難點為:函數概念的形成及理解。
根據《課程標準》對本節(jié)課的學習要求,結合本班學生的情況,故而確立本節(jié)課的教學目標。
1、知識與技能(方面)
通過豐富的實例,讓學生
①了解函數是非空數集到非空數集的一個對應;
②了解構成函數的三要素;
③理解函數概念的本質;
④理解f(x)與f(a)(a為常數)的區(qū)別與聯系;
⑤會求一些簡單函數的定義域。
2、過程與方法(方面)
在教學過程中,結合生活中的實例,通過師生互動、生生互動培養(yǎng)學生分析推理、歸納總結和表達問題的能力,在函數概念的構建過程中體會類比、歸納、猜想等數學思想方法。
3、情感、態(tài)度與價值觀(方面)
讓學生充分體驗函數概念的形成過程,參與函數定義域的求解過程以及函數的求值過程,使學生感受到數學的抽象美與簡潔美。
復習舊知,引出課題(約2分鐘)創(chuàng)設情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結反思,知識升華(約2分鐘)(最后)布置作業(yè),拓展練習。
教學中利用投影與黑板相結合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節(jié)重要內容,使學生對所學內容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發(fā)現及時解決。
本節(jié)課圍繞問題的解決與重難點的突破,設計了下面的教學過程。
整個教學過程按四個環(huán)節(jié)展開:
首先,在第一環(huán)節(jié)——復習舊知,引出課題,先由兩個問題導入新課
①初中時函數是如何定義的?
②y=1是函數嗎?
[設計意圖]:學生通過對這兩個問題的思考與討論,發(fā)現利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數概念會是什么?激發(fā)他們學習本節(jié)課的強烈愿望和情感,使他們處于積極主動的探究狀態(tài),大大提高了課堂效率。
從學生的心理狀態(tài)與認知規(guī)律出發(fā),教學過程自然過渡到第二個環(huán)節(jié)——函數概念的形成。
由于高中階段的函數概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學生能看見能感知的生活中的3個實例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數的概念,此過程我稱之為“創(chuàng)設情境,形成概念”。
對于這3個實例,我分別預設一個問題讓學生思考與體會。
[設計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導學生根據問題總結3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向學生滲透集合與對應的觀點,這樣,再讓學生經歷由具體到抽象的概括過程,用集合、對應的語言來描述函數時就顯得水到渠成,難點得以突破。
函數的概念既已形成,本節(jié)課自然進入了第3個環(huán)節(jié)——剖析概念,理解概念。
函數概念的理解是本節(jié)課的重點也是難點,概念本身比較抽象,學生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。
首先,在學生熟讀熟背函數概念的基礎上,我設計一個學生活動,讓學生充分參與,在參與中體會學習的快樂。
[設計意圖]:通過層層提問,層層回答,讓學生對概念中關鍵詞的把握更為準確,對函數概念的理解更為具體,為總結歸納函數概念的本質特征打下基礎。
其次,我通過幻燈片的形式展示幾組數集的對應關系,讓學生分析討論哪些對應關系能構成函數,在學生深刻認識到函數是非空數集到非空數集的一對一或多對一的對應關系,并能準確把握概念中的關鍵詞后,再著重強強在這兩種對應關系中,何為定義域,何為值域,值域和集合b有什么關系,強調函數的三要素,得出兩函數相等的條件。
至此,本節(jié)課的第三個環(huán)節(jié)已經完成,對于區(qū)間的概念,學生通過預習能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。
在本節(jié)課的第四個環(huán)節(jié)——例題分析中,我重點以例題的形式考查函數的有關概念問題,簡單函數的定義域問題以及函數的求值問題,至于分段函數、復合函數的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學生討論、展寫、展講、學生互評、教師點評的方式完成知識的鞏固,讓學生成為課堂的主人。
最后,通過
——總結點評,完善知識體系
——課堂練習,鞏固知識掌握
——布置作業(yè),沉淀教學成果
教學是動態(tài)生成的過程,課堂上必然會有難以預料的事情發(fā)生,具體的教學過程還應根據實際情況加以調整。
最后,引用赫爾巴特的一句名言結束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。
謝謝大家!
高中數學說課稿分鐘篇三
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節(jié)課里學生對導數的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。
教學難點:理解導數的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。
過程與方法:
通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
1.創(chuàng)設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線c的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線pq的斜率。
問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,q();從形的角度看, 的過程中,q點向p點無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發(fā)現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。
問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學生發(fā)現并說出:,割線pq切線pt,所以割線
pq的斜率切線pt的斜率。因此,=切線pt的斜率。
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業(yè),對學生的學習效果評價.
高中數學說課稿分鐘篇四
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
(二)重點難點
本節(jié)課的教學重點是________________________,教學難點是_____________________。
(一)教法
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創(chuàng)設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
(3)自我嘗試,初步應用。
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
(二)作業(yè)設計
我設計了以下作業(yè):
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝!
高中數學說課稿分鐘篇五
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數學方面的能力。
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
本節(jié)采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發(fā)現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度?!币龑W生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號?!鳖惐犬愄杻蓴迪嗉?,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
(4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結內容,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
高中數學說課稿分鐘篇六
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學)。本節(jié)課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續(xù)學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發(fā)展學生運用數學語言交流的能力。
2、 教學目標
(1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;
b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。
b、學會借助實例分析,探究數學問題,發(fā)展學生的觀察歸納能力。
b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。
3、重點和難點
重點:集合的概念,元素與集合的關系。
難點:準確理解集合的概念。
對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。
針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發(fā),提高學生的注意力和激發(fā)學生的學習興趣。在創(chuàng)設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發(fā)學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。
教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節(jié)課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。
1、引入新課:
a、創(chuàng)設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。
b、介紹集合論的創(chuàng)始者康托爾
2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創(chuàng)造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發(fā),引導學生尋找實例中的共同特征,培養(yǎng)學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。
教師在這一環(huán)節(jié)做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節(jié)重點做好鋪墊。
6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環(huán)節(jié)教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節(jié)在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。
9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。
10、知識的實際應用:
問題不難,落實課本能力目標,培養(yǎng)學生運用數學的意識和能力初步培養(yǎng)學生應用集合的眼光觀看世界。
11、課堂小節(jié)
以學生小節(jié)為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養(yǎng)學生的鬼納總結能力。
教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發(fā)揮著積極作用,教學過程遵重學生之間的差異培養(yǎng)學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環(huán)節(jié)。
1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。
2、 啟發(fā)探究教學,營造學生的學習氛圍,培養(yǎng)學生自主學習,合作交流的能力。
高中數學說課稿分鐘篇七
大家好!
我是今天的x號考生,今天我說課的題目是《直線與平面平行的判定》。
高中數學課程以學生發(fā)展為本,提升數學學科核心素養(yǎng)。這節(jié)課我將秉承這一教學理念,從教材分析、教學目標、教學過程等幾個方面來展開我的說課。
本節(jié)課選自人教a版高中數學必修2第二章第2節(jié)。此前學生對空間立體幾何已經有了一定的感知。通過本節(jié)課的學習,能使學生進一步了解空間中直線與平面平行關系的判定方法,培養(yǎng)學生的邏輯思維和空間想象能力。
學生已經學習了空間中點、直線、平面間的位置關系,知道若直線與平面平行,則沒有公共點,但直接利用定義無法進行判斷。因而我會注意在教學時逐步引導學生,在辯證思考中探索直線與平面平行的條件。
根據以上對教材的分析和對學情的把握,我設置本節(jié)課的教學目標如下:
掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進行簡單應用。
通過直觀感知、觀察、操作確認的認知過程,培養(yǎng)空間想象力和邏輯思維能力,體會“降維”的思想。
通過生活中的實例,體會平行關系在生活中的廣泛應用;在探究線面平行判定定理的過程中,形成學習數學的積極態(tài)度。
根據學生現有的知識儲備和知識本身的難易程度,我設置本節(jié)課教學重點為:直線與平面平行的判定定理。教學難點為:直線與平面平行的判定定理的探究。
為達成教學目標,突破教學重難點,本節(jié)課我將采用講授法、自主探究法、練習法等教學方法,以達到教與學的和諧完美統一。
下面我將重點談談我的教學過程。
導入環(huán)節(jié)我會帶領學生從文字語言、圖形語言和符號語言這三個角度復習直線與平面有哪些位置關系。接著我會請學生思考,該如何判定直線與平面平行。根據定義,只需判定直線與平面沒有公共點即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點。由此引發(fā)認知沖突,引入本節(jié)課的學習。
通過復習導入,不僅鞏固了之前所學,建立起新舊知識之間的聯系,而且能夠有效激發(fā)起學生的學習興趣,從而為下面的學習打好基礎。
接下來是新知講解環(huán)節(jié)。
我會請學生觀察,教室門扇的兩邊是平行的,當門扇繞著一邊轉動時,觀察門扇轉動的一邊和門框所在平面有怎樣的位置關系。并組織學生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關系。
學生不難看出其中的平行關系。在此基礎上,我會請學生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內多少條直線平行。如果這條直線平行于平面內的無數條直線,那么這條直線是否一定與這個平面平行。
除了知道知識,學生還要能對知識進行應用。我會出示以下練習題:求證空間四邊形相鄰兩邊中點的連線平行于另外兩邊所在的平面。結合這一練習題,我會進一步強調,線面平行問題可轉化為線線平行問題。這也為之后線面、面面關系的學習奠定基礎。
課堂小結部分,我會充分發(fā)揮學生的主體性,請學生說一說本節(jié)課的收獲。收獲不僅僅只是知識方面,也可以說一說這節(jié)課學到的思想方法等,進一步培養(yǎng)學生的綜合素質。
課后作業(yè)我會請學生完成書上相應練習題,使學生在課后也能得到思考,夯實學生對于新知的掌握。
我的板書設計遵循簡潔明了、突出重點的原則,以下是我的板書設計:
略。
高中數學說課稿分鐘篇八
"分類計數原理與分步計數原理"是《高中數學》一節(jié)獨特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯系,經過對這一節(jié)課的學習,既能夠讓學生理解、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
根據兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:
(1)使學生正確理解兩個基本原理的概念;
(2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
(3)提高分析、解決問題的本事
(4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點資料。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,應對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生理解概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
根據本節(jié)課的資料及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。
啟發(fā)引導式作為一種啟發(fā)式教學方法,體現了認知心理學的基本理論。貼合教學論中的自覺性和進取性、鞏固性、可理解性、教學與發(fā)展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生經過主動思考、動手操作來到達對知識的"發(fā)現"和理解,進而完成知識的內化,使書本的知識成為自我的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來體現,更好地為教學服務。
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現的學習本事,增強學生的綜合素質,從而到達教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,經過教師的啟發(fā)點撥,類比推理,在進取的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學生認知水平,培養(yǎng)了學習本事。
(一)課題導入
這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的資料作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下頭的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學習本章資料的重要性。同時板書課題(分類計數原理與分步計數原理)
這樣做,能使學生明白本節(jié)資料的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
(二)新課講授
經過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
這個問題的兩個引申由漸入深、循序漸進為學生理解分類計數原理做好了準備。
板書分類計數原理資料:
完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
(1)各分類之間相互獨立,都能完成這件事;
(2)根據問題的特點在確定的分類標準下進行分類;
(3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。
這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學生會發(fā)現問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書原理資料)
n=m1×m2×…×mn
種不一樣的方法。
同樣趁學生對定理有必須的認識,引導學生分析分步計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
(1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;
(2)根據問題的特點在確定的分步標準下分步;
(3)分步時要注意滿足完成一件事必須并且只需連續(xù)完成這n個步驟這件事才算完成。
(三)應用舉例
教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。
(1)每一個三位數是由什么構成的?(三個整數字)
(2)023是一個三位數嗎?(百位上不能是0)
(3)組成一個三位數需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)
(4)怎樣表述?
教師巡視指導、并歸納
答:能夠組成100個三位整數。
(教師的連續(xù)發(fā)問、啟發(fā)、引導,幫忙學生找到正確的解題思路和計算方法,使學生的分析問題本事有所提高。
教師在第二個例題中給出板書示范,能幫忙學生進一步加深對兩個基本原理實質的理解,周密的研究,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的構成有著進取的促進作用,也能夠為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
(四)歸納小結
師:什么時候用分類計數原理、什么時候用分步計數原理呢?
生:分類時用分類計數原理,分步時用分步計數原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
(五)課堂練習
p222:練習1~4.學生板演第4題
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
(六)布置作業(yè)
p222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
(提示:按十位上數字的大小能夠分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數。
(提示:需要按三個志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且僅有兩個數字相同的三位數共有多少個?
(提示:能夠用下頭方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個僅有兩個數字相同的三位數)
(提示:由于8+5=13》10,所以10人中必有3人既會英語又會日語。(1)n=5+2+3;(2)n=5×2+5×3+2×3)
只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自我夢想的成績。