隨著國家建設投資的發(fā)展,市政工程的投入進一步加大,各類橋梁在市政工程的應用日益廣泛,大體積混凝土在橋梁結構中應用的越來越多,而且主要應用于主要受力部分,但是,相應暴露出來的問題也越來越多,其中,大體積混凝土的裂縫問題,尤為突出。我國普通混凝土配合比設計規(guī)范規(guī)定:混凝土結構物中實體最小尺寸不小于1 m的部位所用的混凝土即為大體積混凝土;美國則規(guī)定為:任何現(xiàn)澆混凝土,只要有可能產生溫度影響的混凝土均稱為大體積混凝土。
目前,國內外對機械荷載引起的開裂問題研究得較為透徹。而對溫度荷載引起得有關裂縫的研究尚不充分。我們應對此加以重視,防止危害結構的裂縫產生。另外對于大體積混凝土內溫度應力與裂縫控制也多集中在水利工程中的大壩、高層建筑的深基礎底板。而對于橋梁中大體積混凝土的裂縫的研究并未得到足夠的重視。本文將對此進行分析,探討裂縫出現(xiàn)的原因及控制措施。
1、大體積混凝土裂縫產生的原因
大體積混凝土結構通常具有以下特點:混凝土是脆性材料,抗拉強度只有抗壓強度的1/10左右。大體積混凝土的斷面尺寸較大,由于水泥的水化熱會使混凝土內部溫度急劇上升;以及在以后的降溫過程中,在一定的約束條件下會產生相當大的拉應力。大體積混凝土結構中通常只在表面配置少量鋼筋,或者不配鋼筋。因此,拉應力要由混凝土本身來承擔。
1.1 水泥水化熱的影響
水泥水化過程中放出大量的熱,且主要集中在澆筑后的7d左右,一般每克水泥可以放出500J左右的熱量,如果以水泥用量350Kg/m3~550 Kg/m3來計算,每m3混凝土將放出17500KJ~27500KJ的熱量,從而使混凝土內部升高。(可達70℃左右,甚至更高)。尤其對于大體積混凝土來講,這種現(xiàn)象更加嚴重。因為混凝土內部和表面的散熱條件不同,因此混凝土中心溫度很高,這樣就會形成溫度梯度,使混凝土內部產生壓應力,表面產生拉應力,當拉應力超過混凝土的極限抗拉強度時混凝土表面就會產生裂縫。
1.2 混凝土的收縮
混凝土在空氣中硬結時體積減小的現(xiàn)象稱為混凝土收縮?;炷猎诓皇芡饬Φ那闆r下的這種自發(fā)變形,受到外部約束時(支承條件、鋼筋等),將在混凝土中產生拉應力,使得混凝土開裂。引起混凝土的裂縫主要有塑性收縮、干燥收縮和溫度收縮等三種。在硬化初期主要是水泥石在水化凝固結硬過程中產生的體積變化,后期主要是混凝土內部自由水分蒸發(fā)而引起的干縮變形。
1.3 外界氣溫濕度變化的影響
大體積混凝土結構在施工期間,外界氣溫的變化對防止大體積混凝土裂縫的產生起著很大的影響?;炷羶炔康臏囟仁怯蓾仓囟?、水泥水化熱的絕熱溫升和結構的散熱溫度等各種溫度疊加之和組成。澆筑溫度與外界氣溫有著直接關系,外界氣溫愈高,混凝土的澆筑溫度也就會愈高;如果外界溫度降低則又會增加大體積混凝土的內外溫度梯度。如果外界溫度的下降過快,會造成很大的溫度應力,極其容易引發(fā)混凝土的開裂[1].另外外界的濕度對混凝土的裂縫也有很大的影響,外界的濕度降低會加速混凝土的干縮,也會導致混凝土裂縫的產生。
2、大體積混凝土裂縫的控制
2.1 大體積混凝土中水泥的品種及用量
理論研究表明大體積混凝土產生裂縫的主要原因就是水泥水化過程中釋放了大量的熱量。于是,我們對于橋梁中的大體積混凝土應該選擇低熱或者中熱的水泥品種。而水泥釋放溫度的大小及速度取決于水泥內礦物成分的不同。水泥礦物中發(fā)熱速率最快和發(fā)熱量的是鋁酸三鈣,其他成分依次為硅酸三鈣、硅酸二鈣和鐵鋁酸四鈣。另外,水泥越細發(fā)熱速率越快,但是不影響最終發(fā)熱量。因此我們在大體積混凝土施工中應盡量使用礦渣硅酸鹽水泥、火山灰水泥。我們應該充分利用混凝土的后期強度,以減少水泥的用量。因為大體積混凝土施工期限長,不可能28d向混凝土施加設計荷載,因此將試驗混凝土標準強度的齡期向后推遲至56d 或者90d 是合理的[3].這是基于這一點,國內外很多專家均提出類似的建議。這樣充分利用后期強度則可以每m3混凝土減少水泥40 Kg~70 Kg左右,混凝土內部的溫度相應降低4℃~7℃。
2.2 摻加外加料和外加劑
在大體積混凝土中摻入一定量的粉煤灰后,可以增加混凝土的密實度,提高抗?jié)B能力,改善混凝土的工作度,降低最終收縮值,減少水泥用量。要降低大體積混凝土的水泥水化熱引起的內部溫升,防止結構出現(xiàn)溫度裂縫,利用粉煤灰作混凝土的摻合料是的方法之一。外加劑可以從以下幾個方面來選擇。UFA 膨脹劑,它可以等量替換水泥。并且是混凝土產生適度的膨脹。一方面保證混凝土的密實度,另一方面使混凝土內部產生壓力,以抵消混凝土中產生的部分拉應力。減水緩凝劑,并應保證一定的坍落度。這樣可以延緩水化熱的峰值期并改善混凝土的和易性,降低水灰比以達到減少水化熱的目的。
目前,國內外對機械荷載引起的開裂問題研究得較為透徹。而對溫度荷載引起得有關裂縫的研究尚不充分。我們應對此加以重視,防止危害結構的裂縫產生。另外對于大體積混凝土內溫度應力與裂縫控制也多集中在水利工程中的大壩、高層建筑的深基礎底板。而對于橋梁中大體積混凝土的裂縫的研究并未得到足夠的重視。本文將對此進行分析,探討裂縫出現(xiàn)的原因及控制措施。
1、大體積混凝土裂縫產生的原因
大體積混凝土結構通常具有以下特點:混凝土是脆性材料,抗拉強度只有抗壓強度的1/10左右。大體積混凝土的斷面尺寸較大,由于水泥的水化熱會使混凝土內部溫度急劇上升;以及在以后的降溫過程中,在一定的約束條件下會產生相當大的拉應力。大體積混凝土結構中通常只在表面配置少量鋼筋,或者不配鋼筋。因此,拉應力要由混凝土本身來承擔。
1.1 水泥水化熱的影響
水泥水化過程中放出大量的熱,且主要集中在澆筑后的7d左右,一般每克水泥可以放出500J左右的熱量,如果以水泥用量350Kg/m3~550 Kg/m3來計算,每m3混凝土將放出17500KJ~27500KJ的熱量,從而使混凝土內部升高。(可達70℃左右,甚至更高)。尤其對于大體積混凝土來講,這種現(xiàn)象更加嚴重。因為混凝土內部和表面的散熱條件不同,因此混凝土中心溫度很高,這樣就會形成溫度梯度,使混凝土內部產生壓應力,表面產生拉應力,當拉應力超過混凝土的極限抗拉強度時混凝土表面就會產生裂縫。
1.2 混凝土的收縮
混凝土在空氣中硬結時體積減小的現(xiàn)象稱為混凝土收縮?;炷猎诓皇芡饬Φ那闆r下的這種自發(fā)變形,受到外部約束時(支承條件、鋼筋等),將在混凝土中產生拉應力,使得混凝土開裂。引起混凝土的裂縫主要有塑性收縮、干燥收縮和溫度收縮等三種。在硬化初期主要是水泥石在水化凝固結硬過程中產生的體積變化,后期主要是混凝土內部自由水分蒸發(fā)而引起的干縮變形。
1.3 外界氣溫濕度變化的影響
大體積混凝土結構在施工期間,外界氣溫的變化對防止大體積混凝土裂縫的產生起著很大的影響?;炷羶炔康臏囟仁怯蓾仓囟?、水泥水化熱的絕熱溫升和結構的散熱溫度等各種溫度疊加之和組成。澆筑溫度與外界氣溫有著直接關系,外界氣溫愈高,混凝土的澆筑溫度也就會愈高;如果外界溫度降低則又會增加大體積混凝土的內外溫度梯度。如果外界溫度的下降過快,會造成很大的溫度應力,極其容易引發(fā)混凝土的開裂[1].另外外界的濕度對混凝土的裂縫也有很大的影響,外界的濕度降低會加速混凝土的干縮,也會導致混凝土裂縫的產生。
2、大體積混凝土裂縫的控制
2.1 大體積混凝土中水泥的品種及用量
理論研究表明大體積混凝土產生裂縫的主要原因就是水泥水化過程中釋放了大量的熱量。于是,我們對于橋梁中的大體積混凝土應該選擇低熱或者中熱的水泥品種。而水泥釋放溫度的大小及速度取決于水泥內礦物成分的不同。水泥礦物中發(fā)熱速率最快和發(fā)熱量的是鋁酸三鈣,其他成分依次為硅酸三鈣、硅酸二鈣和鐵鋁酸四鈣。另外,水泥越細發(fā)熱速率越快,但是不影響最終發(fā)熱量。因此我們在大體積混凝土施工中應盡量使用礦渣硅酸鹽水泥、火山灰水泥。我們應該充分利用混凝土的后期強度,以減少水泥的用量。因為大體積混凝土施工期限長,不可能28d向混凝土施加設計荷載,因此將試驗混凝土標準強度的齡期向后推遲至56d 或者90d 是合理的[3].這是基于這一點,國內外很多專家均提出類似的建議。這樣充分利用后期強度則可以每m3混凝土減少水泥40 Kg~70 Kg左右,混凝土內部的溫度相應降低4℃~7℃。
2.2 摻加外加料和外加劑
在大體積混凝土中摻入一定量的粉煤灰后,可以增加混凝土的密實度,提高抗?jié)B能力,改善混凝土的工作度,降低最終收縮值,減少水泥用量。要降低大體積混凝土的水泥水化熱引起的內部溫升,防止結構出現(xiàn)溫度裂縫,利用粉煤灰作混凝土的摻合料是的方法之一。外加劑可以從以下幾個方面來選擇。UFA 膨脹劑,它可以等量替換水泥。并且是混凝土產生適度的膨脹。一方面保證混凝土的密實度,另一方面使混凝土內部產生壓力,以抵消混凝土中產生的部分拉應力。減水緩凝劑,并應保證一定的坍落度。這樣可以延緩水化熱的峰值期并改善混凝土的和易性,降低水灰比以達到減少水化熱的目的。