無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
數(shù)學(xué)中考主要考點篇一
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
四、與圓有關(guān)的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計算
中心角:
內(nèi)角的一半: (右圖)
(解rt△oam可求出相關(guān)元素, 、 等)
六、 一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算
七、 點的軌跡
六條基本軌跡
八、 有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、 基本圖形
十、 重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
數(shù)學(xué)中考主要考點篇二
一、平面直角坐標(biāo)系
1.各象限內(nèi)點的坐標(biāo)的特點
2.坐標(biāo)軸上點的坐標(biāo)的特點
3.關(guān)于坐標(biāo)軸、原點對稱的點的坐標(biāo)的特點
4.坐標(biāo)平面內(nèi)點與有序?qū)崝?shù)對的對應(yīng)關(guān)系
二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有
意義。
3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。
三、幾種特殊函數(shù)
(定義→圖象→性質(zhì))
1. 正比例函數(shù)
⑴定義:y=kx(k≠0) 或y/x=k。
⑵圖象:直線(過原點)
⑶性質(zhì):①k>0,…②k<0,…
2. 一次函數(shù)
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質(zhì):①k>0,…②k<0,…
⑷圖象的四種情況:
3. 二次函數(shù)
⑴定義:
特殊地, 都是二次函數(shù)。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變?yōu)? ,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質(zhì):a>0時,在對稱軸左側(cè)…,右側(cè)…;a<0時,在對稱軸左側(cè)…,右側(cè)…。
4.反比例函數(shù)
⑴定義: 或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)—用描點法畫出。
⑶性質(zhì):①k>0時,圖象位于…,y隨x…;②k<0時,圖象位于…,y隨x…;③兩支曲線無限接近于坐標(biāo)軸但永遠不能到達坐標(biāo)軸。
四、重要解題方法
1. 用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應(yīng)充分運用拋物線關(guān)于對稱軸對稱的特點,尋找新的點的坐標(biāo)。如下圖:
2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。
數(shù)學(xué)中考主要考點篇三
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應(yīng)線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。
考點4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。
考點5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用。
考點6:向量的有關(guān)概念
考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算
數(shù)學(xué)中考主要考點篇一
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
四、與圓有關(guān)的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計算
中心角:
內(nèi)角的一半: (右圖)
(解rt△oam可求出相關(guān)元素, 、 等)
六、 一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算
七、 點的軌跡
六條基本軌跡
八、 有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、 基本圖形
十、 重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
數(shù)學(xué)中考主要考點篇二
一、平面直角坐標(biāo)系
1.各象限內(nèi)點的坐標(biāo)的特點
2.坐標(biāo)軸上點的坐標(biāo)的特點
3.關(guān)于坐標(biāo)軸、原點對稱的點的坐標(biāo)的特點
4.坐標(biāo)平面內(nèi)點與有序?qū)崝?shù)對的對應(yīng)關(guān)系
二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有
意義。
3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。
三、幾種特殊函數(shù)
(定義→圖象→性質(zhì))
1. 正比例函數(shù)
⑴定義:y=kx(k≠0) 或y/x=k。
⑵圖象:直線(過原點)
⑶性質(zhì):①k>0,…②k<0,…
2. 一次函數(shù)
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質(zhì):①k>0,…②k<0,…
⑷圖象的四種情況:
3. 二次函數(shù)
⑴定義:
特殊地, 都是二次函數(shù)。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變?yōu)? ,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質(zhì):a>0時,在對稱軸左側(cè)…,右側(cè)…;a<0時,在對稱軸左側(cè)…,右側(cè)…。
4.反比例函數(shù)
⑴定義: 或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)—用描點法畫出。
⑶性質(zhì):①k>0時,圖象位于…,y隨x…;②k<0時,圖象位于…,y隨x…;③兩支曲線無限接近于坐標(biāo)軸但永遠不能到達坐標(biāo)軸。
四、重要解題方法
1. 用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應(yīng)充分運用拋物線關(guān)于對稱軸對稱的特點,尋找新的點的坐標(biāo)。如下圖:
2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。
數(shù)學(xué)中考主要考點篇三
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應(yīng)線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。
考點4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。
考點5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用。
考點6:向量的有關(guān)概念
考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算