(一)隨機(jī)現(xiàn)象
在一定條件下,并不總是出現(xiàn)相同結(jié)果的現(xiàn)象稱為隨機(jī)現(xiàn)象。拋硬幣、擲骰子是兩個最簡單的隨機(jī)現(xiàn)象的例子。拋一枚硬幣,可能出現(xiàn)正面,也可能出現(xiàn)反面,至于哪一面出現(xiàn),事先并不知道。又如擲一顆骰子,可能出現(xiàn)1點到6點中某一個,至于哪一點出現(xiàn),事先也不知道。從這個定義中可以看出,隨機(jī)現(xiàn)象有兩個特點:
(1) 隨機(jī)現(xiàn)象的結(jié)果至少有兩個;
(2) 至于哪一個出現(xiàn),事先并不知道。
只有一個結(jié)果的現(xiàn)象稱為確定性現(xiàn)象。例如,太陽從東方出,同性電荷相斥,異性電荷相吸,向上拋一石子必然下落等。
例1.1-1 以下是隨機(jī)現(xiàn)象的另外一些例子:
(1) 一天內(nèi)進(jìn)入某超市的顧客數(shù);
(2) 一顧客在超市中購買的商品數(shù);
(3) 一顧客在超市排隊等候付款的時間;
(4) 一棵麥穗上長著的麥粒數(shù);
(5) 新產(chǎn)品在未來市場的占有率;
(6) 一臺電視機(jī)從開始使用到發(fā)生第一次故障的時間;
(7) 加工某機(jī)械軸的誤差;
(8) 一罐午餐肉的重量。
可見,隨機(jī)現(xiàn)象在質(zhì)量管理中隨處可見。
認(rèn)識一個隨機(jī)現(xiàn)象首先要知道它的一切可能發(fā)生的基本結(jié)果。這里的基本結(jié)果稱為樣本點,隨機(jī)現(xiàn)象一切可能樣本點的全體稱為這個隨機(jī)現(xiàn)象的樣本空間,常記為 。
“拋一枚硬幣”的樣本空間 ={正面、反面};
“拋一顆骰子”的樣本空間 ={1,2,3,4,5,6};
“一顧客在超市中購買商品件數(shù)”的樣本空間 ={0,1,2,…};
“一臺電視機(jī)從開始使用到發(fā)生第一次故障的時間”的樣本空間 ={0,1,2,…};
“測量某物理量的誤差 ”的樣本空間 。
在一定條件下,并不總是出現(xiàn)相同結(jié)果的現(xiàn)象稱為隨機(jī)現(xiàn)象。拋硬幣、擲骰子是兩個最簡單的隨機(jī)現(xiàn)象的例子。拋一枚硬幣,可能出現(xiàn)正面,也可能出現(xiàn)反面,至于哪一面出現(xiàn),事先并不知道。又如擲一顆骰子,可能出現(xiàn)1點到6點中某一個,至于哪一點出現(xiàn),事先也不知道。從這個定義中可以看出,隨機(jī)現(xiàn)象有兩個特點:
(1) 隨機(jī)現(xiàn)象的結(jié)果至少有兩個;
(2) 至于哪一個出現(xiàn),事先并不知道。
只有一個結(jié)果的現(xiàn)象稱為確定性現(xiàn)象。例如,太陽從東方出,同性電荷相斥,異性電荷相吸,向上拋一石子必然下落等。
例1.1-1 以下是隨機(jī)現(xiàn)象的另外一些例子:
(1) 一天內(nèi)進(jìn)入某超市的顧客數(shù);
(2) 一顧客在超市中購買的商品數(shù);
(3) 一顧客在超市排隊等候付款的時間;
(4) 一棵麥穗上長著的麥粒數(shù);
(5) 新產(chǎn)品在未來市場的占有率;
(6) 一臺電視機(jī)從開始使用到發(fā)生第一次故障的時間;
(7) 加工某機(jī)械軸的誤差;
(8) 一罐午餐肉的重量。
可見,隨機(jī)現(xiàn)象在質(zhì)量管理中隨處可見。
認(rèn)識一個隨機(jī)現(xiàn)象首先要知道它的一切可能發(fā)生的基本結(jié)果。這里的基本結(jié)果稱為樣本點,隨機(jī)現(xiàn)象一切可能樣本點的全體稱為這個隨機(jī)現(xiàn)象的樣本空間,常記為 。
“拋一枚硬幣”的樣本空間 ={正面、反面};
“拋一顆骰子”的樣本空間 ={1,2,3,4,5,6};
“一顧客在超市中購買商品件數(shù)”的樣本空間 ={0,1,2,…};
“一臺電視機(jī)從開始使用到發(fā)生第一次故障的時間”的樣本空間 ={0,1,2,…};
“測量某物理量的誤差 ”的樣本空間 。