五、達(dá)朗伯原理
達(dá)朗伯原理是一種解決非自由質(zhì)點(diǎn)系動(dòng)力學(xué)問題的普遍方法。這種方法將質(zhì)點(diǎn)系的慣性力虛加在質(zhì)點(diǎn)系上,使動(dòng)力學(xué)問題可以應(yīng)用靜力學(xué)寫平衡方程的方法來求解,故稱為動(dòng)靜法,動(dòng)靜法在工程技術(shù)中得到廣泛的應(yīng)用。
(一)慣性力
當(dāng)質(zhì)點(diǎn)受到其他物體的作用而改變其原來運(yùn)動(dòng)狀態(tài)時(shí),由于質(zhì)點(diǎn)的慣性產(chǎn)生對(duì)施力物體的反作用力,稱為質(zhì)點(diǎn)的慣性力。慣性力的大小等于質(zhì)點(diǎn)的質(zhì)量與其加速度的乘積,方向與加速度的方向相反,并作用在施力物體上。慣性力的表達(dá)式為

(二)達(dá)朗伯原理
在非自由質(zhì)點(diǎn)M運(yùn)動(dòng)中的每一瞬時(shí),作用于質(zhì)點(diǎn)的主動(dòng)力F、約束反力N和該質(zhì)點(diǎn)的慣性力FI構(gòu)成一假想的平衡力系。這就是質(zhì)點(diǎn)達(dá)朗伯原理,其表達(dá)式為
達(dá)朗伯原理是一種解決非自由質(zhì)點(diǎn)系動(dòng)力學(xué)問題的普遍方法。這種方法將質(zhì)點(diǎn)系的慣性力虛加在質(zhì)點(diǎn)系上,使動(dòng)力學(xué)問題可以應(yīng)用靜力學(xué)寫平衡方程的方法來求解,故稱為動(dòng)靜法,動(dòng)靜法在工程技術(shù)中得到廣泛的應(yīng)用。
(一)慣性力
當(dāng)質(zhì)點(diǎn)受到其他物體的作用而改變其原來運(yùn)動(dòng)狀態(tài)時(shí),由于質(zhì)點(diǎn)的慣性產(chǎn)生對(duì)施力物體的反作用力,稱為質(zhì)點(diǎn)的慣性力。慣性力的大小等于質(zhì)點(diǎn)的質(zhì)量與其加速度的乘積,方向與加速度的方向相反,并作用在施力物體上。慣性力的表達(dá)式為

(二)達(dá)朗伯原理
在非自由質(zhì)點(diǎn)M運(yùn)動(dòng)中的每一瞬時(shí),作用于質(zhì)點(diǎn)的主動(dòng)力F、約束反力N和該質(zhì)點(diǎn)的慣性力FI構(gòu)成一假想的平衡力系。這就是質(zhì)點(diǎn)達(dá)朗伯原理,其表達(dá)式為
