2013中考數(shù)學(xué)輔導(dǎo),有關(guān)數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn),為大家進(jìn)行系統(tǒng)整理,希望對(duì)考生有所幫助。
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角