這篇人教版初二數(shù)學(xué)上冊知識點歸納總結(jié)的文章,是特地為大家整理的,希望對大家有所幫助!
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的公約數(shù)·相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負(fù)號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式
分式
Apq22”.
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為B的形式,如果B
A
中含有字母,式子B 叫做分式.
整式有理式分式2.有理式:整式與分式統(tǒng)稱有理式;即 .
3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;
(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質(zhì)與應(yīng)用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變; 即
分子分母
分子分母
分子分母
分子分母
(3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單. 5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結(jié)果要求化為最簡分式.
acac,bdbd7.分式的乘除法法則:
n
n
a
b
cd
adad
bcbc
.
aa
n.(n為正整數(shù))
b
8.分式的乘方:b
.
9.負(fù)整指數(shù)計算法則:
1
(1)公式: a0=1(a≠0), a-n=a (a≠0); (2)正整指數(shù)的運算法則都可用于負(fù)整指數(shù)計算;
a
(3)公式:b
n
n
ba
n
a
nm
,b
ba
mn
;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母. 11.最簡公分母的確定:系數(shù)的最小公倍數(shù)·相同因式的次冪.
a
bc
abc
ab
cd
adbd
bcbd
adbcbd
12.同分母與異分母的分式加減法法則:
c
;
.
13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認(rèn)這個代數(shù)式的值不為0.
15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.
18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗增根”的程序.
數(shù)的開方
1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質(zhì):
(1)正數(shù)的平方根是一對相反數(shù);
(2)0的平方根還是0;
(3)負(fù)數(shù)沒有平方根.
3.平方根的表示方法:a的平方根表示為
也可以認(rèn)為是一個數(shù)開二次方的運算.
4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為
平方根還是0.
5.三個重要非負(fù)數(shù): a2≥0 ,|a|≥0 ,
0.
6.兩個重要公式:
(1) a
a2a和a.注意:a可以看作是一個數(shù),a.注意:0的算術(shù)a≥0 .注意:非負(fù)數(shù)之和為0,說明它們都是2a; (a≥0)
(2) (a0)aaa(a0) .
7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為
8.立方根的性質(zhì):
(1)正數(shù)的立方根是一個正數(shù);
(2)0的立方根還是0;
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的公約數(shù)·相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負(fù)號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式
分式
Apq22”.
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為B的形式,如果B
A
中含有字母,式子B 叫做分式.
整式有理式分式2.有理式:整式與分式統(tǒng)稱有理式;即 .
3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;
(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質(zhì)與應(yīng)用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變; 即
分子分母
分子分母
分子分母
分子分母
(3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單. 5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結(jié)果要求化為最簡分式.
acac,bdbd7.分式的乘除法法則:
n
n
a
b
cd
adad
bcbc
.
aa
n.(n為正整數(shù))
b
8.分式的乘方:b
.
9.負(fù)整指數(shù)計算法則:
1
(1)公式: a0=1(a≠0), a-n=a (a≠0); (2)正整指數(shù)的運算法則都可用于負(fù)整指數(shù)計算;
a
(3)公式:b
n
n
ba
n
a
nm
,b
ba
mn
;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母. 11.最簡公分母的確定:系數(shù)的最小公倍數(shù)·相同因式的次冪.
a
bc
abc
ab
cd
adbd
bcbd
adbcbd
12.同分母與異分母的分式加減法法則:
c
;
.
13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認(rèn)這個代數(shù)式的值不為0.
15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.
18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗增根”的程序.
數(shù)的開方
1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質(zhì):
(1)正數(shù)的平方根是一對相反數(shù);
(2)0的平方根還是0;
(3)負(fù)數(shù)沒有平方根.
3.平方根的表示方法:a的平方根表示為
也可以認(rèn)為是一個數(shù)開二次方的運算.
4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為
平方根還是0.
5.三個重要非負(fù)數(shù): a2≥0 ,|a|≥0 ,
0.
6.兩個重要公式:
(1) a
a2a和a.注意:a可以看作是一個數(shù),a.注意:0的算術(shù)a≥0 .注意:非負(fù)數(shù)之和為0,說明它們都是2a; (a≥0)
(2) (a0)aaa(a0) .
7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為
8.立方根的性質(zhì):
(1)正數(shù)的立方根是一個正數(shù);
(2)0的立方根還是0;