2013年天津高考數(shù)學(文)試題(真題)

字號:

這篇關于2013年天津高考數(shù)學(文)試題(真題),是特地為大家整理的,希望對大家有所幫助!
    2013年普通高等學校招生全國統(tǒng)一考試(天津卷)
    文 科 數(shù) 學
    本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分, 共150分. 考試用時120分鐘. 第Ⅰ卷1至2頁, 第Ⅱ卷3至5頁.
    答卷前, 考生務必將自己的姓名、準考證號填寫在答題卡上, 并在規(guī)定位置粘貼考試用條形碼. 答卷時, 考生務必將答案凃?qū)懺诖痤}卡上, 答在試卷上的無效. 考試結束后, 將本試卷和答題卡一并交回.
    祝各位考生考試順利!
    第Ⅰ卷
    注意事項:
    1.每小題選出答案后, 用鉛筆將答題卡上對應題目的答案標號涂黑. 如需改動, 用橡皮擦干凈后, 再選凃其他答案標號.
    2.本卷共8小題, 每小題5分, 共40分.
    參考公式:
    •如果事件A, B互斥, 那么
    •棱柱的體積公式V = Sh,
    其中S表示棱柱的底面面積, h表示棱柱的高.
    •如果事件A, B相互獨立, 那么
    •球的體積公式
    其中R表示球的半徑.
    一.選擇題: 在每小題給出的四個選項中,只有一項是符合題目要求的.
    (1) 已知集合A = {x∈R| |x|≤2}, A = {x∈R| x≤1}, 則
    (A) (B) [1,2](C) [-2,2](D) [-2,1]
    (2) 設變量x, y滿足約束條件 則目標函數(shù)z = y-2x的最小值為
    (A) -7(B) -4
    (C) 1(D) 2
     (3) 閱讀右邊的程序框圖, 運行相應的程序, 則輸出n的值為
    (A) 7(B) 6
    (C) 5(D) 4
    (4) 設 , 則 “ ”是“ ”的
    (A) 充分而不必要條件
    (B) 必要而不充分條件
    (C) 充要條件
    (D) 既不充分也不必要條件
    (5) 已知過點P(2,2) 的直線與圓 相切, 且與直線 垂直, 則
    (A) (B) 1
    (C) 2(D)
    (6) 函數(shù) 在區(qū)間 上的最小值是
    (A) (B)
    (C) (D) 0
    (7) 已知函數(shù) 是定義在R上的偶函數(shù), 且在區(qū)間 單調(diào)遞增. 若實數(shù)a滿足 , 則a的取值范圍是
    (A) (B)
    (C) (D)
    (8) 設函數(shù) . 若實數(shù)a, b滿足 , 則
    (A) (B)
    (C) (D)
    2013年普通高等學校招生全國統(tǒng)一考試(天津卷)
    文 科 數(shù) 學
    第Ⅱ卷
    注意事項:
    1. 用黑色墨水的鋼筆或簽字筆將答案寫在答題卡上.
    2. 本卷共12小題, 共110分.
    二.填空題: 本大題共6小題, 每小題5分, 共30分.
    (9) i是虛數(shù)單位. 復數(shù)(3 + i)(1-2i) = .
    (10) 已知一個正方體的所有頂點在一個球面上. 若球的體積為 , 則正方體的棱長為 .
    (11) 已知拋物線 的準線過雙曲線 的一個焦點, 且雙曲線的離心率為2, 則該雙曲線的方程為 .
    (12) 在平行四邊形ABCD中, AD = 1, , E為CD的中點. 若 , 則AB的長為 .
    (13) 如圖, 在圓內(nèi)接梯形ABCD中, AB//DC, 過點A作圓的切線與CB的延長線交于點E. 若AB = AD = 5, BE = 4, 則弦BD的長為 .
    (14) 設a + b = 2, b>0, 則 的最小值為 .
    三.解答題: 本大題共6小題, 共70分. 解答應寫出文字說明, 證明過程或演算步驟.
    (15) (本小題滿分13分)
    某產(chǎn)品的三個質(zhì)量指標分別為x, y, z, 用綜合指標S = x + y + z評價該產(chǎn)品的等級. 若S≤4, 則該產(chǎn)品為一等品. 先從一批該產(chǎn)品中, 隨機抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標列表如下:
    產(chǎn)品編號A1A2A3A4A5
    質(zhì)量指標(x, y, z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)
    產(chǎn)品編號A6A7A8A9A10
    質(zhì)量指標(x, y, z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)
    (Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
    (Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產(chǎn)品,
    (⒈) 用產(chǎn)品編號列出所有可能的結果;
    (⒉) 設事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4”, 求事件B發(fā)生的概率.
    (16) (本小題滿分13分)
    在△ABC中, 內(nèi)角A, B, C所對的邊分別是a, b, c. 已知 , a = 3, .
    (Ⅰ) 求b的值;
    (Ⅱ) 求 的值.
    (17) (本小題滿分13分)
    如圖, 三棱柱ABC-A1B1C1中, 側棱A1A⊥底面ABC,且各棱長均相等. D, E, F分別為棱AB, BC, A1C1的中點.
    (Ⅰ) 證明EF//平面A1CD;
    (Ⅱ) 證明平面A1CD⊥平面A1ABB1;
    (Ⅲ) 求直線BC與平面A1CD所成角的正弦值.
    (18) (本小題滿分13分)
    設橢圓 的左焦點為F, 離心率為 , 過點F且與x軸垂直的直線被橢圓截得的線段長為 .
    (Ⅰ) 求橢圓的方程;
    (Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若 , 求k的值.
    (19) (本小題滿分14分)
    已知首項為 的等比數(shù)列 的前n項和為 , 且 成等差數(shù)列.
    (Ⅰ) 求數(shù)列 的通項公式;
    (Ⅱ) 證明 .
    (20) (本小題滿分14分)
    設 , 已知函數(shù)
    (Ⅰ) 證明 在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
    (Ⅱ) 設曲線 在點 處的切線相互平行, 且 證明 .