參考答案
第3章 直棱柱
6.(1)n2-1,2n,n2+1(2)是直角三角形,因為(n2-1)2+(2n)2=(n2+1)2
【3.1】
【2.7】1.直,斜,長方形(或正方形) 2.8,12,6,長方形1.BC=EF 或AC=DF 或∠A=∠D 或∠B=∠E 2.略3.直五棱柱,7,10,3 4.B3.全等,依據(jù)是“HL”5.(答案不)如:都是直棱柱;經(jīng)過每個頂點都有3條棱;側面都是長方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5個面,兩個底面是形狀、面積相同的三角形,三個側面都是形∴ ∠AEC=90°,即△AEC 是等腰直角三角形狀、面積完全相同的長方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9條棱,總長度為(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,7. 正多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E) V+F-E∴ OA=OB正四面體6.DF4462⊥BC.理由如下:由已知可得 Rt△BCE≌Rt△DAE,正六面體∴ ∠B=∠D,從而∠D+∠C=∠B+∠C=90°86122正八面體68122復習題正十二面體2012302正二十面體1.A1220302 2.D 3.22 4.13或 槡119 5.B 6.等腰符合歐拉公式7.72°,72°,4 8.槡7 9.64°10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.
【3.2】又∵ BD=EC, ∴ △ABD≌△ACE. ∴ AB=AC1.C11.48 2.直四棱柱 3.6,7 12.B13.連結BC. ∵ AB=AC, ∴ ∠ABC=∠ACB.4.(1)2條 (2)槡5 5.C又∵ ∠ABD=∠ACD, ∴ ∠DBC=∠DCB. ∴ BD=CD6.表面展開圖如圖.它的側面積是14.25(π15+2+2.5)33=18(cm2);15.連結BC,則Rt它的表面積是△ABC≌Rt△DCB, ∴ ∠ACB=∠DBC,從而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+123153232=21(cm2)可得BE=4cm.在 Rt△BED 中,42+CD2=(8-CD)2,解得CD=3cm
【3.3】(第6題)1.②,③,④,① 2.C52 3.圓柱圓錐球4.b 5.B 6.B 7.示意圖如圖從正面看 長方形三角形圓8.D 9.(1)面F (2)面C (3)面A從側面看 長方形三角形圓10.藍,黃從上面看圓圓和圓心圓4.B 5.示意圖如圖 6.示意圖如圖11.如圖(第11題)(第7題)
第3章 直棱柱
6.(1)n2-1,2n,n2+1(2)是直角三角形,因為(n2-1)2+(2n)2=(n2+1)2
【3.1】
【2.7】1.直,斜,長方形(或正方形) 2.8,12,6,長方形1.BC=EF 或AC=DF 或∠A=∠D 或∠B=∠E 2.略3.直五棱柱,7,10,3 4.B3.全等,依據(jù)是“HL”5.(答案不)如:都是直棱柱;經(jīng)過每個頂點都有3條棱;側面都是長方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5個面,兩個底面是形狀、面積相同的三角形,三個側面都是形∴ ∠AEC=90°,即△AEC 是等腰直角三角形狀、面積完全相同的長方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9條棱,總長度為(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,7. 正多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E) V+F-E∴ OA=OB正四面體6.DF4462⊥BC.理由如下:由已知可得 Rt△BCE≌Rt△DAE,正六面體∴ ∠B=∠D,從而∠D+∠C=∠B+∠C=90°86122正八面體68122復習題正十二面體2012302正二十面體1.A1220302 2.D 3.22 4.13或 槡119 5.B 6.等腰符合歐拉公式7.72°,72°,4 8.槡7 9.64°10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.
【3.2】又∵ BD=EC, ∴ △ABD≌△ACE. ∴ AB=AC1.C11.48 2.直四棱柱 3.6,7 12.B13.連結BC. ∵ AB=AC, ∴ ∠ABC=∠ACB.4.(1)2條 (2)槡5 5.C又∵ ∠ABD=∠ACD, ∴ ∠DBC=∠DCB. ∴ BD=CD6.表面展開圖如圖.它的側面積是14.25(π15+2+2.5)33=18(cm2);15.連結BC,則Rt它的表面積是△ABC≌Rt△DCB, ∴ ∠ACB=∠DBC,從而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+123153232=21(cm2)可得BE=4cm.在 Rt△BED 中,42+CD2=(8-CD)2,解得CD=3cm
【3.3】(第6題)1.②,③,④,① 2.C52 3.圓柱圓錐球4.b 5.B 6.B 7.示意圖如圖從正面看 長方形三角形圓8.D 9.(1)面F (2)面C (3)面A從側面看 長方形三角形圓10.藍,黃從上面看圓圓和圓心圓4.B 5.示意圖如圖 6.示意圖如圖11.如圖(第11題)(第7題)