第一章 勾股定理
1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;即 。
2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。
3.勾股定理逆定理:如果三角形的三邊長 , , 滿足 ,那么這個三角形是直角三角形。滿足 的三個正整數(shù)稱為勾股數(shù)。
第二章 實數(shù)
1.平方根和算術平方根的概念及其性質:
(1)概念:如果 ,那么 是 的平方根,記作: ;其中 叫做 的算術平方根。
(2)性質:①當 ≥0時, ≥0;當 <0時, 無意義;② = ;③ 。
2.立方根的概念及其性質:
(1)概念:若 ,那么 是 的立方根,記作: ;
(2)性質:① ;② ;③ =
3.實數(shù)的概念及其分類:
(1)概念:實數(shù)是有理數(shù)和無理數(shù)的統(tǒng)稱;
(2)分類:按定義分為有理數(shù)可分為整數(shù)的分數(shù);按性質分為正數(shù)、負數(shù)和零。無理數(shù)就是無限不循環(huán)小數(shù);小數(shù)可分為有限小數(shù)、無限循環(huán)小數(shù)和無限不循環(huán)小數(shù);其中有限小數(shù)和無限循環(huán)小數(shù)稱為分數(shù)。
4.與實數(shù)有關的概念: 在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義與有理數(shù)范圍內(nèi)的意義完全一致;在實數(shù)范圍內(nèi),有理數(shù)的運算法則和運算律同樣成立。每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù),即實數(shù)和數(shù)軸上的點是一一對應的。因此,數(shù)軸正好可以被實數(shù)填滿。
5.算術平方根的運算律: ( ≥0, ≥0); ( ≥0, >0)。
第三章 圖形的平移與旋轉
1.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。
2.旋轉:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。
1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;即 。
2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。
3.勾股定理逆定理:如果三角形的三邊長 , , 滿足 ,那么這個三角形是直角三角形。滿足 的三個正整數(shù)稱為勾股數(shù)。
第二章 實數(shù)
1.平方根和算術平方根的概念及其性質:
(1)概念:如果 ,那么 是 的平方根,記作: ;其中 叫做 的算術平方根。
(2)性質:①當 ≥0時, ≥0;當 <0時, 無意義;② = ;③ 。
2.立方根的概念及其性質:
(1)概念:若 ,那么 是 的立方根,記作: ;
(2)性質:① ;② ;③ =
3.實數(shù)的概念及其分類:
(1)概念:實數(shù)是有理數(shù)和無理數(shù)的統(tǒng)稱;
(2)分類:按定義分為有理數(shù)可分為整數(shù)的分數(shù);按性質分為正數(shù)、負數(shù)和零。無理數(shù)就是無限不循環(huán)小數(shù);小數(shù)可分為有限小數(shù)、無限循環(huán)小數(shù)和無限不循環(huán)小數(shù);其中有限小數(shù)和無限循環(huán)小數(shù)稱為分數(shù)。
4.與實數(shù)有關的概念: 在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義與有理數(shù)范圍內(nèi)的意義完全一致;在實數(shù)范圍內(nèi),有理數(shù)的運算法則和運算律同樣成立。每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù),即實數(shù)和數(shù)軸上的點是一一對應的。因此,數(shù)軸正好可以被實數(shù)填滿。
5.算術平方根的運算律: ( ≥0, ≥0); ( ≥0, >0)。
第三章 圖形的平移與旋轉
1.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。
2.旋轉:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。