2016年高考數(shù)學(xué)專(zhuān)項(xiàng)練習(xí)試題及答案(7)

字號(hào):

一、非標(biāo)準(zhǔn)
    1.若不等式|2x-1|+|x+2|≥a2+a+2對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
    2.(2014江西,文15改編)x,yR,若|x|+|y|+|x-1|+|y-1|≤2,求x+y的取值范圍.
    3.若對(duì)任意的aR,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,求實(shí)數(shù)x的取值范圍.
    4.已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m.若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.
    5.已知x,y,zR+,且x+y+z=1,求的最小值.
    6.(2014江蘇,21)已知x>0,y>0,證明:(1+x+y2)(1+x2+y)≥9xy.
    7.已知a, b,cR,a+2b+3c=6,求a2+4b2+9c2的最小值.
    8.若存在實(shí)數(shù)x使|x-a|+|x-1|≤3成立,求實(shí)數(shù)a的取值范圍.
    9.已知f(x)=|x+a|+|x-2|.
    (1)當(dāng)a=-1時(shí),解關(guān)于x的不等式f(x)>5;
    (2)已知關(guān)于x的不等式f(x)+a<2014(a是常數(shù))的解集是非空集合,求實(shí)數(shù)a的取值范圍.
    10.(2014河南鄭州模擬)已知函數(shù)f(x)=|x-a|.
    (1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
    (2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
    一、非標(biāo)準(zhǔn)
    1.解:令f(x)=|2x-1|+|x+2|=可求得f(x)的最小值為,故原不等式恒成立轉(zhuǎn)化為a2+a+2≤恒成立,即a2+≤0,
    即(a+1)≤0,
    解得a.
    2.解:|x|+|x-1|≥|x-(x-1)|=1,當(dāng)且僅當(dāng)0≤x≤1時(shí)取等號(hào),
    |y|+|y-1|≥|y-(y-1)|=1,當(dāng)且僅當(dāng)0≤y≤1時(shí)取等號(hào),
    |x|+|y|+|x-1|+|y-1|≥2.①
    又|x|+|y|+|x-1|+|y-1|≤2,②
    ∴只有當(dāng)0≤x≤1,0≤y≤1時(shí),兩式同時(shí)成立.
    0≤x+y≤2.
    3.解:由|1+a|-|1-a|≤2,
    得|x|+|x-1|≥2.
    當(dāng)x<0時(shí),-x+1-x≥2,x≤-.
    當(dāng)0≤x≤1時(shí),x+1-x≥2,無(wú)解.
    當(dāng)x>1時(shí),x+x-1≥2,x≥.
    綜上,x≤-或x≥.
    4.解:函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,即|x-2|>-|x+3|+m對(duì)任意實(shí)數(shù)x恒成立,
    即|x-2|+|x+3|>m恒成立.
    因?yàn)閷?duì)任意實(shí)數(shù)x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,所以m<5,即m的取值范圍是(-∞,5).
    5.解法一:由于(x+y+z)
    ≥
    =36.
    所以≥36,最小值為36.
    當(dāng)且僅當(dāng)x2=y2=z2,
    即x=,y=,z=時(shí),等號(hào)成立.
    解法二:
    =(x+y+z)+(x+y+z)+(x+y+z)
    =14+≥14+4+6+12=36.最小值為36.
    當(dāng)且僅當(dāng)y=2x,z=3x,即x=,y=,z=時(shí),等號(hào)成立.
    6.證明:因?yàn)閤>0,y>0,
    所以1+x+y2≥3>0,
    1+x2+y≥3>0,
    故(1+x+y2)(1+x2+y)
    ≥3·3=9xy.
    7.解法一:(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),
    ∴a2+4b2+9c2
    ≥(a+2b+3c)2==12.
    ∴a2+4b2+9c2的最小值為12.
    解法二:由柯西不等式,
    得(a2+4b2+9c2)·(12+12+12)
    ≥(a·1+2b·1+3c·1)2=36,
    故a2+4b2+9c2≥12,
    從而a2+4b2+9c2的最小值為12.
    8.解:利用絕對(duì)值不等式的性質(zhì)求解.
    |x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,
    要使|x-a|+|x-1|≤3有解,
    可使|a-1|≤3,-3≤a-1≤3,
    ∴-2≤a≤4.
    9.解:(1)構(gòu)造函數(shù)g(x)=|x-1|+|x-2|-5,則g(x)=
    令g(x)>0,則x<-1或x>4,
    原不等式的解集為(-∞,-1)(4,+∞).
    (2)∵f(x)+a=|x+a|+|x-2|+a≥|a+2|+a,
    又關(guān)于x的不等式f(x)+a<2014的解集是非空集合,
    |a+2|+a<2014,解得a<1006.
    10.解:(1)由f(x)≤3,得|x-a|≤3,
    解得a-3≤x≤a+3.
    又已知不等式f(x)≤3的解集為{x|-1≤x≤5},
    所以解得a=2.
    (2)當(dāng)a=2時(shí),f(x)=|x-2|,
    設(shè)g(x)=f(x)+f(x+5),
    于是g(x)=|x-2|+|x+3|
    =
    所以當(dāng)x<-3時(shí),g(x)>5;
    當(dāng)-3≤x≤2時(shí),g(x)=5;
    當(dāng)x>2時(shí),g(x)>5.
    綜上可得,g(x)的最小值為5.
    從而若f(x)+f(x+5)≥m,
    即g(x)≥m對(duì)一切實(shí)數(shù)x恒成立,則m的取值范圍為(-∞,5].