實數(shù):
—有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
有理數(shù):
整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
無理數(shù):
無理數(shù)是指無限不循環(huán)小數(shù)。
自然數(shù):
表示物體的個數(shù)0、1、2、3、4~(0包括在內(nèi))都稱為自然數(shù)。
數(shù)軸:
規(guī)定了圓點、正方向和單位長度的直線叫做數(shù)軸。
相反數(shù):
符號不同的兩個數(shù)互為相反數(shù)。
倒數(shù):
乘積是1的兩個數(shù)互為倒數(shù)。
絕對值:
數(shù)軸上表示數(shù)a的點與圓點的距離稱為a的絕對值。一個正數(shù)的絕對值是本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
數(shù)學(xué)定理公式
有理數(shù)的運算法則
⑴加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
⑵減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
⑶乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)與0相乘都得0。
⑷除法法則:除以一個數(shù)等于乘上這個數(shù)的倒數(shù);兩數(shù)相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數(shù),都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數(shù)學(xué)第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,并且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關(guān)系和數(shù)量關(guān)系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成“把一個角的兩邊反向延長而形成的兩個角叫做對頂角”。
對頂角的性質(zhì):對頂角相等。
三、垂直
1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b
垂直是相交的一種特殊情形。
2、垂線的性質(zhì):
①過一點有且只有一條直線與已知直線垂直;
②連接直線外一點與直線上各點的所有線段中,垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)
4、空間的垂直關(guān)系
四、平行線
1、 平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。記做a‖b
2、 “三線八角”:兩條直線被第三條直線所截形成的
① 同位角:“同方同位”即在兩條直線的上方或下方,在第三條直線的同一側(cè)。
② 內(nèi)錯角:“之間兩側(cè)”即在兩條直線之間,在第三條直線的兩側(cè)。
③ 同旁內(nèi)角“之間同旁”即在兩條直線之間,在第三條直線的同旁。
3、 平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、 平行線的判定方法
① 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
② 兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行;
③ 兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行;
④ 平行于同一條直線的兩條直線平行;
⑤ 垂直于同一條直線的兩條直線平行。
5、 平行線的性質(zhì):
①兩條平行線被第三條直線所截,同位角相等;
②兩條平行線被第三條直線所截,內(nèi)錯角相等;
③兩條平行線被第三條直線所截,同旁內(nèi)角互補。
6、 兩條平行線的距離:同時垂直于兩條平行線并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。
7、 命題:判斷一件事情的語句,叫做命題,由題設(shè)和結(jié)論兩部分組成。
五平移
1、平移:在平面內(nèi)將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②“將一個圖形沿某個方向移動一定的距離”意味著“圖形上的每一點都沿著同一方向移動了相同的距離 ”這也是判斷一種運動是否為平移的關(guān)鍵。③圖形平移的方向,不一定是水平的
2、平移的性質(zhì):經(jīng)過平移,對應(yīng)線段、對應(yīng)角分別相等,對應(yīng)點所連的線段平行且相等。
—有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
有理數(shù):
整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
無理數(shù):
無理數(shù)是指無限不循環(huán)小數(shù)。
自然數(shù):
表示物體的個數(shù)0、1、2、3、4~(0包括在內(nèi))都稱為自然數(shù)。
數(shù)軸:
規(guī)定了圓點、正方向和單位長度的直線叫做數(shù)軸。
相反數(shù):
符號不同的兩個數(shù)互為相反數(shù)。
倒數(shù):
乘積是1的兩個數(shù)互為倒數(shù)。
絕對值:
數(shù)軸上表示數(shù)a的點與圓點的距離稱為a的絕對值。一個正數(shù)的絕對值是本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
數(shù)學(xué)定理公式
有理數(shù)的運算法則
⑴加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
⑵減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
⑶乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)與0相乘都得0。
⑷除法法則:除以一個數(shù)等于乘上這個數(shù)的倒數(shù);兩數(shù)相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數(shù),都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數(shù)學(xué)第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,并且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關(guān)系和數(shù)量關(guān)系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成“把一個角的兩邊反向延長而形成的兩個角叫做對頂角”。
對頂角的性質(zhì):對頂角相等。
三、垂直
1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b
垂直是相交的一種特殊情形。
2、垂線的性質(zhì):
①過一點有且只有一條直線與已知直線垂直;
②連接直線外一點與直線上各點的所有線段中,垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)
4、空間的垂直關(guān)系
四、平行線
1、 平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。記做a‖b
2、 “三線八角”:兩條直線被第三條直線所截形成的
① 同位角:“同方同位”即在兩條直線的上方或下方,在第三條直線的同一側(cè)。
② 內(nèi)錯角:“之間兩側(cè)”即在兩條直線之間,在第三條直線的兩側(cè)。
③ 同旁內(nèi)角“之間同旁”即在兩條直線之間,在第三條直線的同旁。
3、 平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、 平行線的判定方法
① 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
② 兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行;
③ 兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行;
④ 平行于同一條直線的兩條直線平行;
⑤ 垂直于同一條直線的兩條直線平行。
5、 平行線的性質(zhì):
①兩條平行線被第三條直線所截,同位角相等;
②兩條平行線被第三條直線所截,內(nèi)錯角相等;
③兩條平行線被第三條直線所截,同旁內(nèi)角互補。
6、 兩條平行線的距離:同時垂直于兩條平行線并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。
7、 命題:判斷一件事情的語句,叫做命題,由題設(shè)和結(jié)論兩部分組成。
五平移
1、平移:在平面內(nèi)將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②“將一個圖形沿某個方向移動一定的距離”意味著“圖形上的每一點都沿著同一方向移動了相同的距離 ”這也是判斷一種運動是否為平移的關(guān)鍵。③圖形平移的方向,不一定是水平的
2、平移的性質(zhì):經(jīng)過平移,對應(yīng)線段、對應(yīng)角分別相等,對應(yīng)點所連的線段平行且相等。