初中數(shù)學(xué)教案:平方差公式

字號:

教學(xué)目標(biāo)
    1.使學(xué)生理解和掌握平方差公式,并會用公式進行計算;
    2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力.
    教學(xué)重點和難點
    重點:平方差公式的應(yīng)用.
    難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
    教學(xué)過程設(shè)計
    一、師生共同研究平方差公式
    我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
    讓學(xué)生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進一步思考:
    兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
    (當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)
    繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
    在此基礎(chǔ)上,讓學(xué)生用語言敘述公式.
    二、運用舉例 變式練習(xí)
    例1 計算(1+2x)(1-2x).
    解:(1+2x)(1-2x)
    =12-(2x)2
    =1-4x2.
    教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么.
    例2 計算(b2+2a3)(2a3-b2).
    解:(b2+2a3)(2a3-b2)
    =(2a3+b2)(2a3-b2)
    =(2a3)2-(b2)2
    =4a6-b4.
    教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
    課堂練習(xí)
    運用平方差公式計算:
    (l)(x+a)(x-a);    (2)(m+n)(m-n);
    (3)(a+3b)(a-3b);   (4)(1-5y)(l+5y).
    例3 計算(-4a-1)(-4a+1).
    讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進行板演.
    解法1:(-4a-1)(-4a+1)
    =[-(4a+l)][-(4a-l)]
    =(4a+1)(4a-l)
    =(4a)2-l2
    =16a2-1.
    解法2:(-4a-l)(-4a+l)
    =(-4a)2-l
    =16a2-1.
    根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案.
    課堂練習(xí)
    1.口答下列各題:
    (l)(-a+b)(a+b);    (2)(a-b)(b+a);
    (3)(-a-b)(-a+b);    (4)(a-b)(-a-b).
    2.計算下列各題:
    (1)(4x-5y)(4x+5y);  (2)(-2x2+5)(-2x2-5);
    教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法.
    三、小結(jié)
    1.什么是平方差公式?
    2.運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形.
    四、作業(yè)
    1.運用平方差公式計算:
    (l)(x+2y)(x-2y);      (2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);     (4)(-2b-5)(2b-5);
    (5)(2x3+15)(2x3-15);    (6)(0.3x-0.l)(0.3x+l);
    2.計算:
    (1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
    (3)x(x-3)-(x+7)(x-7);    (4)(2x-5)(x-2)+(3x-4)(3x+4).