初二上冊(cè)數(shù)學(xué)書答案(2016)

字號(hào):

第四章四邊形性質(zhì)探索復(fù)習(xí)題
    1、如圖1,菱形ABCD的對(duì)角線的長(zhǎng)分別為2和5,P是對(duì)角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)
    A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是_______.
    2、如圖,矩形ABCD中,AB=3,BC=4,如果將該矩形沿對(duì)角線BD折疊那么圖中陰影部分的面積是 .
    3、如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,且AC⊥BD,AF是梯形的高,梯形面積是49cm2,則AF= ;
    4、已知:如圖,矩形ABCD的長(zhǎng)和寬分別為2和1,以D為圓心,AD為半徑作AE弧,再以AB的中點(diǎn)F為圓心,F(xiàn)B長(zhǎng)為半徑作BE弧,則陰影部分的面積為 ;
    5、如圖2,在四邊形ABCD中,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),請(qǐng)?zhí)砑右粋€(gè)條件,使四邊形EFGH為菱形,并說明理由.
    解:添加的條件:
    理由:
    6、如圖,一個(gè)長(zhǎng)方形被劃分成大小不等的6個(gè)正方形,已知中間的最小的正方形的面積為1平方厘米,則這個(gè)長(zhǎng)方形的面積為 ;
    7、如圖,請(qǐng)寫出等腰梯形 ∥ 特有而一般梯形不具有的三個(gè)特征:__________ ______; ________ _________;
    __________ ________.
    8、如圖,已知在等腰梯形ABCD中,AD∥BC.
    (1) 若AD=5, BC=11,梯形的高是4,求梯形的周長(zhǎng).
    (2) 若AD=a, BC=b, 梯形的高是h,梯形的周長(zhǎng)為c.
    則c= . (請(qǐng)用含a、b、h的代數(shù)式表示; 答案直接寫在橫線上,不要求證明.)
    9、已知:在等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,AD=3cm,BC=7cm,則梯形的高是_______cm.
    10、已知梯形的中位線長(zhǎng)為6㎝,高為4㎝,則此梯形的面積為 ㎝2.
    11、有一個(gè)直角梯形零件ABCD,AD∥BC,斜腰DC的長(zhǎng)為10cm,∠D=120°,則該零件另一AB的長(zhǎng)是 cm(結(jié)果不取近似值)
    12、正n邊形的內(nèi)角和等于1080°,那么這個(gè)正n邊形的邊數(shù)n=_____.
    13、若一個(gè)多邊形的內(nèi)角和是外角和的5倍,則這個(gè)多邊形是 邊形;
    14、菱形的一個(gè)內(nèi)角是60º,邊長(zhǎng)是5cm,則這個(gè)菱形的較短的對(duì)角線長(zhǎng)是 cm;
    15、 順次連接一個(gè)任意四邊形四邊的中點(diǎn),得到一個(gè)四邊形 .
    16、如圖,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,△DEC的周長(zhǎng)是 ( )
    A、3 B、12
    C、15 D、19
    17、四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,設(shè)有下列條件:①AB=AD;②∠ DAB=900;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,則在下列推理不成立的是 ( )
    A、①④ ⑥ B、①③ ⑤ C、①② ⑥ D、②③ ④