十年寒窗,開(kāi)出芬芳;十年磨劍,努力未變;十年堅(jiān)守,成功守候。十年的風(fēng)雨兼程奮力追逐,讓夢(mèng)想現(xiàn)實(shí)的時(shí)刻。祝努力備考,金榜題名,考入理想院校。以下是為大家整理的 《2018中考數(shù)學(xué)知識(shí)點(diǎn)【四篇】》供您查閱。
【第一篇】
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線(xiàn),垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
【第二篇】
1、二次函數(shù)的概念
一般地,如果,那么y叫做x 的二次函數(shù)。
叫做二次函數(shù)的一般式。
2、二次函數(shù)的圖像
二次函數(shù)的圖像是一條關(guān)于對(duì)稱(chēng)的曲線(xiàn),這條曲線(xiàn)叫拋物線(xiàn)。
拋物線(xiàn)的主要特征:
①有開(kāi)口方向;②有對(duì)稱(chēng)軸;③有頂點(diǎn)。
3、二次函數(shù)圖像的畫(huà)法
五點(diǎn)法:
(1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線(xiàn)畫(huà)出對(duì)稱(chēng)軸
(2)求拋物線(xiàn)與坐標(biāo)軸的交點(diǎn):
當(dāng)拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線(xiàn)與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱(chēng)點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來(lái),并向上或向下延伸,就得到二次函數(shù)的圖像。
當(dāng)拋物線(xiàn)與x軸只有一個(gè)交點(diǎn)或無(wú)交點(diǎn)時(shí),描出拋物線(xiàn)與y軸的交點(diǎn)C及對(duì)稱(chēng)點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫(huà)出二次函數(shù)的草圖。如果需要畫(huà)出比較精確的圖像,可再描出一對(duì)對(duì)稱(chēng)點(diǎn)A、B,然后順次連接五點(diǎn),畫(huà)出二次函數(shù)的圖像。
【第三篇】
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線(xiàn)與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。
注意:拋物線(xiàn)位置由決定.
(1)決定拋物線(xiàn)的開(kāi)口方向
①開(kāi)口向上.
②開(kāi)口向下.
(2)決定拋物線(xiàn)與y軸交點(diǎn)的位置.
①圖象與y軸交點(diǎn)在x軸上方.
②圖象過(guò)原點(diǎn).
③圖象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線(xiàn)對(duì)稱(chēng)軸的位置(對(duì)稱(chēng)軸:)
①同號(hào)對(duì)稱(chēng)軸在y軸左側(cè).
②對(duì)稱(chēng)軸是y軸.
③異號(hào)對(duì)稱(chēng)軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線(xiàn)與x軸的交點(diǎn)情況.、
①△>0拋物線(xiàn)與x軸有兩個(gè)不同交點(diǎn).
②△=0拋物線(xiàn)與x軸有的公共點(diǎn)(相切).
③△<0拋物線(xiàn)與x軸無(wú)公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線(xiàn)有最低點(diǎn),函數(shù)有最小值.
②當(dāng)a<0時(shí),拋物線(xiàn)有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱(chēng)軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。
(9)對(duì)稱(chēng):關(guān)于x軸對(duì)稱(chēng)的解析式為,關(guān)于y軸對(duì)稱(chēng)的解析式為,關(guān)于原點(diǎn)軸對(duì)稱(chēng)的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
②二次函數(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
③二次函數(shù)(經(jīng)過(guò)原點(diǎn),則。
(11)二次函數(shù)的解析式:
①一般式:(,用于已知三點(diǎn)。
②頂點(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ(chēng)軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱(chēng)軸和在x軸上的截距,也可用此式。
【第四篇】
二次函數(shù)的最值 (10分)
如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得值(或最小值),即當(dāng)時(shí),。
如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),。
【第一篇】
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線(xiàn),垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
【第二篇】
1、二次函數(shù)的概念
一般地,如果,那么y叫做x 的二次函數(shù)。
叫做二次函數(shù)的一般式。
2、二次函數(shù)的圖像
二次函數(shù)的圖像是一條關(guān)于對(duì)稱(chēng)的曲線(xiàn),這條曲線(xiàn)叫拋物線(xiàn)。
拋物線(xiàn)的主要特征:
①有開(kāi)口方向;②有對(duì)稱(chēng)軸;③有頂點(diǎn)。
3、二次函數(shù)圖像的畫(huà)法
五點(diǎn)法:
(1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線(xiàn)畫(huà)出對(duì)稱(chēng)軸
(2)求拋物線(xiàn)與坐標(biāo)軸的交點(diǎn):
當(dāng)拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線(xiàn)與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱(chēng)點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來(lái),并向上或向下延伸,就得到二次函數(shù)的圖像。
當(dāng)拋物線(xiàn)與x軸只有一個(gè)交點(diǎn)或無(wú)交點(diǎn)時(shí),描出拋物線(xiàn)與y軸的交點(diǎn)C及對(duì)稱(chēng)點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫(huà)出二次函數(shù)的草圖。如果需要畫(huà)出比較精確的圖像,可再描出一對(duì)對(duì)稱(chēng)點(diǎn)A、B,然后順次連接五點(diǎn),畫(huà)出二次函數(shù)的圖像。
【第三篇】
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線(xiàn)與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。
注意:拋物線(xiàn)位置由決定.
(1)決定拋物線(xiàn)的開(kāi)口方向
①開(kāi)口向上.
②開(kāi)口向下.
(2)決定拋物線(xiàn)與y軸交點(diǎn)的位置.
①圖象與y軸交點(diǎn)在x軸上方.
②圖象過(guò)原點(diǎn).
③圖象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線(xiàn)對(duì)稱(chēng)軸的位置(對(duì)稱(chēng)軸:)
①同號(hào)對(duì)稱(chēng)軸在y軸左側(cè).
②對(duì)稱(chēng)軸是y軸.
③異號(hào)對(duì)稱(chēng)軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線(xiàn)與x軸的交點(diǎn)情況.、
①△>0拋物線(xiàn)與x軸有兩個(gè)不同交點(diǎn).
②△=0拋物線(xiàn)與x軸有的公共點(diǎn)(相切).
③△<0拋物線(xiàn)與x軸無(wú)公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線(xiàn)有最低點(diǎn),函數(shù)有最小值.
②當(dāng)a<0時(shí),拋物線(xiàn)有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱(chēng)軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。
(9)對(duì)稱(chēng):關(guān)于x軸對(duì)稱(chēng)的解析式為,關(guān)于y軸對(duì)稱(chēng)的解析式為,關(guān)于原點(diǎn)軸對(duì)稱(chēng)的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
②二次函數(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
③二次函數(shù)(經(jīng)過(guò)原點(diǎn),則。
(11)二次函數(shù)的解析式:
①一般式:(,用于已知三點(diǎn)。
②頂點(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ(chēng)軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱(chēng)軸和在x軸上的截距,也可用此式。
【第四篇】
二次函數(shù)的最值 (10分)
如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得值(或最小值),即當(dāng)時(shí),。
如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),。