奧林匹克數(shù)學競賽或數(shù)學奧林匹克競賽,簡稱奧數(shù)。奧數(shù)對青少年的腦力鍛煉有著一定的作用,可以通過奧數(shù)對思維和邏輯進行鍛煉,對學生起到的并不僅僅是數(shù)學方面的作用,通常比普通數(shù)學要深奧一些。下面是為大家?guī)淼某跞昙墛W數(shù)知識點:函數(shù)及其表示法,歡迎大家閱讀。
概念
設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A。
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域。
注意:
如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
函數(shù)的定義域、值域要寫成集合或區(qū)間的形式。
定義域:
能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1;
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的,那么,它的定義域是使各部分都有意義的x的值組成的集合;
(6)指數(shù)為零底不可以等于零;
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義。
注意:求出不等式組的解集即為函數(shù)的定義域。
概念
設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A。
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域。
注意:
如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
函數(shù)的定義域、值域要寫成集合或區(qū)間的形式。
定義域:
能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1;
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的,那么,它的定義域是使各部分都有意義的x的值組成的集合;
(6)指數(shù)為零底不可以等于零;
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義。
注意:求出不等式組的解集即為函數(shù)的定義域。