小升初奧數(shù)鐘面行程問題知識點

字號:

數(shù)學是一切科學的基礎(chǔ),一切重大科技進展無不以數(shù)學息息相關(guān)。沒有了數(shù)學就沒有電腦、電視、航天飛機,就沒有今天這么豐富多彩的生活。以下是整理的相關(guān)資料,希望對您有所幫助。
     【篇一】
    一、什么是鐘面行程問題?
    鐘面行程問題是研究鐘面上的時針和分針關(guān)系的問題,常見的有兩種:⑴研究時針、分針成一定角度的問題,包括重合、成一條直線、成直角或成一定角度;⑵研究有關(guān)時間誤差的問題.
    在鐘面上每針都沿順時針方向轉(zhuǎn)動,但因速度不同總是分針追趕時針,或是分針超越時針的局面,因此常見的鐘面問題往往轉(zhuǎn)化為追及問題來解.
    二、鐘面問題有哪幾種類型?
    第一類是追及問題(注意時針分針關(guān)系的時候往往有兩種情況);第二類是相遇問題(時針分針永遠不會是相遇的關(guān)系,但是當時針分針與某一刻度夾角相等時,可以求出路程和);第三種就是走不準問題,這一類問題中最關(guān)鍵的一點:找到表與現(xiàn)實時間的比例關(guān)系。
    三、鐘面問題有哪些關(guān)鍵問題?
    ①確定分針與時針的初始位置;
    ②確定分針與時針的路程差;
    四、解答鐘面問題有哪些基本方法?
    ①分格方法:
    時鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時走60分格,即一周;而時針只走5分格,故分針每分鐘走1分格,時針每分鐘走1/12分格。
    ②度數(shù)方法:
    從角度觀點看,鐘面圓周一周是360°,分針每分鐘轉(zhuǎn)360/60度,即6°,時針每分鐘轉(zhuǎn)360/12*60度,即1/2度。
     【篇二】
    鐘面行程問題例題
    例1:從5時整開始,經(jīng)過多長時間后,時針與分針第一次成了直線?
    5時整時,分針指向正上方,時針指向右下方,此時兩者之間間隔為25個小格(表面上每個數(shù)字之間為5個小格),如果要成直線,則分針要超過時針30個小格,所以在此時間段內(nèi),分針一共比時針多走了55個小格。由每分鐘分針比時針都走11/12個小格可知,此段時間為55/(11/12)=60分鐘,也就是經(jīng)過60分鐘時針與分針第一次成了直線。
    例2:從6時整開始,經(jīng)過多少分鐘后,時針與分針第一次重合?
    6時整時,分針指向正上方,時針指向正下方,兩者之間間隔為30個小格。如果要第一次重合,也就是兩者之間間隔變?yōu)?,那么分針要比時針多走30個小格,此段時間為30/(11/12)=360/11分鐘。
     【篇三】
    練習
    1、有一個時鐘快20秒,它在3月1日中午12時準確指示時間.下次準確指示時間是什么時候?
    2、小紅晚上9點整時將手表對準,可第二天早晨8點到校遲到了10分鐘,那么小紅的手表每小時慢幾分鐘?
    3、爺爺家的老式鐘的時針與分針,每隔66分鐘重合一次,這只時鐘每晝夜慢多少分鐘??
    4、一晝夜快3分的時鐘,今天下午4時調(diào)撥到幾點幾分,才能于明天上午8時指向正確的時刻?
    5、8時到9時之間,在什么時刻時針與分針的夾角是60度?
    6、張奶奶家的鬧鐘每小時快2分(準確的鐘分針每小時走一圈,而這個鐘的分針每小時走一圈多2格)。昨晚21:00,她把鬧鐘與北京時間對準了,同時把鐘撥到今天早晨6:00鬧鈴,張姐姐聽到鬧鈴聲響比北京時間今天早晨6:00提前了多少小時?
    7、在7時和8時之間,什么時刻時針與分針成直角?
    8、某人有一只手表,比家里鬧鐘時間每小時快30秒,而鬧鐘卻比標準時間每小時慢30秒。此人手表一晝夜與標準時間相差多少秒?
    9、5時以后的什么時刻,時針和分針在“4”字兩邊并且與“4”字等距離?
    10、一只鐘的時針和分針每65分鐘重合一次,這只針一天慢或快幾分?