失敗是什么?沒有什么,只是更走近成功一步;成功是什么?就是走過了所有通向失敗的路,只剩下一條路,那就是成功的路。高二頻道為正在奮斗的你整理了《高二年級導(dǎo)數(shù)常用公式》學(xué)習(xí)路上,與你共勉!
【導(dǎo)數(shù)的定義】
當(dāng)自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)-f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導(dǎo),稱之為f在x0點的導(dǎo)數(shù)(或變化率).
函數(shù)y=f(x)在x0點的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。
一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x)在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時,y=f(x)有極大值或極小值,極大值中者是值,極小值中最小者是最小值
【求導(dǎo)數(shù)的步驟】
求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:
①求函數(shù)的增量Δy=f(x0+Δx)-f(x0)②求平均變化率③取極限,得導(dǎo)數(shù)。
導(dǎo)數(shù)公式:
①C'=0(C為常數(shù)函數(shù));②(x^n)'=nx^(n-1)(n∈Q*);熟記1/X的導(dǎo)數(shù)③(sinx)'=cosx;(cosx)'=-sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)'=tanx•secx(cscx)'=-cotx•cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=hcoshx(coshx)'=-hsinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx•sechx(cschx)'=-cothx•cschx(arsinhx)'=1/(x^2+1)^1/2(arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1)(|x|<1)(arcothx)'=1/(x^2-1)(|x|>1)(arsechx)'=1/(x(1-x^2)^1/2)(arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln為自然對數(shù))(Inx)'=1/x(ln為自然對數(shù))(logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1)(1/x)'=-x^(-2)
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(shù)(x)看作整個變量,而g'(x)中把x看作變量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導(dǎo)數(shù)的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導(dǎo)暫且不證,因為如果根據(jù)導(dǎo)數(shù)的定義來推導(dǎo)的話就不能推廣到n為任意實數(shù)的一般情況。在得到y(tǒng)=e^xy'=e^x和y=lnxy'=1/x這兩個結(jié)果后能用復(fù)合函數(shù)的求導(dǎo)給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導(dǎo)出導(dǎo)函數(shù)的,必須設(shè)一個輔助的函數(shù)β=a^⊿x-1通過換元進行計算。由設(shè)的輔助函數(shù)可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當(dāng)⊿x→0時,β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結(jié)果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當(dāng)a=e時有y=e^xy'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當(dāng)⊿x→0時,⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當(dāng)a=e時有y=lnxy'=1/x。
這時可以進行y=x^ny'=nx^(n-1)的推導(dǎo)了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導(dǎo)出y=cosxy'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
【導(dǎo)數(shù)的應(yīng)用】
1.函數(shù)的單調(diào)性
(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性,這是導(dǎo)數(shù)幾何意義在研究曲線變化規(guī)律時的一個應(yīng)用,它充分體現(xiàn)了數(shù)形結(jié)合的思想.一般地,在某個區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減.如果在某個區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常數(shù)函數(shù).注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1.定義最基礎(chǔ)求法2.復(fù)合函數(shù)單調(diào)性)①確定f(x)的定義域;②求導(dǎo)數(shù);③由(或)解出相應(yīng)的x的范圍.當(dāng)f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù).
2.函數(shù)的極值
(1)函數(shù)的極值的判定①如果在兩側(cè)符號相同,則不是f(x)的極值點;②如果在附近的左右側(cè)符號不同,那么,是極大值或極小值.
3.求函數(shù)極值的步驟
①確定函數(shù)的定義域;②求導(dǎo)數(shù);③在定義域內(nèi)求出所有的駐點與導(dǎo)數(shù)不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值.
4.函數(shù)的最值
(1)如果f(x)在[a,b]上的值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念.(2)求f(x)在[a,b]上的值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中的一個是值,最小的一個是最小值.
5.生活中的優(yōu)化問題
生活中經(jīng)常遇到求利潤、用料最省、效率等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題.解決這些問題具有非?,F(xiàn)實的意義.這些問題通常可以轉(zhuǎn)化為數(shù)學(xué)中的函數(shù)問題,進而轉(zhuǎn)化為求函數(shù)的(小)值問題.
【導(dǎo)數(shù)的定義】
當(dāng)自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)-f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導(dǎo),稱之為f在x0點的導(dǎo)數(shù)(或變化率).
函數(shù)y=f(x)在x0點的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。
一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x)在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時,y=f(x)有極大值或極小值,極大值中者是值,極小值中最小者是最小值
【求導(dǎo)數(shù)的步驟】
求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:
①求函數(shù)的增量Δy=f(x0+Δx)-f(x0)②求平均變化率③取極限,得導(dǎo)數(shù)。
導(dǎo)數(shù)公式:
①C'=0(C為常數(shù)函數(shù));②(x^n)'=nx^(n-1)(n∈Q*);熟記1/X的導(dǎo)數(shù)③(sinx)'=cosx;(cosx)'=-sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)'=tanx•secx(cscx)'=-cotx•cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=hcoshx(coshx)'=-hsinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx•sechx(cschx)'=-cothx•cschx(arsinhx)'=1/(x^2+1)^1/2(arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1)(|x|<1)(arcothx)'=1/(x^2-1)(|x|>1)(arsechx)'=1/(x(1-x^2)^1/2)(arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln為自然對數(shù))(Inx)'=1/x(ln為自然對數(shù))(logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1)(1/x)'=-x^(-2)
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(shù)(x)看作整個變量,而g'(x)中把x看作變量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導(dǎo)數(shù)的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導(dǎo)暫且不證,因為如果根據(jù)導(dǎo)數(shù)的定義來推導(dǎo)的話就不能推廣到n為任意實數(shù)的一般情況。在得到y(tǒng)=e^xy'=e^x和y=lnxy'=1/x這兩個結(jié)果后能用復(fù)合函數(shù)的求導(dǎo)給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導(dǎo)出導(dǎo)函數(shù)的,必須設(shè)一個輔助的函數(shù)β=a^⊿x-1通過換元進行計算。由設(shè)的輔助函數(shù)可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當(dāng)⊿x→0時,β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結(jié)果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當(dāng)a=e時有y=e^xy'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當(dāng)⊿x→0時,⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當(dāng)a=e時有y=lnxy'=1/x。
這時可以進行y=x^ny'=nx^(n-1)的推導(dǎo)了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導(dǎo)出y=cosxy'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
【導(dǎo)數(shù)的應(yīng)用】
1.函數(shù)的單調(diào)性
(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性,這是導(dǎo)數(shù)幾何意義在研究曲線變化規(guī)律時的一個應(yīng)用,它充分體現(xiàn)了數(shù)形結(jié)合的思想.一般地,在某個區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減.如果在某個區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常數(shù)函數(shù).注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1.定義最基礎(chǔ)求法2.復(fù)合函數(shù)單調(diào)性)①確定f(x)的定義域;②求導(dǎo)數(shù);③由(或)解出相應(yīng)的x的范圍.當(dāng)f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù).
2.函數(shù)的極值
(1)函數(shù)的極值的判定①如果在兩側(cè)符號相同,則不是f(x)的極值點;②如果在附近的左右側(cè)符號不同,那么,是極大值或極小值.
3.求函數(shù)極值的步驟
①確定函數(shù)的定義域;②求導(dǎo)數(shù);③在定義域內(nèi)求出所有的駐點與導(dǎo)數(shù)不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值.
4.函數(shù)的最值
(1)如果f(x)在[a,b]上的值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念.(2)求f(x)在[a,b]上的值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中的一個是值,最小的一個是最小值.
5.生活中的優(yōu)化問題
生活中經(jīng)常遇到求利潤、用料最省、效率等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題.解決這些問題具有非?,F(xiàn)實的意義.這些問題通常可以轉(zhuǎn)化為數(shù)學(xué)中的函數(shù)問題,進而轉(zhuǎn)化為求函數(shù)的(小)值問題.